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Interactions between randomly moving entities and spatial disorder play a crucial role in quanti-
fying the diffusive properties of a system. Examples range from molecules advancing along dendritic
spines, to animal anti-predator displacements due to sparse vegetation, through to water vapour
sifting across the pores of breathable materials. Estimating the effects of disorder on the transport
characteristics in these and other systems has a long history. When the localised interactions are
reactive, that is when particles may vanish or get irreversibly transformed, the dynamics is modelled
as a boundary value problem with absorbing properties. The analytic advantages offered by such
a modelling approach has been instrumental to construct a general theory of reactive interaction
events. The same cannot be said when interactions are inert, i.e. when the environment affects only
the particle movement dynamics. While various models and techniques to study inert processes
across biology, ecology and engineering have appeared, many studies have been computational and
explicit results have been limited to one-dimensional domains or symmetric geometries in higher
dimensions. The shortcoming of these models have been highlighted by the recent advances in ex-
perimental technologies that are capable of detecting minuscule environmental features. In this new
empirical paradigm the need for a general theory to quantify explicitly the effects of spatial hetero-
geneities on transport processes, has become apparent. Here we tackle this challenge by developing
an analytic framework to model inert particle-environment interactions in domains of arbitrary
shape and dimensions. We do so by using a discrete space formulation whereby the interactions be-
tween an agent and the environment are modelled as perturbed dynamics between lattice sites. We
calculate exactly how disorder affects movement due to reflecting or partially reflecting obstacles,
regions of increased or decreased diffusivity, one-way gates, open partitions, reversible traps as well
as long range connections to far away areas. We provide closed form expressions for the generating
function of the occupation probability of the diffusing particle and related transport quantities such
as first-passage, return and exit probabilities and their respective means. The strength of an ana-
lytic formulation becomes evident as we uncover a surprising property, which we term the disorder
indifference phenomenon of the mean first-passage time in the presence of a permeable barrier in
quasi 1D systems. To demonstrate the widespread applicability of our formalism, we consider three
examples that span different spatial and temporal scales. The first is an exploration of an enhance-
ment strategy of transdermal drug delivery through the stratum corneum of the epidermis. In the
second example we associate spatial disorder with a decision making process of a wandering animal
to study thigmotaxis, i.e. the tendency to remain close to the edges of a confining domain. The third
example illustrates the use of spatial heterogeneities to model inert interactions between particles.
We exploit this aspect to analyse the search of a promoter region on the DNA by transcription
factors during the early stages of gene transcription.

I. INTRODUCTION

Local interactions between mobile agents or particles
and their environmental features plays a crucial role in
the dynamics of many systems across disciplines and
scales [1–5]. When such environmental features are in-
ert heterogeneities, the local interactions only affect the
movement dynamics of the agents. A wide array of spa-
tial heterogeneities can be classed as inert, e.g. impen-
etrable or permeable barriers, areas of reduced or in-
creased mobility, lattice defects such a disclinations, and
traps that are reversible.

In some instances the presence of such heterogeneities
is by design, e.g. in manufacture engineering where ma-
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terials are constructed to have specified diffusive charac-
teristics [6, 7]. In other scenarios spatial heterogeneities
occur naturally. In ecology, animals alter their foraging
behaviour due to variations in vegetation cover [8, 9]. In
molecular biology, particles undergo fence hindered mo-
tion in the lipid bilayer membranes of eukaryotes [10, 11],
and slow down dramatically when moving within the cell
cytoplasm due to exclusion processes [12]. While the re-
lationship between mobility and spatial disorder in these
and other systems has always been a focus of scientific
studies, it is the highly resolved nature of modern obser-
vations that has made apparent the need for a general
framework to model inert particle-environment interac-
tions.

Investigations on movement dynamics in spatially dis-
ordered systems date back as early as the 50’s [13–17].
Despite such a long history most analyses lack a rigor-
ous quantitative description of the ‘microscopy’ of the
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interaction events between the particle and the environ-
ment. In the past, transport in highly disordered me-
dia has been studied approximately, linking the Haus-
dorff–Besicovitch dimension of fractal structures to a dif-
fusion constant via scaling arguments [18]. Other ap-
proaches have kept the geometry non-fractal utilising
random walks on regular lattices, the so-called random
walk in random environments model [19–25]. The ma-
jority of these latter studies pertain to 1D domains [26],
and have used techniques such as the effective medium
approximation to find statistical properties of the move-
ment dynamics. It is precisely the absence of explicit
spatiotemporal representation of higher dimensional par-
ticle dynamics, that has hampered the widespread appli-
cability of these various models to current high fidelity
observations.

More recent theoretical applications to movement in
disordered environment have focused on the diffusive dy-
namics in the cell (e.g. see reviews in Refs. [27–29]).
Many attempts in this area are macroscopic and tackle
particle dynamics without representing the local inter-
actions. Some efforts, giving importance to the very
slow dynamics that emerge from overcrowding effects,
have modelled particle movement via fractional diffusion
[30]. The relative size of accessible versus inaccessible
regions has been accounted for using diffusion on per-
colation clusters and has highlighted the difference be-
tween compact versus non-compact exploration of space
[31]. Other investigations have put emphasis on the spa-
tiotemporal dynamics of the environment and have de-
veloped the so-called diffusing-diffusivity models, where
the diffusion strength of the medium itself is a random
variable [32–35].

These approaches have brought important insights and
have broadened the tools and techniques with which
to study disordered systems. However, they too lack
the mechanistic connection between the environmen-
tal heterogeneities and the moving particle [30]. With
the advent of new experimental techniques such as
super-resolution microscopy and single particle tracking
[36], the need for an explicit consideration of particle-
environment interactions has also emerged in microbiol-
ogy [37, 38].

The challenge in fulfilling this need stems from the
symmetry breaking role that disorder plays on the under-
lying diffusive dynamics. In most instances describing ex-
plicitly multiple heterogeneities is an unwieldy boundary
value problem. The vast majority of theoretical studies
have in fact been limited to highly symmetric scenarios,
e.g. spherically symmetric domains with concentric layers
of different diffusivity [39–42] and an array of periodically
placed semi-permeable barriers in 1D [43–47].

To bypass this challenge, and to avoid the use of com-
putationally prohibitive stochastic simulations, we pro-
pose a unifying analytic framework to model interactions
between diffusing agents and spatial disorder. We do so
by developing a random walk theory where interactions
with heterogeneities are represented as a perturbation of

the transition probabilities of a homogeneous lattice. By
extending the so-called defect technique [48–50], we are
able to model explicitly any inert particle-environment
interactions in arbitrary dimensions, e.g. the passage
through porous or permeable barriers, the movement
within regions of altered diffusivity, which we call sticky
or slippery sites as well as shortcut jumps to far away
locations.

The theory allows us to derive mathematical expres-
sions for the random walker occupation probability, the
so-called propagator. The generating function of these
propagators are exact and obtained in terms of the oc-
cupation probability in the absence of spatial hetero-
geneities, thereby making our framework modular in
its application. Multiple derived quantities, such as
first-passage, return and exit probabilities, which in the
past were obtained either numerically or known only in
asymptotic limits [51], can now be readily computed via
the evaluation of certain matrix determinants.

Given the generality of our framework, we have opted
to provide three examples of application. The first deals
with an extra-cellular process, namely the potential op-
timisation of transdermal drug delivery [52, 53]. The
second example is the modelling of thigmotaxis, the ten-
dency of insects and other animals to remain preferen-
tially close to physical boundaries whilst moving [54, 55].
The third application concerns with the search dynamics
in a two particle coalescing process that is of relevance
to early stages of gene transcription [56, 57].

The remainder of the paper is organised as follows. In
Section II we introduce the general mathematical formal-
ism via a lattice random walk Master equation, and show
how we represent different kinds of heterogeneities. In
Section III we solve the Master equation and find the ex-
act propagator. Section IV deals with first-passage statis-
tics and their associated mean, i.e. mean first-passage,
mean exit and mean return times. The latter half of
the paper, Sections V, VI and VII, are devoted to the
three applications mentioned previously, which are trans-
dermal drug delivery, thigmotaxis and gene transcrip-
tion. Lastly, conclusions and future applications form
Section VIII.

II. MOVEMENT IN HETEROGENEOUS
ENVIRONMENTS

We start by defining the dynamics of a Markov lattice
random walk on a d-dimensional lattice via

ϕ(n, t+ 1) =
∑

m

An,mϕ(m, t), (1)

where n is a d-dimensional vector and An,m is the
transition probability from site m to site n such that∑

m Am,n = 1 for any site n on the lattice, i.e. with
d = 1, A is a probability conserving transition matrix,
and when d > 1, A is actually a tensor. For convenience
in inverting generating functions, as compared to Laplace
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inversion, we use a discrete time formulation with the
variable t. Changes to a continuous time description is
straightforward [58], but is omitted here. We refer to
this equation as the homogeneous Master equation and
its solution, given a localised initial condition, as the ho-
mogeneous propagator. The underlying lattice is referred
to as the homogeneous lattice whose size can be finite or
infinite.

Since spatially heterogeneous dynamics are defined
relative to the homogeneous system, we define hetero-
geneities as locations or defects where the dynamics are
different from the corresponding ones on the homoge-
neous lattice. Examples of heterogeneities are depicted
in Fig. 1.

(a) (b)

(c) (d)

FIG. 1. Examples of the spatial heterogeneities within a
square lattice of width 10 with reflecting boundaries. Panel
(a) represents an open partitions with the solid black lines in-
dicating impenetrable barriers. When these barriers enclose
a region, some space becomes inaccessible indicated by the
sites coloured dark grey in panel (b). Panel (c) shows a lat-
tice where three pairs of non-neighbouring sites have a long
range connection, i.e. transitions from a dashed site include
the nearest-neighbours as well as the site connected via the
dashed line. Panel (d) is an example of where the diffusivity
of the striped sites is smaller than the regular (non-striped)
sites. The central site flagged by a red square and the two
sites flagged by a blue diamond are, respectively, the initial
condition and the absorbing targets for use in later sections.

The heterogeneities displayed in Fig. 1 emerge from
the modification of the outgoing transitions from one or
more sites, hence we refer to these altered transitions
as heterogeneous connections. For example, given a par-
tially reflecting barrier in between two neighbouring sites,
the jump probability from either of the two sites to the
other is reduced, while the probability of staying put at

either of the sites is increased. Conversely, by connecting
together two non-neighbouring sites, we may wish to re-
duce the probability of staying put at a given site, whilst
adding the possibility of hopping to the site further away.
One can represent conveniently these or any other het-
erogeneity through a modification of the transitions as
depicted in Fig. 2. Formally, the outgoing connections
of the sites u and v are adjusted by introducing the pa-
rameters λv,u and λu,v to create two heterogeneous con-
nections. Although we choose to modify transitions in
both direction, i.e. from u to v and v to u, this does not
have to be the case. Modifications of only outgoing con-
nections are also permitted, e.g. see the dashed arrows
connecting the additional sites r and s.

u u

us

ur

u v

Av,u − λv,u

Au,v − λu,v

As,v − λs,v

Ar,u − λr,u

Au,u

+∑
w λw,u

Av,v
+∑

w λw,v

FIG. 2. A schematic representation of the transition proba-
bilities after the introduction of spatial heterogeneity or dis-
order. The probability of hopping from site u to v is given
by Av,u. When λv,u is positive, the probability of jumping
from u to v decreases, while the probability of staying put
increases. When λv,u is negative, the opposite effect occurs
with a decrease in the probability of staying, while increasing
the jump probability from u to v. The parameter λu,v affects
the transition probability from v to u and the probability of
remaining at v in an equivalent manner.

The construction implicitly conserves probability,
which can be evinced by picking a defect, e.g. u, and
summing over all of the outgoing probabilities. The
changes induced by the λ parameters cancel each other
out leaving

∑
w Aw,u, with w representing all the neigh-

bours of u, equal to the homogeneous outgoing probabil-
ity. To ensure positive probability for a given heteroge-
neous site u, we have the conditions

λw,u ≤ Aw,u, (2)

for allw with a heterogeneous connection in the direction
u to w, and

0 ≤ Au,u +
∑

w

λw,u , (3)

which enforces upper and lower bounds on the λ param-
eters although each one of them can be positive or neg-
ative. This formulation allows one to perturb arbitrarily
the homogeneous lattice creating any type of probability
conserving particle-environment interactions.
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A. Quantitative representation of heterogeneities

To understand the practicality of the formalism, we fo-
cus on the three specific types of heterogeneities in Fig. 1,
namely, barriers (Figs. (1)a and (1)b), long-range connec-
tions (Fig. 1c) and sticky sites (Fig. 1d). In the follow-
ing subsection we present convenient parameterisation
for the constant λ’s to construct such heterogeneities.

1. Barriers and Anti-Barriers

With u and v two neighbouring sites, we construct
a partially reflecting barrier by having λv,u = αvAv,u
and λu,v = αuAu,v where αv , αu ∈ [0, 1] is a measure
of the reflectivity of the barrier. When αv , αu = 1 we
have an impenetrable barrier (shown in Fig. 3), while
with αv , αu = 0 we regain the homogeneous transition.
Notice that the barrier does not need to be symmetric,
i.e. αu 6= αv , with the extreme scenario being a barrier
with λv,u = Av,u and λu,v = 0 yields a one-way barrier
or gate. In such a case the movement from v to u is
allowed but from u to v is not.

It is also possible to have dynamics opposite to the par-
tially reflecting barrier. In this case, again with u and
v two neighbouring sites, one has λv,u = −βvAu,u and
λu,v = −βuAv,v where βv , βu ∈ [0, 1]. As the probability
of jumping to the neighbours increases whilst the proba-
bility of staying put decreases, we have chosen the name
anti-barrier for this type of heterogeneity.

u uu v u uu v

FIG. 3. Example of a reflecting barrier between u and v
generated by modifying the transition probabilities (from the
left to the right of the schematic). The modified transitions
are indicated by coloured arrows. The modification in this
case results in an impenetrable barrier between u and v, with
αv = αu = 1.

2. Long Range Connection

When adding an outgoing long-range connection one
has to draw the probability from one or more of the ex-
isting transitions. Let us consider a site u and a non-
neighbouring destination site s, where As,u = Au,s = 0.
One way of introducing the outgoing long range con-
nection is to draw upon the lazy (also called sojourn)
probability using λs,u = −βsAu,u and λu,s = −βuAs,s,
where βu , βs ∈ [0, 1] is the proportion of the lazy proba-
bility added to the long range connection, see Fig. 4 for
a pictorial representation.

Note this is not the only way; one can also rewire an ex-
isting connection from a neighbour to the non-neighbour.
In such a case, with v a neighbour of u, we let λv,u = Av,u
and λs,u = −Av,u. The former removes the possibility of

jumping from u to the neighbour v, whilst the latter adds
the possibility of hopping from u to the non-neighbour
s.

u u u uu v s u u u uu v s

FIG. 4. Example of a long range connection obtained by
rewiring the lazy probability of u and v to create a long range
connection between them (from left to right). In this case
βu = βs = 1.

3. Sticky and Slippery Sites

Adding a partially reflecting barrier between two
neighbouring sites naturally increases the probability of
staying. By harnessing this property one can use mul-
tiple one-way partially reflecting barriers between a site
w and all of its k nearest neighbours, r1, · · · , rk, giving
λri ,w = αAri,w

, and λw,ri = 0 with α ∈ [0, 1] for all
i = 1, · · · , k. The result is a sticky site, w, where the
probability of staying is increased, whilst the probability
of jumping to any of its neighbours is decreased. The
introduction of α is used to control and distribute the
stickiness equally across the neighbours in a convenient
manner. See Fig. 5 for a pictorial representation on a 1D
lattice.

Conversely, keeping λw,ri = 0 and letting λri ,w =

−βkAw,w with β ∈ [0, 1] for all i = 1, · · · , k yields a
slippery site with opposite dynamics. As for the sticky
site, the introduction of β is used to control the slippery
quality of the site w equally among its neighbours. Note
that we have chosen to divide β by k so that Eq. (3) is
automatically satisfied.

u uu w u u uw

FIG. 5. Example of a sticky site on a 1D lattice generated
by reducing all of the outgoing probability to the neighbours
as shown by the thinner arrows, whilst increasing the staying
probability of w as shown by the thicker self loop (from left
to right).

III. HETEROGENEOUS PROPAGATOR

We consider an arbitrary collection of heterogeneous
connections given by a set of M paired defective sites
or defects, S = {{u1, v1}, · · · , {uM , vM}}. We use
ui and vi with subscripts to indicate the two mem-
bers of the ith pair, while u and v without subscripts
refers to a generic pair in S. The pairs are unique,
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i.e. {ui, vi} 6= {uj , vj} for any i 6= j, however, a site
can be part of multiple pairs. For example, the set of
pairs which represents the schematic depicted in Fig. 2 is
S = {{u, v}, {u, r}, {v, s}}, with the sites u and v being
part of two pairs while the sites r and s being part of only
one pair each. The evolution of the occupation probabil-
ity is given by the Master equation (for the details see
Section I of the Supplementary Materials)

Φ(n, t+ 1) =
∑

m

An,m Φ(m, t)

+
M∑

k=1

(δn,uk − δn,vk)

[
λvk,ukΦ(uk, t)− λuk,vkΦ(vk, t)

]
,

(4)

where the second summation is over all pairs of heteroge-
neous connections. When all λ parameters are set equal
to zero, Eq. (4) reduces to Eq. (1) and the occupation
probability on the heterogeneous lattice, Φ(n, t), reduces
to that of the homogeneous lattice, ϕ(n, t).

One can find the generating function (z-domain) solu-
tion of Eq. (4) by generalising the so-called defect tech-
nique to obtain (see Section I of the Supplementary Ma-
terials)

Φ̃n0
(n, z) = ϕ̃n0

(n, z)− 1 +
|H(n,n0)|
|H| , (5)

where f̃(z) =
∑∞
t=0 f(t)zt is the generating function of

the time dependent function f(t), ϕ̃n0
(n, z) is the prop-

agator generating function of Eq. (1), while |H| and
|H(n,n0)| are determinants with

Hi,j = λvi,ui ϕ̃〈uj−vj〉(ui, z)− λui,vi ϕ̃〈uj−vj〉(vi, z)

− z−1δi,j , (6)

H(n,n0)i,j = Hi,j − ϕ̃〈uj−vj〉(n, z)

×
[
λvi,ui ϕ̃n0

(ui, z)− λui,vi ϕ̃n0
(vi, z)

]
. (7)

In Eqs. (6) and (7) we have used the notation
ϕ̃〈u−v〉(n, z) = ϕ̃u(n, z) − ϕ̃v(n, z). From here onwards
we refer to ϕ̃n0

(n, z) as the homogeneous propagator,
which is known explicitly (see Sections V and VB of
the Supplementary Materials), while Φ̃n0

(n, z) is re-
ferred to as the heterogeneous propagator. When t =
0, that is z = 0, we have ϕ̃n0

(n, 0) = δn0,n, while
|H(n,n0)| / |H| = 1 and we recover the appropriate ini-
tial condition, Φ̃n0(n, 0) = δn0,n.

In general the size of matricies H and H(n,n0)
depends on the number of paired defects, M . A d-
dimensional walk with one sticky (or slippery) site re-
quires two paired defects for each of the d dimensions.
However, in this case one can make a simplification and
reduce the size of the matrices by a factor of 2d. The
simplified matrices H and H(n,n0) are defined, respec-
tively, in Eqs. (S20) and (S21) of the Supplementary Ma-
terials.

(a) (b)

(c) (d)

FIG. 6. A snapshot of Φn0(n, t) at time t = 100 obtained
from Eq. (5) with standard numerical methods [59, 60]. Prop-
agator with different configurations of defects, correspond-
ing with Fig. 1, at t = 100. For all panels, the homoge-
neous propagator, ϕ̃n0

(n, z) is the 2D propagator with re-
flecting boundaries given in Eq. (23) of Ref. [58] (see also
Section VB of the Supplementary Materials). The param-
eters used are: a domain of size N = (10, 10), a localised
initial condition with n0 = (6, 6). We a use diffusion param-
eter of value q = (0.2, 0.2), which gives the following tran-
sition probabilities: in the bulk of the homogeneous lattice
the probability of jumping to one of the four neighbours is
Ar,s = 0.05 (with r 6= s), while the probability of staying
at the same site is Ar,r = 0.8. The reflecting barriers and
other heterogeneities are super imposed on top of the proba-
bility. For panels (a) and (b), λv,u = Av,u and λu,v = Av,u
(for all {u, v} ∈ S) yielding perfectly reflecting barriers. For
panel (c) λv,u = − 1

2
Au,u, and λu,v = − 1

2
Av,v. With this

perturbation, when on one of the defective sites, the prob-
ability of staying is reduced to Au,u = Av,v = 0.4, while
the probability of jumping to the non-neighbour is increased
(from zero) to Au,v = Av,u = 0.4. Lastly, for panel (d), for
each of the sticky-sites w with k neighbours r1, · · · , rk we use
λri ,w = 1

4
Ari,w

(see Section IIA 3). For convenience we have
omitted colour bars for each panel as we are interested only
in the relative differences of the occupation probability.

In Fig. 6 we plot a snapshot of Φ̃n0(n, t) for the hetero-
geneities depicted in each of the panels of Fig. 1. In panel
(a) the lattice is partitioned by impenetrable barriers rep-
resented by the solid white lines. Here, one can observe
the lowest probabilities in the top-left corner since the
walker has not had the time to travel around the barri-
ers. Panel (b) contains areas enclosed by impenetrable
barriers, with occupation probabilities that are always
zero. The long range connection shown in panel (c) has
enabled the walker to spread further than in other pan-
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els. Small peaks in the probability can be observed away
from the initial condition, in the top-left, bottom-left and
bottom right corners. In panel (d) the sticky regions tend
to show a higher occupation probability compared to the
homogeneous sites.

Note that we have not placed any restriction on
whether (the homogeneous propagator) ϕ̃n0

(n, z) con-
serves probability or note. When there are fully or par-
tially absorbing sites, one may proceed in two ways. (i)
In the first approach one account for the absorbing dy-
namics by finding the propagator ϕ̃n0

(n, z) that satis-
fies appropriate boundary conditions, before adding in-
ert disorder via Eq. (5). (ii) In the second approach one
would take ϕ̃n0

(n, z) without any absorbing locations,
construct Φ̃n0

(n, z) and then add the absorbing sites us-
ing the standard defect technique in the presence of ab-
sorbing sites [50]. While the choice makes no impact on
the final dynamics, depending on the situation one pro-
cedure may be more convenient than the other.

IV. FIRST-PASSAGE PROCESSES

An important quantity derived from the propagators
is the first-passage statistics to a set of targets. It is
relevant to stochastic search in movement ecology [61],
swarm robotics [62] and many other areas [63].

The first-passage probability, Fn0(n, t), that is the
probability to reach n for the first time at t having started
at n0, is related to the propagator, Φn0(n, t) by the re-
newal equation. When n 6= n0, the well-known relation
in z-domain is given by F̃n0

(n, z) = Φ̃n0
(n, z)/Φ̃n(n, z).

Having the first-passage probability in closed form allows
one to substitute the heterogeneous first-passage proba-
bility Fn0

(n, t) (or F̃n0
(n, z)) in place of the homogeneous

counterpart in other established contexts where homoge-
neous space was previously assumed.

One such context is a first-passage in the presence of
multiple targets, where one is interested in the proba-
bility of being absorbed at any of the targets. We use
recent findings [58] to determine the dynamics of a lat-
tice walker to reach either of two sites, n1, and n2,
for the first time at t in the presence of spatial het-
erogeneities, given by Fn0

(n1,n2, t). The generating
function of this probability, given by F̃n0

(n1,n2, z) ={
F̃n0

(n1, z)
[
−F̃n1

(n2, z)
]

+ F̃n0
(n2, z)

[
−F̃n2

(n1, z)
]}

×
[
1− F̃n1(n2, z)F̃n1(n2, z)

]−1
, (taken from Eq. (38) in

Ref. [58]), is expressed in terms of the first-passage prob-
abilities to single targets.

In Fig. 7 plot the time dependent probability for the
heterogeneity examples shown in Fig. 1. The first non-
zero probability corresponds to the length of the short-
est path to either of the targets, which in the absence
of heterogeneities and for the examples in Fig. 1(a), (b)
and (d) is 6, whereas for the panel (c) one can reach the
target n1 from n0 in 4 steps as a result of the nearest

long range connection. It is clearly visible in the earlier
rise of the curve related to Fig. 1(c). Interestingly, the
first-passage probability curves corresponding with ex-
cluded regions, shown in Fig. 1(b), and the homogeneous
case are almost indistinguishable from each other for 2
decades. While excluding parts of the lattice increases
the lengths of some paths to the targets, it also reduces
the overall space that can be explored. For the setup
chosen, these two effects counteract each other at short
and intermediate timescales.

Among all the curves, the case with open partitions
related to Fig. 1(a), results in a first-passage probability
which is the slowest to rise and with the broadest tail
in the distribution. The reasons for such characteristics
compared to all other curves is due to the location of the
initial site relative to the targets. As the latter ones are
partially behind partitions, the more directed paths take
more time to reach the targets and the walker remains
confined in the region around the initial site for much
longer.

The sticky sites in Fig. 1(d) have limited effect on the
more directed paths connecting the starting site and the
targets. This is why Fn0

(n1,n2, t) in Fig. 7(b) is identical
to the homogeneous case at short times. However, sticky-
sites can be both a hindrance or a benefit to the searcher.
While it can partially trap the walker and stop it from
reaching the target site, it can also stop the walker from
exploring regions away from the targets. Since there are
sticky sites close to the targets, these two effects coun-
teract one another and we observe marginal difference
in the tail of the distribution when compared with the
homogeneous curve.

A. Explicit mean first-passage quantities

The first moment of Fn0
(n, t), that is the mean first-

passage time (MFPT), Fn0→n = d
dz F̃n0

(n, z)
∣∣∣
z=1

, is
given by

Fn0→n =
Fn0→n

∣∣H− 1/Fn0→nH(1)
∣∣

∣∣H−H(2)
∣∣ , (8)

where Fn0→n is the homogeneous MFPT from n0 to
n and the elements of the matrices H, H(1) and H(2)

are defined in terms of homogeneous MFPTs. They are
given, respectively, in Eqs. (A3) to (A5) for general het-
erogeneities, while for the case with only sticky or slip-
pery heterogeneities the matrices are given by Eqs. (S82)
to (S84) in the Supplementary Materials. In the com-
ing sections we use the mathfrak notation e.g. F,R and
E, for statistics involving the heterogeneous dynamics,
while the mathcal notation, e.g. F ,R and E , is reserved
for the homogeneous counterpart. The dependence on
the target at n is only present in the matrices H(1) and
H(2); the dependence on the initial condition n0 is only
present in H(1); and the dependence on the location of
the heterogeneities are in all three matrices.
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FIG. 7. Time-dependent first-passage probability to either of two targets in the presence of heterogeneities. The location of
the targets n1 = (4, 2) and n2 = (10, 7) in relation to the initial condition n0 = (6, 6) and visualisation of the heterogeneities
present can be seen in the schematic diagram in Fig. 1. We use a homogeneous propagator, ϕ̃n0

(n, z) with a reflecting domain
of size N = (10, 10) and a diffusion parameter of value q = (0.2, 0.2). The explicit form of ϕ̃n0

(n, z) is given by Eq. (23) of
Ref. [58]. The lines are obtained through numerical inversion of the generating function of the first-passage probability to either
of two targets (see text), while the corresponding marks—shown only in panel (a)—are obtained through 1.5× 106 stochastic
simulations.

The probability distribution of the first-return time is
related to the propagator via R̃(n, z) = 1 − Φ̃−1n (n, z),
with a mean return time (MRT) given by

Rn =
Rn |H|∣∣H−H(2)

∣∣ , (9)

where Rn is the homogeneous mean return time.

When the heterogeneities preserve the symmetric prop-
erties of the homogeneous lattice, i.e. the disorder
does not add any bias to a diffusive system or remove
any bias present in a system with drift, then the ratio
Au,v/Av,u =

(
Au,v − λu,v

)
/
(
Av,u − λv,u

)
is satisfied, for

all {u, v} ∈ S, and the heterogeneous system maintains
the steady state of the homogeneous system. In this case,
H(2) = 0, the MFPT given by Eq. (8), can be simpli-
fied to Fn0→n = Fn0→n − 1 +

∣∣H−H(1)
∣∣ / |H|, while

the MRT remains the same as the homogeneous MRT,
Rn = Rn as expected from Kac’s lemma [64]. (see Ap-
pendix A 1 and Section IIC of the Supplementary Mate-
rials).

In the presence of multiple targets at the outer bound-
ary of the domain, we relate the first-passage probability
to any of the targets to a propagator with the appropri-
ate absorbing boundaries. In this case, the first-passage
is referred to as the first-exit, and its probability gener-
ating function is related to the propagator through the
relation Ẽn0

(z) = 1− (1− z)S̃n0
(z), where S̃n0

(z) is the
survival probability. Taking the mean of the distribution

(see Appendix A 2) gives

En0
= S̃n0

(z = 1) =
En0

∣∣H − 1/En0
S(n0)

∣∣
|H|

∣∣∣∣∣
z=1

(10)

where En0
is the mean exit time starting at n0 without

any heterogeneities, and the matrix S(n0) is given explic-
itly in Eq. (A11). The presence of one or more absorbing
boundaries on the homogeneous propagator ϕ̃r(s, z) al-
lows for a simple evaluation at z = 1. That is to say
ϕ̃r(s, z = 1) is finite for any r and s in the domain; and
therefore H and S(n0) also remains finite and can be
easily evaluated.

In Fig. 8 we show the effect of randomly distributed
barriers and anti-barriers as a function of the barrier
strength in a 2D domain with absorbing boundaries. The
M neighbouring defective site pairs are uniformly dis-
tributed on the lattice with λ = λv,u = λu,v for all
{u, v} ∈ S. One can see that for λ > 0, En0

increases,
as the heterogeneous connections behave as a partially
reflecting barrier slowing down the walker. Furthermore
an increase in the number of heterogeneities resulting in
larger exit times. Conversely, when λ < 0 the hetero-
geneous connections become anti-barriers increasing the
probability of jumping across compared to the homoge-
neous case, which effectively increases the spread of the
walker leading to shorter exit times. When the barriers
are impenetrable, increasing the number of barriers also
increases the likelihood of the walker being trapped and
unable to reach the boundary and will cause the MET
to diverge. Although we do not study it here, a simi-
lar setup could be used to analyse percolation in finite
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FIG. 8. The ratio of the heterogeneous mean exit time En0
to

the homogeneous mean exit time En0
for randomly distributed

barriers and anti-barriers. We use a homogeneous propagator
with a domain of size N = (51, 51) with absorbing boundary
conditions, an initial condition at the centre of the domain
n0 = (26, 26) and a diffusion parameter of q = (0.8, 0.8).
The explicit form of ϕ̃n0

(n, z) is given by the z-transform of
Eq. (23) of Ref. [58]. Each curve is obtained using Eq. (10)
and performing an ensemble average with 102 sample realisa-
tions of locations of barriers (λ > 0) or anti-barriers (λ > 0)
for each λ.

multidimensional domains.

B. First-passage processes in 1D with a single
barrier and the phenomenon of disorder indifference

of the MFPT

We consider a simple spatial heterogeneity in a 1D do-
main with a partially reflecting barrier between u and
u + 1. To study the dependence of the position and
strength of the barrier (or anti-barrier) on the first-
passage dynamics, we first fix the position of target and
initial sites with n > n0; assume a reflecting boundary
between n = 0 and n = 1; and take λu,u+1 = λu+1,u = λ
with λ ∈ [−(1 − q), q/2]. In this case the first passage
probability can be written using the convenient notation

F̃n0(n, z) =





a(n0,z)− 2λ
q b(n0,u,z)

a(n,z)− 2λ
q b(n,u,z)

u < n0

a(n0,z)− 2λ
q a(n0,z)

a(n,z)− 2λ
q b(n,u,z)

u ≥ n0
, (11)

where a(n, z) = cosh
[(

1
2 − n

)
ζ
]

cosh
[
1
2ζ
]
, b(n, u, z) =

cosh [(1− n) ζ] + sinh
[(
n− 2u− 1

2

)
ζ
]

sinh
[
1
2ζ
]
, ζ =

acosh
[
1− 1

q

(
1− 1

z

)]
, and with the probability of mov-

ing given by q ∈ (0, 1]. The homogeneous first-passage
probability, F̃n0

(n, z), can be recovered from Eq. (11)
by letting λ → 0. When the barrier is to the left of
the initial condition, the limit λ → q

2 creates an impen-
etrable barrier, the behaviour is equivalent to shifting

both the target and the initial condition to the left by
u giving F̃n0

(n, z) = F̃n0−u(n− u, z). Whereas, when
n0 ≤ u < n, the same limit gives F̃n0(n, z) = 0 as the
walker becomes blocked by the barrier and can never
reach the target.
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FIG. 9. The time dependent first passage probability given
through the numerical inversion of Eq. (11). Panel (a) rep-
resents the scenario u < n0 < n, while panel (b) is the case
when n0 ≤ u < n. The values of the other parameters are:
λ = 0.975 · q

2
; a diffusion parameter of value q = 2

3
; the initial

condition n0 = 8; the target site n = 15; and a reflecting
boundary between n = 0 and n = 1. The arrows indicate the
MFPTs: in panel (a) all of the curves have the same MFPT
of Fn0→n = 231 (disorder indifference), whereas in panel (b)
the two arrows indicate the minimum and maximum MFPTs
of the curves which are Fn0→n = 1167 and Fn0→n = 1869,
and obtained, respectively, when u = 8 and u = 14

In Fig. 9, we plot the time dependence of Eq. (11) for
the two different scenarios u < n0 and u ≥ n0 repre-
sented, respectively, by panels (a) and (b). With u < n0

and λ < q/2, that is the barrier to the left of the initial
condition, as one increases u from u = 1 one observes an
increase in the modal peak. When the walker is reflected
by the permeable barrier, it stops the walker from stray-
ing further left and effectively reduces the space that can
be explored, increasing the probability of reaching the
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target at an earlier time. However, if the walker passes
through the barrier, the partial reflection dynamics be-
comes a hindrance: the walker is kept in the range [1, u],
causing the probability of reaching the target at long
times to increase also. As probability in the tail and the
mode increases, the probability conserving Fn0(n, t) de-
mands a reduction at intermediate times, which is clearly
visible from the figure. This permeability induced mode-
tail enhancement can also be witnessed by fixing u and
changing λ ∈ [0, q/2), and we have also observed the in-
verse effect, mode-tail compression by having anti-barrier
with λ ∈ [q−1, 0]. We have chosen not display these latter
cases for want of space. Similar features have been ob-
served in a diffusing diffusivity model in Ref. [35], where
increases in the probability at short and long timescales
were attributed to the dynamic diffusivity. Our findings
point to the fact that such richness can also emerge from
a static disorder at a single location.

Differently from the case when the barrier is to the left
of the initial condition, is the case when u ≥ n0 . In this
scenario, the barrier is always acting to slow the search
process down, reducing the probability of reaching the
target at early times and increasing the probability at
long times as seen by the flattening of the mode and the
broadening of the tail, as shown in Fig. 9(b).

Computing the mean via either Eq. (11) or from sim-
plifying Eq. (8) yields the compact expression

Fn0→n = Fn0→n +
2

q

λ
q
2 − λ

{
0, u < n0,
u, u ≥ n0, (12)

where Fn0→n = (n−n0)(n+n0−1)/q is the 1D homoge-
neous MFPT for n0 ≤ n (given by Eq. (14) of Ref. [58]).
Astonishingly, the mode-tail enhancement present in the
time-dependent probability when u < n0 has no effect
on the mean. This is what we have termed the disorder
indifference phenomenon.

To explain why there is such an effect of disorder in-
difference, we split the first passage trajectories into two
mutually exclusive subsets: the trajectories that never
return to the initial condition before reaching the target
site on the right and those that return at least once before
reaching the target site. Clearly, the former trajectories
are unaffected by the presence of a barrier. The latter
trajectories can be affected by the barrier, however, in
computing the mean one deals with mean return times
which are unaffected from the homogeneous case when
λu,u+1 = λu+1,u as stated in the previous section (see
Appendix B 1 for the mathematical details).

An analogue of this indifference phenomenon was ob-
served in Ref. [40], where the MFPT in a quasi-1D do-
main in continuous space with two layers of different dif-
fusivity was studied. When the initial condition was in
between the interface of the layers and the target, they
observed that the MFPT was indifferent to the diffusiv-
ity of the media beyond the interface. In that study,
the first-passage probability was not considered and the
cause of this indifference could not be quantified. How-
ever, one can relate the location of the interface of their

system with the position of the barrier in ours. Through
this relation, we believe that the behaviour observed in
Ref. [40], is closely related to the dynamics presented in
Fig. 9.

Given a barrier between the initial condition n0 and
the target n, the effect on the MFPT increases linearly
as the displacement from the boundary increases. While
the effect, which can be to speed up (λ < 0) or to slow
down (λ > 0), is due to the disorder, the linear depen-
dence is not. This linear dependence is present in all 1D
situations and is proportional to the distance between
the initial condition and the reflecting boundary (see Ap-
pendix B 2).

To explore the effects of asymmetry in the hetero-
geneities we consider the MRT with λu+1,u 6= λu,u+1 .
In this cases, the steady state is no longer homoge-
neous, effectively creating an out-of-equilibrium system
due to the loss of detailed balance in the Master equa-
tion. To illustrate this point, we consider the MRT of
a 1D walker within a segment of length N with reflect-
ing boundaries and with a barrier between u and u + 1,
(λu+1,u 6= λu,u+1). In this case, Eq. (9) simplifies to

Rn =





N
[
q/2−λu+1,u

q/2−λu,u+1

]
− u

[
λu,u+1−λu+1,u

q/2−λu,u+1

]
, n < u+ 1,

N − u
[
λu,u+1−λu+1,u

q/2−λu+1,u

]
, n ≥ u+ 1,

.

(13)
One can see that when λu+1,u = λu,u+1 , the MRT re-
duces to N regardless of whether n ≤ u or n > u. In
the extreme case, where the barrier is impenetrable in
both direction, λu+1,u = λu,u+1 = q/2, one can recover
the appropriate MRTs when n ≤ u and n > u, which
are, respectively, u and N − u (see Section IVB of the
Supplementary Materials).

Thus far we have focused on technical development and
theoretical insights. As we move forward, the remainder
of the article is devoted to practical examples, and is
used to demonstrate the applicability of the framework.
For practical convenience the details of the modelling set
up are given in the appendices and only the results are
discussed.

V. TRANSDERMAL DRUG DELIVERY

In the first application we consider the problem of op-
timising transdermal drug delivery, that is the transfer of
drugs through the skin. One of the challenges of trans-
dermal drug delivery is traversal of the outer-most layer
of the epidermis called the stratum corneum (SC) by hy-
drophilic molecules [65]. This layer is made up of dead
cells called corneocytes which are arranged in a dense
‘brick-and-mortar’ like pattern [66]. Inspired by some of
the recent strategies proposed to enhance drug absorp-
tion [67], we consider the use of a micro-needles to pierce
first the SC before applying a drug patch. We study
the effectiveness of this method by using our modelling
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framework to represent the SC as heterogeneities on a
lattice and modelling the movement of drug molecules as
a random walk.

w

h

N2

N1

FIG. 10. Representation of the ‘brick-and-mortar’ arrange-
ment of the corneocytes in the stratum corneum (SC). The
red square depicts the starting location of the random walker.
The geometry is given by an an absorbing boundary at n1 = 1,
a reflecting boundary at n2 = N1, shown as a thick solid black
line, and a periodic boundary in the second dimension, de-
picted as dashed black lines. By using a number of paired
defects, one is able to cordon off sites (shaded grey), creating
the ‘brick-and-mortar’ pattern of the SC. The dashed blue
rectangle with width w and height h models the destruction
of the SC structure via a micro-needle puncture, with h and
w representing, respectively, the puncture height and width.
This destruction may open up some of the ‘bricks’, allowing
the walker to easily travel inside. The initial position of the
walker is at the centre-top of the puncture, n0 = (N1, N2/2).

We use a homogeneous 2D nearest-neighbour random
walker subject to mixed boundary conditions: an absorb-
ing boundary located at n1 = 1 and a reflecting boundary
located at n1 = N1, for the first dimension and a periodic
boundary condition on the second dimension. The het-
erogeneities are impenetrable barriers representing the
lipid matrix. These are arranged in a manner to create
excluded regions that form the ‘brick-and-mortar pattern
of the SC, see Fig. 10. The pattern is partially destroyed
to represent the needle piercing in a rectangle with height
h and width w resulting in an area absent of barriers as
shown by the blue dashed rectangle in Fig. 10.

The quantity of interest is the MET with an initial
condition starting at the reflecting end of the domain. We
plot the MET as a function of the puncture depth and
width in Fig. 11. The overarching qualitative changes
in the MET can be explained by two competing effects.
The first is the breaking of enclosed bricks to create open
partitions. The additional sites available for exploration
makes the paths to reach the absorbing boundary longer.
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FIG. 11. Mean exit time as a function of the puncture height,
h, for different values of puncture width w (see Fig. 10 for
description of the setup). We use a rectangular domain of size
N = (37, 36), a diffusion parameter of q = (0.8, 0.8), ‘bricks’
of size (3, 5) resulting in 9 layers with 6 bricks per layer, an
initial condition of n0 = (1, 19). The main panel depicts
the scenario where the barriers encapsulating the ‘bricks’ are
impenetrable, i.e. αv = αv = 1 leading to λv,u = λu,v =
0.2 for all u, v, while the inset shows the scenario where the
barriers are partially permeable with αv = αv = 1 giving
λv,u = λu,v = 0.18.

The second effect is that the puncture allows the walker
more direct movement towards the bottom layers leading
to smaller MET. The removal of some of the impenetra-
ble barriers allows for more direct paths to the absorbing
boundary, which leads to smaller mean exit times. The
strength of this effect is dependent on the size of the
puncture hw. For small values of h, the first effect has
greater influence leading to an increase in the METs. As
h is increased the second effect becomes more prominent
and drives down the METs resulting in a global maxi-
mum. The interplay between the two effects also gives
rise to the oscillations. Puncture of a brick layer opens
it up, leading to larger exit times as the walker becomes
temporarily confined inside a brick. Increasing the punc-
ture height further destroys the brick structure of a layer
and allows the walker to traverse the latter via a direct
route thereby decreasing the exit times.

The global maximum and the oscillations are only
present when the barriers are highly reflecting or impen-
etrable i.e. 0 � λv,uλu,v ≤ q/2 for all {u, v} ∈ S. The
maximum is lost when the permeability gets larger as the
random walker is only partially confined by the barriers,
leading to a monotonic decrease in the MET as seen in
the inset of Fig. 11. With permeable barriers all the sites
are always accessible independently of h and w, punc-
turing only creates more direct routes to the absorbing
boundary leading to smaller exit times.
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VI. THIGMOTAXIS

For the second application we look at thigmotaxis,
which broadly speaking, is the movement of an organ-
ism due to a touch stimulus. We are interested specifi-
cally in the tendency of animals to remain close to the
walls of an environment, a behaviour that is observed
in many species from insects to mammals [68, 69]. We
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FIG. 12. The propagator Φn0(n, t) at different moments
in time, t = 500, 750, 1000,∞ where the walker is initially
at the centre of the domain, n0 = (51, 51). When inside
the inner region the walker can freely enter the outer re-
gion without any resistance, that is λv,u = 0 and when in
the outer region the probability to move inward is modified
via λu,v = αiAv,u. Other parameters used are the diffu-
sivity of value q = (0.8, 0.8) and a square domain of size
N = (101, 101), (see Appendix C 1 for details on the place-
ment of defects)

quantify the thigomotactic tendency by appropriately se-
lecting defects location and λ to represent regions which
are more easily accessible when moving in one direction
(approaching boundaries) versus another (moving away
from boundaries).

Since we are able to construct arbitrary shapes with
the formalism, we consider two concentric circles within

a square domain. The first is used to restrict the walker
to a circular reflecting domain of radius R. The second
has a radius r, with r < R, and is used to partition the
domain into two regions: an inner region; and an outer
region, which is the annulus between r and R, represent-
ing the preferred area of occupation. By placing one-way
partially reflecting barriers along the radius r, we allow
the walker to leave the inner region to enter the outer
region without any resistance, while the tendency of re-
maining in the outer region is controlled by the parameter
αi ∈ [0, 1]. With αi = 1 the walker never leaves the outer
region once it gets there, whereas with αi = 0, the par-
tially reflecting barrier are removed and all areas of the
circular domain becomes easily accessible. For a details
on the placement of the defects and the construction of
the circular domain see Appendix C 1.
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FIG. 13. Saturated mean-squared displacement for a thig-
motaxis process for different values of the ratios of r/R. We
study the dynamics as a function of the normalised param-
eter αi ∈ [0, 1] which represents the tendency of the walker
to remain close to the boundary. When αi = 0, there are no
outer or inner regions, while with αi = 1, the walkers never
leave the outer region once they they get there. The satura-
tion MSD is normalised byM, which is the saturation value
when αi = 0. Other parameters used are described in in the
caption of Fig. 12.

Given these constraints we study the dynamics as a
function of the αi. In Fig. 12, we plot the probability
Φn0(n, t) for different values of t = 500, 750, 1000 and
∞. The walker is initially at the centre of the domain
n0 = (51, 51) and can freely move inside the inner-region
and is able to enter into the outer region without any
resistance. However, once inside the outer region there is
a greater tendency not to leave, due to the high value of
αi = 0.95. We observe this effect when going from panel
(a) to (d). Initially the separation between the inner and
outer regions are barely visible but as time progresses
this separation becomes increasingly clear, culminating
with a sharp step at the steady-state. In panel (e) we
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plot a cross section of the probability at n2 = 51 for the
times corresponding with panels (a)-(d).

To examine the system further, we plot in Fig. 13
the mean-squared displacement (MSD) at steady-state,
M, as a function of αi, for four different ratios of in-
ner and outer regions. The MSD at steady-state is given
by M =

∑
n

[
(n1 − n01)2 + (n2 − n02)2

]
R−1n . With the

curves normalised to the case where there are no inter-
nal barriers, M, i.e. when αi = 0. We find that as
we increase αi from zero, for small values of αi, M ini-
tially increases logarithmically, while further increases of
αi causes M to saturate. The value of saturation is
dependent on the ratio of r/R: with a high ratio the
outer region is thinner keeping the walker closer to the
boundary and yielding greater saturation value, whereas
a smaller ratio results in a thicker outer region allowing

the walker to remain closer to the initial condition lead-
ing to a smaller value of M. Note that the reason for the
r/R = 0.92 curve not being on top of the others is due to
the discretisation of space when the outer region is very
thin.

VII. TWO PARTICLE COALESCING PROCESS

In this final example, we demonstrate the use of our
frame to model certain inert interactions between par-
ticles. The interactions we consider are partial mutual
exclusion and reversible binding, both of which play an
important role in coalescing dynamics.
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q2αd/2
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FIG. 14. Schematic representation of a two-particle coalescing process, modelled as one dimensional interacting random walkers.
Panel (a) depicts the dynamics of particles A and B where q ∈ (0, 1] is the probability of moving at each time step. The
combined dynamics of A and B can be represented via one next-nearest random walker in a 2D domain. This abstract domain
is depicted in panel (b). The red circles represent locations where the two particles are on different sites, while the blue circles
along the right diagonal are locations where they are co-located. In this space the interaction of A and B is modelled with
partially reflecting barriers. The placement of these barriers are illustrated by the solid, dashed, and blue-dashed lines, the
precise locations and permeability are given in Appendix C 2. The solid black lines are heterogeneities used to model the binding
interactions, while the dashed black lines are used to control the unbinding interactions. The movement of C is represented by
the 2D random walker moving along the diagonal. Its movement is slowed down, relative to A and B, through the placement
of partially reflecting barriers along the diagonal depicted by the dashed blue lines. The resulting movement dynamics of the
complex C is shown in panel (c), where αc ∈ [0, 1] represents the degree with which the movement of the complex C is slowed
down.

Coalescing processes are ubiquitous in biology and
chemistry; they consist of two or more entities that inter-
act to bind and form a new one with different movement
characteristics. An example of a coalescing process is
the search of a promoter region on DNA by transcription
factors. These movement dynamics alternates between
periods of 3D search in the cytoplasm and periods of
restricted search along the 1D DNA [70]. We use our
framework to study a system of relevance to the latter
scenario: a first-passage process of two interacting parti-
cle in 1D.

We consider two particles labelled A and B that move
independently on a 1D lattice with reflecting boundary
conditions (see Fig. 14 for a schematic representation
of the process). Their combined dynamics is described
by a two dimensional next-nearest propagator ϕn0

(n, t),
with n0 = (n01 , n02) and n = (n

1
, n

2
). It represents

the probability that the particle A and B are located,
respectively, on the site n

1
and n

2
at time t given that

they started, respectively, on n01 , and n02 . Two parti-
cles instantaneously form the complex C, namely when
they encounter each other, that is when n = (m,m) for



13

1 ≤ m ≤ N .

The interactions between particles is modelled through
the placement of heterogeneities on the combined 2D
lattice, yielding three control parameters, αe ∈ [0, 1],
αu ∈ [0, 1], and αc ∈ [0, 1] (see Appendix C 2 for de-
tails regarding the placement of the defects). These pa-
rameters are used to constrain, respectively, the binding
events via mutual exclusion of A and B, the unbinding
events of C and the mobility of C. The parameter αu is
proportional to the unbinding probabilities, while αe is
proportional to the mutual exclusion probability. When
αu = 1 and αe = 0, there is no interaction between the
two particles. The other extreme represents strong inter-
action: when αe = 1 there is mutual exclusion, whereas
αu = 0 results in a binding that is irreversible. The
parameter αc ∈ [0, 1] represents the fraction of the move-
ment probability of complex C relative to the movement
probability of the constituent particles A and B. When
αc = 1 there is no slowing down, while αc = 0 results in
an immobile C.

In Fig. 15 we plot the log ratios of the MFPT, Fn0→n

for both particles to reach a site at the same time, com-
pared with the 2D homogeneous next-nearest neighbour
analogue, Fn0→n. The latter corresponds with the case
when αe = 0 and αu = αc = 1. The panels (a)-(d) depict
Fn0→n for increasing values of αe. The smallest ratios are
observed in the upper left quadrant, which corresponds
with high cohesiveness of the complex C and with only a
slight reduction to its mobility, given respectively by, low
values of αu and high values of αc. Within this parameter
region, once the two particles bind they rarely separate,
consequently the search in 2D reduces to a search in 1D
with fewer sites to explore leading to smaller Fn0→n.

When there is no exclusion interaction, i.e. panel
(a), the dynamics of a similar model was explored in
Ref. [57]. In their analysis using asymptotics and sim-
ulations, equivalent features were observed. The most
prominent feature of those and our observations is the
minimisation of the MFPT for a slow moving C. In this
regime, it is more favourable to have an intermediate un-
binding probability, allowing the two particles to travel
independently towards the target before recombining and
hitting the target.

The ability to explore easily the parameter space of the
model allows us to analyse the MFPT for different values
of αe. By comparing the four panels we observe that as
αe increases, the overall magnitude of the MFPT ratio
decreases. This is explained by the fact that for small
and intermediate values of αe the 2D walker is partially
restricted to the upper or lower triangular regions of the
domain, thereby reducing the overall exploratory space
resulting in shorter search times. However, if αe is in-
creased further, i.e. when 0 � αe < 1, the particles will
rarely coalesce, and the MFPT increases. In other words,
shorter MFPTs can be achieved by having particles that
mutually exclude one another with some probability.

(a)

α
c

(b)

(c)

αu

α
c

log [Fn0→n/Fn0→n]

(d)

αu

log [Fn0→n/Fn0→n]

10−3

10−2

10−1

100

−0.38 0.72 1.01 −0.38 0.57 0.85

10−3 10−2 10−1 100
10−3

10−2

10−1

100

−0.35 0.49 0.75

10−3 10−2 10−1 100

−0.31 0.48 0.75

FIG. 15. The ratio of the MFPT (Fn0→n) of the coalesc-
ing system compared to the MFPT (Fn0→n) of a homoge-
neous 2D next-nearest neighbour walker as a function of the
heterogeneity strength parameters (see Fig. 14 for detailed a
description of the parameters involved). The reactive site is
located at n = (100, 100) and the two particles are initially
maximal distance away from each other, i.e. n0 = (1, 100)
and a target location n = (100, 100), on combined 2D do-
main of size N = (100, 100) with diffusion parameter q = 2/3.
From panel (a) to (d) we have, respectively, the parameters
αe = 0, 0.5, 0.75 and 0.875.

VIII. CONCLUSION

We have introduced an analytical framework to model
explicitly any inert particle-environment interactions.
We have constructed the discrete Master equation that
describes the spatiotemporal dynamics of diffusing parti-
cles in disordered environments by representing the inter-
actions as perturbed transition dynamics between lattice
sites. To solve this Master equation we have extended
the defect technique to yield the generating function of
the propagator in closed form. Using the propagator, we
have derived useful quantities in the context of transport
processes, namely, first-passage, return and exit probabil-
ities and their respective means. We have also uncovered
the existence of a disorder indifference phenomenon of
the mean first-passage time in quasi 1D systems.

In light of the relevance of our framework to empirical
scenarios, we have chosen three examples to demonstrate
its applicability of our theory. In the first example we
consider transdermal drug delivery, an intercelluar trans-



14

port process, where we represent the ‘brick-and-mortar’
structure of the stratum corneum with the placement of
reflecting and partially reflecting barriers. This repre-
sentation allows us to study the effect that piercing has
on the traversal time of a drug molecule. In the second
example, we have examined the effect that an animal’s
thigomotactic response has on the mean squared dis-
placement at log times. Lastly, in our third example, we
have highlighted the ability of our formalism to study in-
ert interactions between particles. We transformed these
interactions and the ensuing dynamics into a single par-
ticle moving and interacting with quenched disorder in a
higher dimensional space. The setup allows us to model
analytically the search statistics in a two particle coa-
lescing process, akin to the search of binding sites on the
DNA by multiple transcription factors.

The strength of our result is in deriving the propagator
in the presence of spatial heterogeneities, Φ̃n0

(n, z), as a
function of the homogeneous propagator, i.e. the propa-
gator in the absence of heterogeneities, ϕ̃n0

(n, z). This
modularity allows one to change the movement dynam-
ics by selecting different forms of ϕ̃n0

(n, z). In place of
the diffusive propagator one may employ a biased lattice
random walk [71], or a walk in different topologies such
as triangular lattices [72, 73], Bethe lattices [74, 75] or
more generally a network [76].

The modularity carries through to the heterogeneous
propagator. This means that in situations where homo-
geneous space is assumed, one can relax this assump-
tion and replace the homogeneous propagator, ϕ̃n0

(n, z)

with the heterogeneous counterpart Φ̃n0
(n, z). We have

demonstrated this aspect by studying the first-passage
probability to either of two targets using results previ-
ously derived considering a homogeneous lattice. Further
theoretical exploration could include the analysis of cover
time statistics [77, 78], transmission dynamics [79, 80], re-
setting walks [81–83], mortal walks [84], or random walks
with internal degrees of freedom [85].

Directions for future applications span across spatial
and temporal scales: the role of a building geometry
or floor plan on infection dynamics in hospital wards
and supermarkets [86–88]; the prediction of search pat-
tern behaviour of animals in different types of vegetation
cover [89, 90]; the heat transfer through layers of skin
with differing thermal properties [91]; and the influence
of topological defects on the diffusive properties in crys-
tals [92, 93] and territorial systems [94–96].

We conclude by drawing the reader’s attention to
the following. As experimental technologies continue
to evolve, observations of the dynamics of particle-
environment interactions are increasing in number and
resolution. The detailed description of the environment
that these technologies bring presents a unique opportu-
nity to rethink modelling techniques, moving away from
macroscopic paradigms to a more microscopic prescrip-
tion. We believe that the mathematical framework we
have introduced to quantify the particle-environment in-
teractions will play a crucial role in connecting the mi-

croscopic dynamics to the macroscopic patterns observed
across a vast array of systems.
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Appendix A: Mean First-Passage Statistics

Using the renewal equation the first-passage probabil-
ity to a target is given by the well-known relation

F̃n0(n, z) =
Φ̃n0

(n, z)

Φ̃n(n, z)

=
(ϕ̃n0

(n, z)− 1) |H|+ |H(n,n0)|
(ϕ̃n(n, z)− 1) |H|+ |H(n,n)| ,

(A1)

where H and H(n,n0) are given by, respectively,
Eqs. (6), (7) and (7) with the initial condition being n.
The mean of the distribution, Fn0→n = d

dz F̃n0
(n, z)

∣∣∣
z=1

,
(see Section IIC of the Supplementary Materials) is given
by

Fn0→n =
Fn0→n

∣∣H− 1/Fn0→nH(1)
∣∣

∣∣H−H(2)
∣∣ . (A2)

where

Hi,j =
λvi,ui
Rui

F〈uj−vj〉→ui −
λui,vi
Rvi

F〈uj−vj〉→vi + δi,j ,

(A3)

H(1)

i,j =

(
λvi,ui
Rui

F〈n0−n〉→ui −
λui,vi
Rvi

F〈n0−n〉→vi

)
(A4)

×F〈uj−vj〉→n,

H(2)

i,j =

(
λvi,ui
Rui

− λui,vi
Rvi

)
F〈uj−vj〉→n. (A5)

If the homogeneous propagator is diffusive with no bias
and if the heterogeneity parameters are symmetric, i.e.
λv,u = λu,v , H(2) = 0 and Eq. (8) can be simplified
further

Fn0→n = Fn0→n − 1 +

∣∣H−H(1)
∣∣

|H| . (A6)
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1. Mean Return Time

Through the renewal equation we also have the return
probability relation

R̃(n, z) = 1− 1

Φ̃n(n, z)

=
(ϕ̃n(n, z)− 2) |H|+ |H(n,n)|
(ϕ̃n(n, z)− 1) |H|+ |H(n,n)| .

(A7)

By noticing the identical structures of Eqs. (A1)
and (A7), one can use a similar procedure to the one
used to derive the MFPT (see Section IIC of the Supple-
mentary Materials) to show the mean return time (MRT)
to be

Rn =
Rn |H|∣∣H−H(2)

∣∣ . (A8)

2. Mean Exit Times

The first-exit probability is given by Ẽn0
(z) = 1− (1−

z)S̃n0
(z), where S̃n0

(z) is the survival probability given
by

S̃n0
(z) =

∑

n

Φ̃n0
(n, z). (A9)

Substituting Eq. (5) into Eq. (A9) and evaluating the
sum in n and simplifying the summation over k one finds

S̃n0
(z) = S̃n0

(z)− 1 +
|H − S(n0)|
|H| (A10)

where S̃n0
(z) =

∑
n ϕ̃n0

(n, z) is the homogeneous sur-
vival probability, and where the elements of H are given
in Eq. (6) and

S(n0)i,j = S̃〈uj−vj〉(z)
[
λvi,ui ϕ̃n0

(ui, z)

− λui,vi ϕ̃n0
(vi, z)

]
.

(A11)

By taking the mean of the first-exit distribution, i.e.
d
dz Ẽn0

(z)
∣∣∣
z=1

gives Eq. (10). The mathematical details
to derive Eq. (10) are given in Appendix A 2 while simple
expressions of the 1D problem are given in Section IV of
the Supplementary materials.

Appendix B: First-passage quantities in 1D systems

1. The MFPT disorder indifference phenomenon

We start with a heterogeneous lattice reflecting bound-
ary between n = 0 and n = 1, and a partially reflecting
barrier between u and u+1, with u < n0 < n as depicted

n n n n nn n n n n

1 u u+ 1 n0 n

FIG. B1. A schematic representation of a one dimensional
heterogeneous lattice with a reflecting boundary to the left
(vertical line) and with a permeable barrier between the sites
u and u + 1 represented by the shaded rectangle. The first-
passage event can be split into mutually exclusive events rep-
resented by arrows of different colours. The blue arrows repre-
sent trajectories that never return to the initial site, while the
black ones represent trajectories that return m times before
reaching n. The green arrow represents first-passage trajecto-
ries that reach n0 having starting at n. The solid arrows rep-
resent trajectories that are unaffected by the presence of the
partially reflecting barrier between u and u+1, while the tra-
jectories that are affected are represented by dashed arrows.
Note that this schematic depicts the case when 1 ≤ u ≤ n0−1

in Fig. B1. The trajectories that contribute to the first-
passage probability can be split into mutually exclusive
sets based on the number of return visits,m, to the initial
site n0.

We now formally represent the first-passage probabil-
ity in terms of a set of mutually exclusive independent
events. Let us define Fn0

(n, t;m = 0) as the first-passage
probability to reach n for the first time at t having
started at n0 and having never returned to the initial site.
Clearly, the trajectories that make up Fn0

(n, t;m = 0)
(coloured blue in Fig. B1), can never be affected by the
presence of the barrier as they never move towards the
barrier. The trajectories that could be affected by the
presence of the barrier are those that return at-least once
to the initial site before reaching n. The first-passage
probability to visit n and having visited the initial site
m times is constructed through the convolution (dashed
trajectories in Fig. B1)

Fn0
(n, t;m) =

t∑

t1=0

· · ·
tm−1∑

tm=0

Fn0
(n, t− t1;m = 0)

× hn0
(n, tm−1 − tm) · · ·hn0

(n, tm),

(B1)

with tm ≤ tm−1 ≤ · · · ≤ t1 ≤ t, and where

hn0
(n, t) = R(n0, t)

−
t∑

t′=0

Fn0
(n, t′;m = 0)Fn(n0, t− t′)

(B2)

The function hn0
(n, t) represents the probability of re-

turning without visiting the target and is constructed by
considering the probability of returning to n0 and sub-
tracting those that reach n without returning to n0 at
some prior time and subsequently reaching n0 from n. In
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z domain the relation can be written more conveniently
as

F̃n0
(n, z;m) = F̃n0

(n, z;m = 0)
[
R̃(n0, z)

−F̃n0(n, z;m = 0)F̃n(n0, z)
]m

.
(B3)

Notice that the only term with the dependence on the
barrier on the RHS of Eq. (B3) is R̃(n0, z), and in the
absence of the barrier R̃(n0, z) reduces to R̃(n0, z). The
full first-passage probability for the system with the bar-
rier, which can be written as the sum of the mutually
exclusive probabilities giving

F̃n0
(n, z) = F̃n0

(n, z;m = 0)
∞∑

m=0

[
R̃(n0, z)

− F̃n0
(n, z;m = 0)F̃n(n0, z)

]m
.

(B4)

The relation given by Eq. (B4) is an alternative method of
constructing the first-passage probability i.e. its not one
of the standard approaches which are through the sur-
vival probability or the ratio of propagators in z-domain.

To confirm the normalisation of the RHS of Eq. (B4)
consider the following. By definition Fn0

(n, t;m = 0) is
not normalised over t, hence, F̃n0(n, z = 1;m = 0) = p
where 0 < p < 1. Since all other terms in the RHS of
Eq. (B4), namely, F̃n(n0, z) and R̃(n0, z) are normalised
over time, we find that at z = 1 the RHS becomes∑∞
m=0 p(1 − p)m = 1. Differentiating Eq. (B4) with re-

spect to z and taking the limit z → 1, we obtain the
mean first-passage time

Fn0→n =
Rn − pFn→n0

p
. (B5)

When the barrier is such that λu,u+1 = λu+1,u = λ , the
mean return time is equal to the reciprocal of the steady
state value, and Rn0 becomes Rn0 , i.e. the mean return
time in the absence of the barrier.

To find p in Eq. (B5) explicitly, we first construct
F̃n0(n, z;m = 0) in terms of known quantities using
the approach presented in Ref. [58] to construct time-
dependent splitting probabilities. We write the two re-
lations by considering the two splitting separately: the
first-passage probability of reaching the target n and
never returning to the initial condition Fn0

(n, t;m = 0);
and the first-return probability to n0 and having never
reached the target site n. In time domain they are writ-
ten via a convolution and are, respectively,

Fn0
(n, t;m = 0) = Fn0

(n, t)−
t∑

t′=0

R(n0, t;n)Fn0
(n, t− t′)

(B6)
and

R(n0, t;n) = R(n0, t)−
t∑

t′=0

Fn0(n, t;m = 0)Fn0(n, t− t′),

(B7)

where R(n0, t;n) is the probability of returning to the
site n0 at t and having never visited the target n. One
can take the z-transform and solve for Fn0(n, z;m = 0)
and R(n0, t;n) giving, respectively,

F̃n0
(n, z;m = 0) =

F̃n0
(n, z)− R̃(n0, z)F̃n0

(n, z)

1− F̃n0
(n, z)F̃n(n0, z)

(B8)

and

R̃(n0, z;n) =
R̃(n0, z)− F̃n0

(n, z)F̃n(n0, z)

1− F̃n0
(n, z)F̃n(n0, z)

. (B9)

Evaluating Eqs. (B8) and (B9) at z = 1 gives, respec-
tively, the fraction of all the first-passage trajectories that
reach the target without returning to n0 and the fraction
of all trajectories that return to n0 without ever reaching
n. Using de L’Hôpital’s rule once in Eq. (B8) we find

p =
Rn0

Fn0→n + Fn→n0

. (B10)

Inserting Eq. (B10) in Eq. (B5) one finds that Fn0→n =
Fn0→n.

2. MFPT linear dependence on disorder location

To understand the linear dependence in u, with n0 ≤
u < n, present in Eq. (12), we consider building up first
passage probability by convolution in time to go from n0
to u first, then from u to u+ 1 and then from u+ 1 to n.
In z domain one has

F̃n0
(n, z) = F̃n0

(u, z)F̃u(u+ 1, z)F̃u+1(n, z), (B11)

where the first term on the RHS has no dependence on
the barrier as it is after the absorbing site u, while the
other two terms are dependent on the barrier. Comput-
ing the mean of Eq. (B11), we obtain

Fn0→n = Fn0→u + Fu→u+1 + Fu+1→n, (B12)

where we have substituted Fu+1→n = Fu+1→n using the
justification presented in the previous section. By using
the relation Fn0→n = Fn0→s + Fs→n with n0 < s < n,
one can rewrite Eq. (B12) to give

Fn0→n = Fn0→n + Fu→u+1 −Fu→u+1. (B13)

In the diffusive case, the MFPT to a neighbouring site,
Fu→u+1, is always proportional to twice the distance be-
tween u and the reflecting boundary to the left, i.e.

Fu→u+1 =
2

q
(u− s+ 1), (B14)

with s ≤ u being the position of the reflecting boundary.
By simplifying the general MFPT given in Eq. (8), we
find

Fu→u+1 =
2

q − 2λ
(u− s+ 1) , (B15)
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which is analogous to Eq. (B14) but with the multiplica-
tive (time rescale) factor increased to 2(q−2λ)−1. Letting
s = 1 we obtain Eq. (12).

Appendix C: Placement of Defects and Parameter
Choice of the Modelling Applications

1. Thigmotaxis

Two sets of defects must be placed, one set along a
circle radius R to create a (circular) reflecting domain,
while the second is used to divide this domain into two
different regions (see Section VI) and is placed along a
circle of radius r. To place defects on either circle one
must first know which sites are within which circle. To
determine this we use the Euclidean distance as a heuris-
tic, with the site n = (n1, n2) being part of the circular
domain if and only if h(n1, n2) ≤ R, where h(n1, n2) =[
(n1 −R− 1)

2
+ (n2 −R− 1)

]1/2
with the size of the

bounding square domain given by N = (2R+ 1, 2R+ 1).
Similarly, a site is part of the inner region if and only
if h(n1, n2) ≤ r, while the outer region is given by
r < h(n1, n2) ≤ R. Given these site partitions, one can
define two sets of defects, Sd, and Si describing, respec-
tively, the impenetrable barriers to restrict the walker
to a circular domain, and partially-reflecting inner bar-
riers. In both cases u represents sites inside the cir-
cle of defects while v represents sites outside. For all
{u, v} ∈ Si we have λv,u = Av,u and λu,v is irrelevant as
the walker initially starts inside the circular domain. For
all {u, v} ∈ Sd, we let λv,u = 0 providing no resistance for
the walker to enter the outer-region and λu,v = αiAu,v

with αi ∈ [0, 1].

2. Two particle coalescing process

The interactions that need to modelled are binding and
unbinding. Binding can occur via two distinct events.
The first is when two particles are located on neighbour-
ing sites with n = (m + 1,m) and at the following time
step, one of the particles remains at the same site while
the second particle jumps onto the site occupied by the
first resulting in n = (m + 1,m + 1) or n = (m,m).
The second possible event occurs when the two parti-
cles are located two sites apart i.e. n = (m − 1,m + 1)
and at the following time step they both jump towards
each other landing on n = (m,m). The reverse of these
two events gives rise to unbinding of the complex C.
These transitions can be modified by placing paired de-
fects of the forms: u = (m,m), v = (m + 1,m), and
u = (m,m), v = (m,m + 1) for 1 ≤ m ≤ N − 1 with
λv,u = q

2 (1− q)(1−αu), λu,v = q
2 (1− q)αe; u = (m,m) ,

v = (m,m− 1) and u = (m,m) , v = (m− 1,m) for 2 ≤
m ≤ N with λv,u = q

2 (1− q)(1−αu), λu,v = q
2 (1− q)αe;

u = (m,m), v = (m∓ 1,m± 1) for 2 ≤ m ≤ N − 1 with
λv,u = q2

4 (1− αu), λu,v = q2

4 αe.
Intuitively, the movement of the coalesced is slowed as

it more massive. To encode this detail we interpret jumps
along the leading diagonal n = (m,m) for all 1 ≤ m ≤ N
as the jumps made by the coalesced particle C, and we
slow its movement by placing paired defects of the form
u = (m,m), v = (m + 1,m + 1) for all 1 ≤ m ≤ N − 1

with λv,u = λu,v = q2

4 (1− αc).
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I. DERIVATION OF THE HETEROGENEOUS PROPAGATOR

We consider a collection of heterogeneous connections as described in Section III of the main text, given by a set
of M paired defects, S = {{u1, v1} , · · · , {uM , vM}}. When not on a defective site, that is when n 6= uk, vk for any k,
the dynamics are given by

Φ(n, t+ 1) =
∑

m

An,m Φ(m, t), n 6= u, v, ∀ {u, v} ∈ S, (S1)

with An,m representing the transition probability from site m to site n. When, instead, on any of the paired defective
sites the dynamics are given by

Φ(u, t+ 1) =
∑

m

An,m Φ(m, t) + λv,uΦ(u, t)− λu,vΦ(v, t), (S2)

and

Φ(v, t+ 1) =
∑

m

An,m Φ(m, t)− λv,uΦ(u, t) + λu,vΦ(v, t), (S3)

∗ Email: s.sarvaharman@bristol.ac.uk † Email: Luca.Giuggioli@bristol.ac.uk
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where the bounds on λv,u and λu,v are given by Eqs. (2) and (3) in the main text. Combining Eqs. (S1) to (S3) into
a single equation and summing over all pairs in S gives the Master equation with defects

Φ(n, t+ 1) =
∑

m

An,m Φ(n, t) +

M∑

k=1

δ〈uk−vk〉,n
[
λvk,uk

Φ (uk, t)− λuk,vkΦ (vk, t)
]
, (S4)

where δ〈u−v〉,n = δu,n − δv,n. Taking the z transform of Eq. (S4) we find

Φ̃(n, z)− Φ(n, 0) =
∑

m

An,m Φ̃(n, z) + z

M∑

k=1

δ〈uk−vk〉,n
[
λvk,uk

Φ̃(uk, z)− λuk,vkΦ̃(vk, z)
]
. (S5)

Solving first the homogeneous difference equation i.e. Eq. (S1) to get (in the absence of defects)

Φ̃(n, z) =
∑

m

ϕ̃m(n, z)Φ(m, 0) (S6)

where ϕ̃m(n, z) is the propagator of the homogeneous problem (e.g. see Eq. (23) of Ref. [1] or Eq. (33) of Ref. [2]),
followed by a convolution (in time and space) with the inhomogeneous term in Eq. (S5) yields the formal solution

Φ̃(n, z) =
∑

m

ϕ̃m(n, z)Φ(m, 0) + z

M∑

k=1

ϕ̃〈uk−vk〉(n, z)
[
λvk,uk

Φ̃(uk, z)− λuk,vkΦ̃(vk, z)
]
. (S7)

When the initial condition is localised, i.e. Φ(n, 0) = δn,n0 , we have the formal propagator

Φ̃n0
(n, z) = ϕ̃n0(n, z) + z

M∑

k=1

ϕ̃〈uk−vk〉(n, z)
[
λvk,uk

Φ̃n0(uk, z)− λuk,vkΦ̃n0(vk, z)
]
. (S8)

In order to find Φ̃n0
(n, z) in terms of the known propagator ϕ̃n0

(n, z) we first create simultaneous equations for each
pair of defects in terms of the differences λvk,uk

Φ̃n0
(uk, z)− λuk,vkΦ̃n0

(vk, z) giving

λvk,uk
Φ̃n0

(uk, z)− λuk,vkΦ̃n0
(vk, z) = λvk,uk

ϕ̃n0
(uk, z)− λuk,vk ϕ̃n0

(vk, z)

+ z
M∑

`=1

[
λvk,uk

ϕ̃〈u`−v`〉(uk, z)− λuk,vk ϕ̃〈u`−v`〉(vk, z)
] [
λv`,u`

Φ̃n0
(u`, z)− λu`,v`Φ̃n0

(v`, z)
]
,

(S9)

whose solution via Cramer’s rule, is given by

λvk,uk
Φ̃n0(uk, z)− λuk,vkΦ̃n0(vkz) = −1

z

|Y |
|H| , (S10)

with H defined in Eq. (6) and where Y is the same as H, but with the kth column replaced by
[
λv1,u1

ϕ̃n
0
(u1, z)− λu1,v1 ϕ̃n

0
(v1, z), · · · , λvM ,uM

ϕ̃n
0
(uM , z)− λuM ,vM ϕ̃n

0
(vM , z)

]T
. (S11)

Using Eq. (S10), Eq. (S8) becomes

Φ̃n0
(n, z) = ϕ̃n0

(n, z)−
M∑

k=1

ϕ̃〈uk−vk〉(n, z)
|Y |
|H| . (S12)

The summation in Eq. (S12) can be carried out explicitly giving

Φ̃n0
(n, z) = ϕ̃n0

(n, z)− 1 +
|H −G(n,n0)|

|H| . (S13)

where,

G(n,n0)i,j = ϕ̃〈ui−vi〉(n, z)
[
λvi,ui

ϕ̃n0
(ui, z)− λui,vi ϕ̃n0

(vi, z)
]

(S14)

and calling H(n,n0) = H −G(n,n0) gives the solution presented in Eq. (5).
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A. Sticky and Slippery Heterogeneities

We start with set of defective sites S′ = {w1, · · · ,wL} and use the notation w
(ls)
i and w

(rs)
i representing, respec-

tively, the left and right neighbours ofwi in the sth-dimension, givenw = (w1, · · · , wd), w(rs) = (w1, · · ·ws+1, · · · , wd)
and w(ls) = (w1, · · ·ws−1, · · · , wd), with d the lattice dimension. A schematic representation of the jump probabilities
on a defective site, w is given in Fig. A1 , from which it is clear that to ensure positive probabilities one must have

ww(ls) w(rs)

Aw(rs),w − λw(rs) ,wAw(ls),w − λw(ls) ,w

Aw,w +
∑d

s=1 λw(rs) ,w + λw(ls) ,w

FIG. A1. A schematic representation showing the modified transition probabilities of a sticky (or slippery) heterogeneity. We
highlight only the dynamics in the sth dimension, but the same is present for the other dimensions.

λw(rs) ,w ≤ Aw(rs),w and λw(ls) ,w ≤ Aw(ls),w for all s = 1, · · · , d, and 0 ≤ Aw,w +
∑d
s=1 λw(rs) ,w + λw(ls) ,w for all

w ∈ S′. These conditions are a recast of the one given by Eqs. (2) and (3) in the main text.
The full dynamics is described by the Master equation

Φ(n, t+ 1) =
∑

m

An,mΦ(m, t) +

L∑

k=1

Φ(wk, t)

{
d∑

s=1

λ
w

(rs)
k ,wk

δ〈
wk−w(rs)

k

〉
,n

+ λ
w

(ls)
k ,wk

δ〈
wk−w(ls)

k

〉
,n

}
. (S15)

Using a localised initial condition Φ(n, 0) = δn,n0 and proceeding as before by solving the homogeneous dynamics
and convolution (in time and space) with the non-homogeneous part of Eq. (S15) gives the formal solution

Φ̃n0
(n, z) = ϕ̃n0

(n, z) + z

M∑

k=1

Φ̃n0
(wk, z)Q̃wk

(n, z), (S16)

where

Q̃w(n, z) =
d∑

s=1

λw(rs) ,w ϕ̃〈w−w(rs)〉(n, z) + λw(ls) ,w ϕ̃〈w−w(ls)〉(n, z). (S17)

This formal solution is as special case of Eq. (S8) whereM = 2Ld where each of the sites in S′ bears two paired defects
for each of d dimensions. However, by noticing that the incoming connections of the sticky sites are left unmodified,
i.e. λw,w(ls) = λw,w(rs) = 0 one can to simplify Eq. (S8) to Eq. (S16) thereby reducing the number unknowns by a
factor of 2d.

To find the full solution we let n = wk and solve the simultaneous equations

Φ̃n0
(wk, z) = ϕ̃n0

(n, z) + z
M∑

`=1

Φ̃n0
(w`, z)Q̃w`

(wk, z), (S18)

with k = 1, · · · ,M to get

Φ̃n0
(wk, z) = −1

z

|Y |
|H| (S19)

where, in this case, the matrix H is simplified to

Hi,j = Q̃wj
(wi, z)−

1

z
δi,j (S20)

and Y is the same as H but with the kth column replaced by
[
ϕ̃n0

(w1, z), · · · , ϕ̃n0
(wM , z)

]T. Substituting Eq. (S19)
into Eq. (S16) and summing over k gives the full solution in Eq. (5) where

H(n,n0)i,j = Hi,j − Q̃wj
(n, z)ϕ̃n0

(wi, z). (S21)
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II. DERIVATIONS OF FIRST-PASSAGE STATISTICS IN THE PRESENCE OF HETEROGENEITIES

A. Mean first-passage time with arbitrary type and number of heterogeneities

From the renewal equation, the generating function of the first-passage probability from n0 to n (n 6= n0) is given
by

F̃n0
(n, z) =

Φ̃n0
(n, z)

Φ̃n(n, z)
=

(ϕ̃n0
(n, z)− 1) |H|+ |H −G(n,n0)|

(ϕ̃n(n, z)− 1) |H|+ |H −G(n,n)| , (S22)

where we have called H(n,n0) = H −G(n,n0) with H and H(n,n0) defined, respectively, in Eqs. (6) and (7) of
the main text. Note that the matrix G(n,m) can be written in the form abT, where a and b are column vectors with
elements ai = λvi,ui

ϕ̃m(ui, z)− λui,vi ϕ̃m(vi, z) and bi = ϕ̃〈ui−vi〉(n, z). We will exploit this property in the coming
steps. Dividing both the numerator and denominator of Eq. (S22) by ϕ̃n(n, z) gives

F̃n0
(n, z) =

(
F̃n0

(n, z)− 1/ϕ̃n(n, z)
)
|H|+ 1/ϕ̃n(n, z) |H −G(n,n0)|

(
1− 1/ϕ̃n(n, z)

)
|H|+ 1/ϕ̃n(n, z) |H −G(n,n)|

. (S23)

Using the property

α |A−B| = |A− αB| − (1− α) |A| (S24)

when α is a scalar and B = abT with a and b column vectors of appropriate size, we rewrite

F̃n0(n, z) =

(
F̃n0

(n, z)− 1
)
|H|+ |H − 1/ϕ̃n(n, z)G(n,n0)|

|H − 1/ϕ̃n(n, z)G(n,n)| . (S25)

Dividing through by
∏M
k=1 ϕ̃uk

(uk, z)ϕ̃vk(vk, z), where M is the total number of paired defects one finds

F̃n0
(n, z) =

(
F̃n0

(n, z)− 1
)
|J |+ |J(n,n0)|

|J(n,n)| . (S26)

where the elements of the matrices J , J(n,n0) and J(n,n) are given in terms of first-passage and return probabilities

J i,j = λvi,ui

[
1− R̃(vi, z)

]
F̃〈uj−vj〉(ui, z)− λui,vi

[
1− R̃(ui, z)

]
F̃〈uj−vj〉(vi, z)

− δi,jz−1
[
1− R̃(vi, z)

] [
1− R̃(ui, z)

]
, (S27)

J(n,n0)i,j = J i,j − F̃〈uj−vj〉(n, z)
{
λvi,ui

[
1− R̃(vi, z)

]
F̃n0

(ui, z)− λui,vi

[
1− R̃(ui, z)

]
F̃n0

(vi, z)
}
, (S28)

J(n,n)i,j = J i,j − F̃〈uj−vj〉(n, z)
{
λvi,ui

[
1− R̃(vi, z)

]
F̃n(ui, z)− λui,vi

[
1− R̃(ui, z)

]
F̃n(vi, z)

}
. (S29)

The mean first-passage time is then given by

Dz · F̃n0
(n, z)

∣∣∣
z=1

=
(Dz · N)D− (Dz · D)N

D2

∣∣∣∣
z→1

, (S30)

where Dk
z · f is the kth derivative of f with respect to z, N =

(
F̃n0

(n, z)− 1
)
|J | + |J(n,n0)| and D = |J(n,n)|.

When z → 1, |J | , |J(n,n0)| and |J(n,n)| all reduce to zero and it becomes necessary to use de L’Hôpital’s rule. In
order to proceed, it helps to consider the kth derivative of a determinant of a matrix with size M ×M given by

Dk

z · |A| =
∑

k1+···+kM=k

k!

k1! · · · kM !

∣∣∣∣∣∣∣∣∣

Dk1
z ·A1,1 Dk2

z ·A1,2 · · · DkM
z ·A1,M

Dk1
z ·A1,2 Dk2

z ·A2,2 · · · DkM
z ·A2,M

...
...

. . .
...

Dk1
z ·AM,1 Dk2

z ·Ai,j · · · DkM
z ·AM,M

∣∣∣∣∣∣∣∣∣
. (S31)
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From Eq. (S31) and the expressions in Eqs. (S27) to (S29) it becomes clear that each of the columns in the matrices
must be differentiated at-least twice to give a non zero determinant when z → 1. The determinant must therefore be
differentiated 2M -times leading to de L’Hôpital’s rule being used 4M -times in Eq. (S30). Expanding the denominator
using Leibniz general rule gives

D4M

z · D2 =

4M∑

k=0

(
4M
k

)
(Dk

z · D) (D4M−k

z · D) =

(
4M
2M

)
(D2M

z · D)
2
, (S32)

where the only non-zero term is when k = 2M , expanding the first term in the numerator in Eq. (S30) yields

D4M

z · [(Dz · N)D] =
4M∑

k=0

(
4M
k

)
(Dk+1

z · N) (D4M−k

z · D)

=

(
4M

2M − 1

)
(D2M

z · N) (D2M+1

z · D) +

(
4M
2M

)
(D2M+1

z · N) (D2M

z · D) ,

(S33)

where the only surviving terms of the above summation are when k = 2M − 1, and k = 2M . Similarly for the second
term in the numerator in Eq. (S30) the surviving terms are obtained when k = 2M and k = 2M + 1, giving

D4M

z · [(Dz · D)N] =
4M∑

k=0

(
4M
k

)
(Dk

z · N) (D4M−k+1

z · D)

=

(
4M
2M

)
(D2M

z · N) (D2M+1

z · D) +

(
4M

2M + 1

)
(D2M+1

z · N) (D2M

z · D) .

(S34)

Putting it all together gives

Dz · F̃n0
(n, z)

∣∣∣
z=1

=
(D2M+1

z · N) (D2M
z · D)− (D2M

z · N) (D2M+1
z · D)

(2M + 1) [D2M
z · D]

2

∣∣∣∣∣
z→1

. (S35)

Considering the term D2M
z · N we find that

D2M

z · N|z→1 = D2M

z ·
[(
F̃n0

(n, z)− 1
)
|J |
]∣∣∣
z→1

+ D2M

z · |J(n,n0)||z→1 (S36)

= D2M

z · |J(n,n0)||z→1 , (S37)

since
[
F̃n0

(n, z)− 1
]
must be differentiated at least once and |J | must be differentiated at least 2M times to give a

non-zero contribution. From Eqs. (S28) and (S29) we observe that a non-zero contribution from J(n,n0)i,j , J(n,n)i,j
occurs when one differentiates the difference of first-passage probability, F̃〈uj−vj〉(n, z), and the return probability

terms,
[
1− R̃(ui, z)

]
and

[
1− R̃(vi, z)

]
at least once. As F̃n0

(ui, z = 1) = F̃n0
(vi, z = 1) = F̃n(ui, z = 1) =

F̃n(vi, z = 1) = 1, we have

D2M

z · N|z→1 = D2M

z · J(n,n0)|z→1 = D2M

z · J(n,n)|z→1 = D2M

z · D|z→1 , (S38)

and we can simplify Eq. (S35) to

Dz · F̃n0(n, z)
∣∣∣
z=1

=
D2M+1
z · N−D2M+1

z · D
(2M + 1)D2M

z · D

∣∣∣∣
z→1

. (S39)

At this stage one can compute the derivatives explicitly, for the case D2M
z · J in Eq. (S31). With all ki = 2,

differentiating each column twice and taking the limit z → 1, gives (after cancelling the 2M term),

D2M

z · J |z→1 = (−1)M (2M)! |J | , (S40)

where

J i,j = λvi,ui
RviF〈uj−vj〉→ui

− λui,viRui
F〈uj−vj〉→vi + δi,jRui

Rvi , (S41)
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and likewise for the other two matrices we find

D2M

z · J(n,n)|z→1 = D2M

z · J(n,n0)|z→1 = (−1)M (2M)!
∣∣J −J (2)

∣∣ , (S42)

where

J (2)

i,j = (λvi,uiRvi − λui,viRui)F〈uj−vj〉→n. (S43)

Let us now consider the term D2M+1
z · N. We apply Leibniz rule and obtain

D2M+1

z · N =
2M+1∑

`=0

(
2M + 1

`

)[
D`

z ·
(
F̃n0

(n, z)− 1
)] [
D2M+1−`

z · |J |
]

+D2M+1

z · |J(n,n0)| , (S44)

the only surviving term in the summation is when ` = 1 resulting in

D2M+1

z · N = (−1)M (2M + 1)!Fn0→n |J |+D2M+1

z · |J(n,n0)| . (S45)

Substituting the previous results into Eq. (S35) and simplifying yields

Dz · F̃n0(n, z)
∣∣∣
z=1

=
(−1)M (2M + 1)!Fn0→n |J |+D2M+1

z · |J(n,n0)| − D2M+1
z · |J(n,n)|

(−1)M (2M + 1)!
∣∣J −J (2)

∣∣

∣∣∣∣∣
z→1

. (S46)

Consider the term D2M+1
z · |J(n,n0)| and D2M+1

z · |J(n,n)|, using the multinomial expansion of the derivative of a
determinant i.e. Eq. (S31), one can see that the only surviving terms appear when M − 1 columns are differentiated
twice, while one column is differentiated three times, hence,

D2M+1

z · {|J(n,n0)| − |J(n,n)|} =
1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(n0,`)

∣∣∣∣−
∣∣∣∣Ĵ

(n,`)
∣∣∣∣ , (S47)

where

Ĵ (n0,`)

i,j
= 2 (δj,` − 1)

{
J i,j −J (2)

i,j

}
+ δj,`

{
D3

z · J(n,n0)i,j

∣∣∣
z=1

}
, (S48)

Ĵ (n,`)

i,j
= 2 (δj,` − 1)

{
J i,j −J (2)

i,j

}
+ δj,`

{
D3

z · J(n,n)i,j

∣∣∣
z=1

}
. (S49)

The multilinear property of the determinant allows us to rewrite Eq. (S47) as

D2M+1

z · {|J(n,n0)| − |J(n,n)|} =
1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(`)
∣∣∣∣ , (S50)

where

Ĵ (`)

i,j
= 2 (δj,` − 1)

{
J i,j −J (2)

i,j

}
+ δj,`D3

z ·
{
J(n,n0)i,j − J(n,n)i,j

}∣∣∣
z=1

. (S51)

Since

J(n,n0)i,j − J(n,n)i,j = F̃〈uj−vj〉(n, z)
{
λvi,ui

[
1− R̃(vi, z)

]
F̃〈n0−n〉(ui, z)

−λui,vi

[
1− R̃(ui, z)

]
F̃〈n0−n〉(vi, z)

}
,

(S52)

each of the first-passage and return probabilities in Eq. (S52) must be differentiated at-least once to give a non-zero
contribution, hence,

D3

z ·
{
J(n,n0)i,j − J(n,n)i,j

}∣∣∣
z=1

= 6F〈uj−vj〉→n

{
λvi,ui

RviF〈n0−n〉→ui
− λui,viRui

F〈n0−n〉→vi
}
, (S53)
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where the factor 6 comes from repeated application of the product rule. To carry out the summation in Eq. (S50) we
employ the following property of determinants. Given two matrices, A and B of size M ×M , where B = abT and
where a and b are two column vectors, the following relation

M∑

`=1

∣∣∣A(`)
∣∣∣ = |A| − |A−B| (S54)

holds when A(`) is the same as A, but with the `th column replaced by the `th column of B. Comparing Eqs. (S50)
and (S53) with Eq. (S54), we observe that A→ J −J (2),

a→
[
λv1,u1

Rv1F〈n0−n〉→u1
− λu1,v1Ru1

F〈n0−n〉→u1
,

· · · , λvM ,uM
RvMF〈n0−n〉→uM

− λuM ,vMRuM
F〈n0−n〉→uM

]T
,

(S55)

and

b→ 6
[
F〈u1−v1〉→n, · · · ,F〈uM−vM 〉→n

]T
, (S56)

and carrying out the summation we obtain

1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(`)
∣∣∣∣ =

1

3

(2M + 1)!

2M

{ ∣∣−2
(J −J (2)

)∣∣−
∣∣−2

(J −J (2)
)
− 6J (1)

∣∣
}
, (S57)

with

J (1)

i,j =
(
λvi,ui

RviF〈n0−n〉→ui
− λui,viRui

F〈n0−n〉→vi
)
F〈uj−vj〉→n. (S58)

From Eq. (S57), we can factor out (-2) from the determinants using the property |αA| = αM |A| with A an M ×M
determinant to yield

1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(`)
∣∣∣∣ =

(−1)M (2M + 1)!

3

{ ∣∣(J −J (2)
)∣∣−

∣∣(J −J (2)
)

+ 3J (1)
∣∣
}
. (S59)

The factor 1/3 can be taken into the determinants using the property given in Eq. (S24). For the first determinant
on the right hand side (RHS) of Eq. (S59) we can equate A→ J , from Eq. (S43) we can equate

a→ [λv1,u1Rv1 − λu1,v1Ru1 , · · · , λvM ,uM
RvM − λu1,v1RuM

]
T
. (S60)

and

b→
[
F〈u1−v1〉→n, · · · ,F〈uM−vM 〉→n

]T
, (S61)

to derive the relation

1

3

∣∣J −J (2)
∣∣ =

∣∣J − 1/3J (2)
∣∣− 2

3
|J | . (S62)

Similarly, for the second determinant on the RHS of Eq. (S59), we can equate A→ J , and using Eq. (S58) we identify

a→
[
λv1,u1Rv1

(
1− 3F〈n0−n〉→u1

)
− λu1,v1Ru1

(
1− 3F〈n0−n〉→v1

)
,

· · · , λvM ,uM
RvM

(
1− 3F〈n0−n〉→uM

)
− λu1,v1RuM

(
1− 3F〈n0−n〉→vM

)]T
,

(S63)

and

b→
[
F〈u1−v1〉→n, · · · ,F〈uM−vM 〉→n

]T
, (S64)

to obtain the relation

1

3

∣∣J −J (2) + 3J (1)
∣∣ =

∣∣J − 1/3J (2) + J (1)
∣∣− 2

3
|J | . (S65)
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Using the relations Eqs. (S62) and (S65) to simplify Eq. (S59) yields

1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(`)
∣∣∣∣ = (−1)M (2M + 1)!

{∣∣J − 1/3J (2)
∣∣−
∣∣J − 1/3J (2) + J (1)

∣∣} . (S66)

Lastly, employing the property
∣∣A− abT

∣∣−
∣∣A− cbT

∣∣ =
∣∣A− (a− c) bT

∣∣− |A| (S67)

with A→ J , 3a with Eq. (S60), 3b with Eq. (S61) and 3c with Eq. (S63), we can simplify Eq. (S66) to

1

3

(2M + 1)!

2M

M∑

`=1

∣∣∣∣Ĵ
(`)
∣∣∣∣ = (−1)M (2M + 1)!

{∣∣J −J (1)
∣∣− |J |} . (S68)

Putting it all together gives the final mean first-passage time with M paired defects

Fn0→n =
(Fn0→n − 1) |J |+

∣∣J −J (1)
∣∣

∣∣J −J (2)
∣∣ (S69)

If we divide through all the terms by
∏

(u,v)∈S RuRv, we obtain

Fn0→n =
Fn0→n

∣∣H− 1/Fn0→nH(1)
∣∣

∣∣H−H(2)
∣∣ , (S70)

where

Hi,j =
λvi,ui

Rui

F〈uj−vj〉→ui
− λui,vi
Rvi

F〈uj−vj〉→vi + δi,j , (S71)

H(1)

i,j =

(
λvi,ui

Rui

F〈n0−n〉→ui
− λui,vi
Rvi

F〈n0−n〉→vi

)
F〈uj−vj〉→n, (S72)

H(2)

i,j =

(
λvi,ui

Rui

− λui,vi
Rvi

)
F〈uj−vj〉→n. (S73)

These expressions, namely Eqs. (S71) to (S73), have been repeated, respectively, in Eqs. (A3) to (A5) of the main
text. If the homogeneous propagator is diffusive with no bias and if the heterogeneity parameters are symmetric, i.e.
λv,u = λu,v , H(2) = 0 and Eq. (S70) can be simplified further to

Fn0→n = Fn0→n − 1 +

∣∣H−H(1)
∣∣

|H| . (S74)

B. Mean first-passage in the presence of sticky or slippery sites

To build the first-passage probability with sticky and slippery heterogeneities (see Section IA and Fig. A1) we use
the propagator given in Eq. (5), where the matrices H and H(n,n0) are given, respectively, by Eqs. (S20) and (S21).
As the procedure is similar to the one used to derive the general MFPT given by Eq. (S70) (and also Eq. (8) in the
main text), we outline only the key steps.

Starting from

F̃n0
(n, z) =

Φ̃n0(n, z)

Φ̃n(n, z)
=

(ϕ̃n0
(n, z)− 1) |H|+ |H −G(n,n0)|

(ϕ̃n(n, z)− 1) |H|+ |H −G(n,n)| , (S75)

where we have called H(n,n0) = H − G(n,n0), with H and H(n,n0) given, respectively, by Eqs. (S20)
and (S21). Since matrix G(n,m) = abT, where a and b are column vectors with elements ai = ϕ̃m(wi, z) and
bi = Q̃wi

(n, z) with Q̃w(n, z) given by Eq. (S17). Dividing both the numerator and denominator of Eq. (S75) by
ϕ̃n0

(n, z)
∏M
i=1 ϕ̃wi

(wi, z) we find

F̃n0(n, z) =

(
F̃n0

(n, z)− 1
)
|J |+ |J(n,n0)|

|J(n,n)| . (S76)
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where we rewrite the elements of the matrices in terms of first-passage and first return probabilities giving the
definitions

J i,j = Q̃wj
(wi, z)− z−1δi,j

[
1− R̃(wi, z)

]
, (S77)

J(n,n)i,j = J i,j − F̃n(wi, z)Q̃wj
(n, z), (S78)

J(n,n0)i,j = J i,j − F̃n0
(wi, z)Q̃wj

(n, z), (S79)

with

Q̃wj
(n, z) =

d∑

s=1

λ
w

(rs)
j ,wj

F̃〈
wj−w(rs)

j

〉(n, z) + λ
w

(ls)
j ,wj

F̃〈
wj−w(ls)

j

〉(n, z). (S80)

Note that Eqs. (S27) to (S29) are now different from Eqs. (S77) to (S79).
The derivative with respect to z yields Eq. (S30), however, to evaluate the limit z → 1, one must employ de

L’Hôpital’s rule 2M times on Eq. (S30), where previously the rule was used 4M times. This is because the elements
of the matrices given by Eqs. (S77) to (S79) need only be differentiated once to give non-zero contributions, i.e the
determinants, |H| , |H(n,n)| and |H(n,n0)| must be differentiated M times. Following through one finds, instead
Eq. (S81),

Dz · F̃n0
(n, z)

∣∣∣
z=1

=
DM+1
z · N−DM+1

z · D
(M + 1)DM

z · D

∣∣∣∣
z→1

. (S81)

After computing the derivatives explicitly one obtains Eq. (S70) but this time

Hi,j =
1

Rwi

Qwj (wi) + δi,j , (S82)

H(1)

i,j =
1

Rwi

F〈n0−n〉→wi
Qwj

(n), (S83)

H(2)

i,j =
1

Rwi

Qwj
(n), (S84)

and with

Qwj
(n) =

d∑

s=1

λ
w

(rs)
j ,wj

F〈
wj−w(rs)

j

〉
→n

+ λ
w

(ls)
j ,wj

F〈
wj−w(ls)

j

〉
→n

. (S85)

C. Mean first-return time

Through the renewal equation we also have the return probability relation

R̃(n, z) = 1− 1

Φ̃n(n, z)
=

(ϕ̃n(n, z)− 2) |H|+ |H(n,n)|
(ϕ̃n(n, z)− 1) |H|+ |H(n,n)| . (S86)

Dividing both the numerator and denominator of Eq. (S86) by ϕ̃n(n, z)
∏M
i=1 ϕ̃wi

(wi, z) and simplifying gives

R̃(n, z) =

(
R̃(n, z)− 1

)
|J |+ |J(n,n)|

|J(n,n)| , (S87)

where J ,J(n,n0) and J(n,n) are given by, Eq. (S27) , Eq. (S28) and Eq. (S29) in the case of the general paired
defect. Whereas for the sticky-slippery defects one would use Eq. (S77), Eq. (S79) and Eq. (S78). In either case the
Eq. (S87) is structurally identical to Eq. (S26) and one employs the same procedure as the one employed to derive
the MFPT to obtain (also given in Eq. (9) in the main text)

Rn =
Rn |H|∣∣H−H(2)

∣∣ (S88)

where H, H(2) are given, respectively, by Eq. (A3) and Eq. (A5) in the case of paired defects, while for sticky-slippery
defects one would use the definitions in Eq. (S82) and Eq. (S84).
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III. STEADY STATE PROBABILITY

Using the final value theorem, the steady state probability is given by

(1− z)Φ̃n0
(n, z)

∣∣∣
z→1

= (1− z)ϕ̃n0
(n, z)

∣∣
z→1

− (1− z) |H| − (1− z) |H −G(n,n0)|
|H|

∣∣∣∣
z→1

,
(S89)

taking the limit requires a similar procedure as the one given for the derivation of the MFPT see Section II, and after
some algebra one finds

(1− z)Φ̃n0
(n, z)

∣∣∣
z→1

=
1

Rn

∣∣H−H(2)
∣∣

|H| (S90)

which (as expected) is the reciprocal of the MRT and where the elements of H, H(1) and H(2) are defined, respectively,
in Eq. (S71), Eq. (S72) and Eq. (S73) for the general case, and Eq. (S82), Eq. (S83) and Eq. (S84) when the
heterogeneities are only sticky and slippery.

IV. FIRST-PASSAGE STATISTICS IN ONE DIMENSIONAL DOMAINS

Here we display some explicit miscellaneous expressions for 1D systems that we have omitted from the main text.

A. Mean first-passage time in periodic domains

In a periodic domain when n ≤ u < n0 or n > u ≥ n0 the MFPT can be shown to be equal to

Fn0→n = Fn0→n +
λ (n− n0 − sign(n− n0)) [N sign(n− n0) + 1− 2(n− u)]

p
[
N p

2 + λ(1−N)
] , (S91)

while when both n and n0 are to the right or left of the barrier ones finds

Fn0→n = Fn0→n +
λ (n− n0) [N sign(u− n) + 1− 2(n− u)]

p
[
N p

2 + λ(1−N)
] , (S92)

where sign(m) = 1 for m ≥ 0 and sign(m) = −1 for m < 0 is the discrete signum function.

B. Mean return time in 1D

Using Eq. (9) from the main text one can show that the mean return time in 1D with a single barrier at u with
periodic boundary conditions is given by

Rn =





q
2 [N2−(N2−N)(λu+λv)]

N(q/2−λv)+λu(n−u)−λv(n−u−1) , n ≤ u,

q
2 [N2−(N2−N)(λu+λv)]

N(q/2−λu)+λu(n−u)−λv(n−u−1) , n ≥ u+ 1.

(S93)

When the barrier is impenetrable in both directions, i.e. λu+1,u , λu,u+1 → q
2 , the mean return time with periodic

boundary condition remains Rn = N as we have transformed the periodic boundary condition to a reflecting one.
However, To recover the analogue with reflecting boundary condition requires careful consideration of each of the
terms in

R(r)
n =





N
[
q/2−λu+1,u

q/2−λu,u+1

]
− u

[
λu,u+1−λu+1,u

q/2−λu,u+1

]
n ≤ u

N − u
[
λu,u+1−λu+1,u

q/2−λu+1,u

]
n ≥ u+ 1

. (S94)
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When n ≤ u, by expanding the first term in Eq. (S94) it is obvious to see that it gives no contribution to R
(r)
n

N lim
λu+1,u→ q

2

λu,u+1→ q
2

( q
2 − λu+1,u
q
2 − λu,u+1

)
=
Nq

2
lim

λu,u+1→ q
2

(
1

q
2 − λu,u+1

)
− Nq

2
lim

λu,u+1→ q
2

(
1

q
2 − λu,u+1

)
= 0, (S95)

while the second term gives

u lim
λu+1,u→ q

2

λu,u+1→ q
2

(
λu,u+1 − λu+1,u

q
2 − λu,u+1

)
=
uq

2
lim

λu,u+1→ q
2

(
1

q
2 − λu,u+1

)
− u lim

λu,u+1→ q
2

(
λu,u+1

q
2 − λu,u+1

)
= u. , (S96)

similar argument can be made for the case when n > u to give R
(r)
n = N − u.

C. Mean exit time

In 1D, one find simple expressions for the mean exit times, using known expressions for the defect free exit time
En0

= (N − n0)(n0 − 1)/q [1], and the overall survival probability of the 1D diffusive propagator with absorbing
boundaries, given by

lim
z→1

ϕ̃n0
(n, z) =

1

q

2(N − n>)(n< − 1)

N − 1
, (S97)

where n> = 1
2 [|n− n0|+ (n+ n0)] and n< = 1

2 [|n− n0| − (n+ n0)]. When n0 ≥ u+ 1, we find the simple relatively
relation

En0
= En0

+
(2u−N)(N − n0) [u(λu − λv)− λu]

q
[
N( q2 − λv) + λu + λv − u(λu − λv)− q

2

] , (S98)

whereas n0 ≤ u yields

En0
= En0

+
(2u−N)(1− n0) [(u−N)(λu − λv)− λv]

q
[
N( q2 − λv) + λu + λv − u(λu − λv)− q

2

] . (S99)

V. EFFICIENT EVALUATION OF THE PROPAGATOR IN FINITE DOMAINS: THE BLOCK MATRIX
CONSTRUCTION

When the number of paired defects is sufficiently small, e.g. M / 10 it is convenient to compute the elements of
the matrices in Eqs. (5) and (8) (of the main text) directly using, respectively, the homogeneous propagators and
mean first-passage times. Whereas, for larger values ofM it is more efficient to evaluate the heterogeneous propagator
using a block matrix construction containing eigenvectors and eigenvalues of the transition matrix. In what follows
we describe the procedure for a 1D system while the extension to higher dimension will be addressed in the following
subsection. We define the matrices containing the right eigenvectors as

Ri,k = g(γ,r)(ui, k) and R′i,k = g(γ,r)(vi, k), (S100)

where g(γ,r)(ui, k) and g(γ,r)(vi, k) are, respectively the uthi and vthi component of the kth right eigenvector given
by Eq. (S114), with the type of boundary condition described by γ. Similarly for the matrices containing the left
eigenvectors we define

Lk,i = g(γ,`)(ui, k) and L′k,i = g(γ,`)(vi, k), (S101)

where g(γ,`)(ui, k) and g(γ,`)(vi, k) are, respectively, the uthi and vthi component of the kth right eigenvector given by
Eq. (S114), while for the matrices of eigenvalues we define a diagonal matrix K with elements Kk,k = s(γ)(k) where
s(γ)(k) is the kth eigenvalue of the homogeneous system given by e.g. Eq.(4) of Ref. [1] or Eq. (22) of Ref. [2]. For
the dependence on the the occupation site n and the initial site n0 we define the row vector rn and the column `n0
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containing, respectively, the nth and n0th components of the right and left eigenvectors. Finally we define the diagonal
matrices

Λi,i = λui,vi and Λ′i,i = λvi,ui , (S102)

which contain all the heterogeneous parameter values. The size of these matricies depend on the number of hetero-
geneties, M , the size of the domain N or both: the matricies R and R′ are of size M × N ; the matricies L and L′

are of size N ×M ; the matricies Λ and Λ′ are of size M ×M ; and lastly K is of size N ×N . From these definitions
it follows that

H = Y − z−1I and G(n, n0) = os (S103)

where

Y =
[
ΛR−Λ′R′

]
[I − zK]

−1 [
L−L′

]
(S104)

o =
[
ΛR−Λ′R′

]
[I − zK]

−1
`0 (S105)

s = rn [I − zK]
−1 [

L−L′
]
, (S106)

By defining the block matrices

XL =
(
L−L′ l0

)
and XR =

(
uR− u′R′

rn

)
(S107)

we find

XR [I − zK]
−1

XL =

(
Y o
sT ϕ̃n0

(n, z)

)
. (S108)

A similar approach can be used for the matrices involved MFPT given by Eq. (S70).

A. The block matrix construction in higher dimensions

In higher dimension the transition dynamics of a lattice random walk are described by a tensor and extending the
block matrix construction hinges on ‘flattening’ the vector coordinates to a scalar. There are many methods one can
employ to achieve this and we outline a suitable one below. Given the site n = (n1, · · · , nd) in a d-dimensional lattice
of size N = N1, · · ·Nd, we define

n̂ = 1 +
d∑

i=1



i−1∏

j=1

Nj


 (ni − 1) and k̂ = 1 +

d∑

i=1



i−1∏

j=1

Nj


 (ki − 1) , (S109)

where n̂ represents the ‘flattened’ site while k̂ is the ‘flattened’ eigen-index. Using these indices we define

Ri,k̂ =
d∏

j=1

g(γj)r (uij , kj
) and R′

i,k̂
=

d∏

j=1

g(γj)r (vij , kj
), (S110)

where the products ares over jth component of the sites, e.g. ui = (ui1 , · · · , uid). Similarly, the matricies containing
the left eigenvectors are defined as

Lk̂,i =
d∏

j=1

g
(γj)
` (uij , kj

) and L′
k̂,i

=
d∏

j=1

g
(γj)
` (vij , kj

), (S111)

leaving the matrix of eigenvalues defined as K k̂,k̂ = 1
d

∑d
j=1 s

(γ)(k
j
). The ith element of the vectors containing the

dependence on n, and n0 is given, respectively, by rni
=
∏d
j=1 g

(γj)
r (nij , kj

) and `n0i
=
∏d
j=1 g

(γj)
` (n0ij , kj

). The
remainder of the procedure is identical to the 1D case outlined previously.
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B. Eigenvectors and eigenvalues of transition matrix of the one dimensional Lattice random walk

Since the high dimensional eigenvectors and eigenvalues are composed of the 1D case, repeat here the quantities
of interest diffusive case as an example. The Master equation governing a random walk on a finite lattice with N
distinct sites (1 ≤ n ≤ N) is written as

ϕ(n, t+ t) =
N∑

m=1

An,mϕ(m, t), (S112)

where A is the transition matrix. The matricial form allows one to write easily the propagator as

ϕn0(n, t) =

N∑

k=1

g(γ)r (n, k)g
(γ)
` (n0, k)s(k)(k)t, (S113)

where g(γ)r (n, k) and g
(γ)
` (n, k) are the nth component of, respectively, the kth right and left eigenvectors of the

transition matrix and s(γ)(k) is the kth eigenvalue. The right eigenvectors are given by

g(γ)r (n, k) =





ak√
N

cos
[(
n− 1

2

) (k−1)π
N

]
γ = r,

1√
N

exp
[
2πni(k−1)

N

]
γ = p,√

2
N sin

[(
n−1
N−1

)
kπ
]

γ = a,

2√
2N−1 cos

[(
n− 1

2

)
2k−1
2N−1π

]
γ = m,

(S114)

with ak = 2 for k = 1 and ak = 1 for all other values of k, while the left eigenvectors, g(γ)` (n, k) are identical to
Eq. (S114) for all cases except the periodic boundary condition γ = p, where instead it is given by g

(p)
` (n, k) =

1/g
(p)
r (n, k), finally the eigenvalues can be found in Eq. (4) of Ref. [1]. For periodic (γ = p) and reflecting domains

(γ = r) with N distinct sites we have k ∈ [1, N ] eigenvalues and eigenvectors, for absorbing boundary conditions
(γ = a) with absorbing sites at n = 1 and n = N we have k ∈ [1, N − 2] eigenvalues, lastly for mixed boundary
condition (γ = m) with a reflecting end at n = 1 and an absorbing one at n = N we have k ∈ [1, N − 1] eigenvalues.
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