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ABSTRACT
In this article we propose a hybrid approach for cluster-
ing of gene expression data across multiple experiments,
based on Particle Swarm Optimization and k-means clus-
tering. In the proposed algorithm, each experiment iden-
tifies a particle initialized with the result of the k-means
algorithm applied over the experiment. The final cluster-
ing solution is found by updating the particles using the
information about the best clustering solution generated by
each experiment and the entire set of experiments. The per-
formance of the proposed cluster algorithm is evaluated on
time series expression data obtained from a study exam-
ining the global cell-cycle control of gene expression in
fission yeastSchizosaccharomyces pombe. The obtained
experimental results demonstrate that the hybrid algorithm
is able to produce good quality clustering solution, which
is representative for the whole test compendium and at the
same time adequately reflects the specific characteristics of
the individual experiments.
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1 Introduction

DNA microarray technology offers the ability to screen the
expression levels of thousands of genes in parallel under
different experimental conditions or time points. All these
measurements contain information about many different
aspects of gene regulation and function, ranging from un-
derstanding the global cell-cycle control of microorgan-
isms [4], to cancer in humans [3], [8]. Gene clustering is
one of most essential analysis methods for gene expression
data. Clustering is the process of grouping data objects into
sets of disjoint classes called clusters, so that objects inthe
same cluster are more similar to each other than objects in
the other clusters, given a reasonable measure of similarity.

In the context of microarray analysis, clustering algorithms
have been used to divide genes into groups according to
the degree of their expression similarity. Such a grouping
may suggest that the respective genes are correlated and/or
co-regulated, and moreover that the genes could possibly
share a common biological role.

In recent years, many diverse clustering algorithms
have been proposed and applied for gene expression
data analysis. Three major categories may be distin-
guished: density-based, hierarchical and partitioning clus-
tering methods [11]. Density-based algorithms implement
the so-called local principle to group neighboring objects
into clusters based on density conditions and thus, they are
capable of discovering clusters of arbitrary shapes [2]. Hi-
erarchical clustering methods generate a set of nested clus-
ters by either merging smaller clusters into larger ones, or
by splitting larger clusters in a hierarchical manner [7].
In contrast to these approaches, three partitioning algo-
rithms (k-means, k-medians and k-medoids clustering) de-
compose the data set into a set ofk disjoint clusters such
that the within-cluster sum of distances between each ob-
ject in a given cluster and the corresponding cluster center
is minimized.

Presently, with the increasing number and complex-
ity of available gene expression data sets the combina-
tion of data from multiple microarray studies address-
ing a similar biological question is gaining high impor-
tance [6], [21], [9]. In general, the integration and evalua-
tion of multiple data sets promise to yield more reliable and
robust results since these results are based on a larger num-
ber of samples and the effects of individual study-specific
biases are weakened. The latter has motivated our research,
which is concerned with how to combine Particle Swarm
Optimization (PSO) and k-means clustering algorithms in
order to derive general and consistent conclusions from
a set of independent, but biologically related, microarray
data sets.

PSO-based clustering algorithm was first introduced



by Omranet al. [16]. They showed that PSO based method
outperformed k-means and a few other state-of-the-art clus-
tering algorithms. In their method, each particle represents
a possible set ofk cluster centroids. Van de Merwe and
Engelbrecht hybridized Omranet al. approach with the
k-means algorithm for clustering general datasets [14]. A
single particle of the swarm is initialized with the result of
the k-means algorithm while the rest of the swarm is ini-
tialized randomly. Xiaoet al. proposed a new approach
based on the combination of PSO and the Self Organiz-
ing Maps [22] and applied it for clustering gene expression
data. They obtained promising results by applying the com-
bined algorithm over the gene expression data of Yeast and
Rat Hepatocytes.

In contrast to conventional clustering algorithms,
where a single data set is used to produce a clustering so-
lution, we propose herein a PSO-based approach that can
be used to cluster gene expression data across multiple ex-
periments. In this context, each experiment (dataset) de-
fines a particle which is initialized with a set ofk cluster
centroids obtained after performing k-means clustering al-
gorithm applied over the experiment. The final (optimal)
clustering solution is found by updating the particles using
the information about the best clustering solution obtained
by each experiment and the entire set of datasets.

Section 2 briefly describes the basic principles of PSO
and k-means methods and subsequently introduces our hy-
brid clustering approach. The dataset and the applied ex-
perimental setup are outlined in Section 3, followed by
analysis and discussion of the clustering results in Sec-
tion 4.

2 Methods

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary com-
putation method introduced in [12]. In order to find an
optimal or near-optimal solution to the problem, PSO up-
dates the current generation of particles (each particle isa
candidate solution to the problem) using the information
about the best solution obtained by each particle and the
entire population. Each particle is treated as a point in an
n-dimensional space. Thei-th particle is initialized with
random positionsXi = (xi1, xi2, . . . , xin) and velocities
Vi = (vi1, vi2, . . . , vin) at time pointt = 0. The per-
formance of each particle is measured according to a pre-
defined fitness function, which uses the particle’s positional
coordinates as input values. Positions and velocities are ad-
justed, and the function is evaluated with the new coordi-
nates at each time-step. The basic update equations for the
d-th dimension of thei-th particle in PSO may be given as

vid(t + 1) = w · vid(t) + c1 · ϕ1 · (pid − xid(t))+
c2 · ϕ2 · (pgd − xid(t))

(1)

xid(t + 1) = xid(t) + vid(t + 1). (2)

The variablesϕ1 andϕ2 are uniformly generated random
numbers in the range[0, 1], c1 and c2 are called accel-
eration constants whereasw is called inertia weight [18].
Pg = (pg1, pg2, . . . , pgn) is the best particle position found
so far within the population andPi = (pi1, pi2, . . . , pin)
is the best position discovered so far by the correspond-
ing particle. The first part of equation (1) represents the
inertia of the previous velocity, the second part is thecog-
nition part and it tells us about the personal experience of
the particle, the third part represents the cooperation among
particles and is therefore named as thesocial component.
Acceleration numbersc1, c2 and inertia weightw are pre-
defined by the user. For instance, in [12] it is recommended
to use 2 for constantsc1 and c2 since it results in aver-
age weights for thesocialandcognition partsof 1. It was
shown in [18] that whenw is in the range[0.9, 1.2] the PSO
will have the best chance to find the global optimum within
a reasonable number of iterations. Furthermore,w = 0.72
and c1 = c2 = 1.49 were found in [15] to ensure good
convergence.

Notice that in the multi-experimental context consid-
ered in Section 2.3 the cognition part representing the per-
sonal opinion of the particle is based on its own source
of information (dataset). This may also have a reflection
on the social part, since information contained in different
sources may have different representations and may need
to be preprocessed before the collaboration of particles.

2.2 K-means Clustering Algorithm

The k-means algorithm [13] is one of the most widely used
techniques for clustering. It starts by initializing thek clus-
ter centers, wherek is preliminarily determined. Then,
each object (input vector) of the data set is assigned to the
cluster whose center is the nearest. The mean (centroid) of
each cluster is then computed so as to update the cluster
center. This update occurs as a result of the change in the
membership of each cluster. The processes of re-assigning
the objects and the update of the cluster centers is repeated
until no more change in the value of any of the cluster cen-
ters.

2.3 Particle Swarm Optimization and K-means clus-
tering

We use here a combination of PSO and k-means for deriv-
ing a clustering result from multiple microarray datasets.

Assume that a particular biological phenomenon is
monitored in several high-throughput experiments undern
different conditions. Each experimenti (i = 1, 2, . . . , n) is
supposed to measure the gene expression levels ofm genes
in ni different experimental conditions or time points. Thus
a list of n different data matricesM1,M2, . . . ,Mn will be
produced, one per experiment. In this context, each matrix



i is possible to generatek cluster centers, which are consid-
ered to represent a particle,i.e. the particle is treated as a set
of points in anni-dimensional space. The final (optimal)
clustering solution will be found by updating the particles
using the information about the best clustering solution ob-
tained by each data matrix and the entire set of matrices.
The fitness of particles is measured as the quantization er-
ror [14]

Je =

∑k

l=1

∑

∀gj∈Cl
d(gj , Cl)/kl

k
, (3)

whereCl is thel-th cluster center andkl is the number of
genes belonging to thel-th cluster.

Assume that thei-th particle is initialized with a set
of k cluster centers1 Ci = {Ci

1, C
i
2, . . . , C

i
k} and a set of

velocity vectorsVi = {V i
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2 , . . . , V i
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2 using gene ex-
pression matrixMi. Thus each cluster center is a vector
Ci
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) and each velocity vector is a vec-
tor V i
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), i.e. each particlei is a matrix
(or a set of points) in thek×ni dimensional space. Next the
update equation for thed-th dimension of thej-the velocity
vector of thei-th particle is defined as follows

vi
jd(t + 1) = w · vi

jd(t) + c1 · ϕ1 · (p
i
jd − ci

jd(t))+

c2 · ϕ2 · g(t),
(4)

wherei = 1, . . . , n; j = 1, . . . , k; d = 1, . . . , ni and

g(t) =

{

pgd − ci
jd(t), if ng ≥ ni

0, otherwise
. (5)

In addition,Pg = {Pg1, Pg2, . . . , Pgk} is a set of cluster
centers in anng-dimensional space representing the best
clustering solution found so far within the set of matrices
andPi = {P i

1, P
i
2, . . . , P

i
k} is the set of centroids of the

best solution discovered so far by the corresponding matrix.
Evidently, the cognition part in the above equation has a
modified interpretation. Namely, it represents the private
thinking (opinion) of the particle based on its own source
of information (dataset). Due to this the social part (see
equation (5)) differs from that in equation (1), since each
particle matrix has a different number of columns due to
different number of experiment points in each dataset.

The clustering algorithm combining PSO and k-
means can be summarized as follows:

1. Initialize each particle withk cluster centers obtained
as a result of applying k-means algorithm to the cor-
responding data matrix.

2. Initialize the personal best clustering solution of each
matrix with the corresponding clustering solution
found in Step 1.

1The number of clusters,k, is initially identified by analyzing the qual-
ity of the obtained clustering solutions generated on the involved data sets
for a range of different numbers of clusters.

2The velocity vectors are initialized by zeros.

3. for iteration = 1to max-iterationdo

(a) for i = 1 to n do (i.e. for all datasets)

i. for j = 1 to m do (i.e. for all genes in the
current dataset)

A. Calculate distance of genegj with all
cluster centers

B. Assigngj to the cluster that has nearest
center togj

ii. end for

iii. Calculate the fitness function for the clus-
tering solutionCi

iv. Update the personal best clustering solution
Pi

(b) end for

(c) Find the global best solutionPg

(d) Update the cluster centers according to the ve-
locity updating formula proposed in equation (4)

4. end for

2.4 Computational Complexity

On extremely large datasets the proposed hybrid cluster-
ing algorithm is expected to be rather computationally in-
tensive. Initially the particles are initialized by applying
k-means clustering on each given expression matrix. This
implies computational complexity of

O(I(n1 + n2 + . . . + nn)mk)

for n matrices ofm rows (genes),k number of clusters and
I number of iterations. Then at the second phase, the PSO
algorithm is used to find the final clustering solution by
updating the particles using the information about the best
clustering solution generated by each experiment and the
entire set of experiments,i.e. its computational complexity
will be in the range of

O(J(n1 + n2 + . . . + nn)mk),

whereJ is the bound number of iterations. Thus the to-
tal cost of the proposed hybrid algorithm will be approxi-
mately

O((I + J)(n1 + n2 + . . . + nn)mk).

This can be drastically reduced by first performing some
advanced filtering or features selection in order to remove
noisy data and preserve lower number (m) of potentially
relevant genes for clustering. It is expected that the latter
will subsequently lead to lower cluster number (k).



3 Experimental Setup

3.1 Microarray Datasets

The proposed clustering algorithm has been validated on
benchmark datasets where true clustering is known. These
datasets have been composed by gene expression time se-
ries data obtained from a study examining the global cell-
cycle control of gene expression in fission yeastSchizosac-
charomyces pombe[4]. The study includes eight indepen-
dent time-course experiments synchronized respectively
by:

1. elutriation: three independent biological repeats;

2. cdc25 block-release: two independent biological re-
peats, of which one in two dye-swapped technical
replicates, and one experiment in a sep1 mutant back-
ground;

3. a combination of both methods: elutriation and cdc25
block-release as well as elutriation and cdc10 block-
release.

Thus, nine different expression test sets are available. Inthe
pre-processing phase the rows with more than 25% miss-
ing entries have been filtered out from each expression ma-
trix and any other missing expression entries have been im-
puted by the DTWimpute algorithm [20]. In this way nine
complete matrices have been obtained.

Rustici et al. identified 407 genes as cell-cycle reg-
ulated [4]. These have been subjected to clustering which
resulted in the formation of 4 separate clusters. The genes
that are not presented in the intersection of the nine original
data sets have been removed. The latter produces a subset
of 267 genes. Subsequently, the time expression profiles
of these genes have been extracted from the complete data
matrices and thus nine new matrices which form our bench-
mark datasets have been constructed.

The test datasets have been normalized by applying
a data transformation method aiming at multi-purpose data
standardization and inspired by gene-centric clustering ap-
proaches as proposed in [1].

3.2 Cluster Validation Measures

One of the most important issues in cluster analysis is the
validation of clustering results. Essentially, the cluster val-
idation techniques are designed to find the partitioning that
best fits the underlying data, and should therefore be re-
garded as a key tool in the interpretation of clustering re-
sults. Since none of the clustering algorithms performs uni-
formly best under all scenarios, it is not reliable to use a
single cluster validation measure, but instead to use at least
two that reflect different aspects of a partitioning. In this
sense, we have implemented two different validation mea-
sures for estimating the quality of clusters:

1. Connectivity: for assessing connectedness;

2. Silhouette Index (SI): for assessing compactness and
separation properties of a partitioning.

3.2.1 Connectivity

Connectivity captures the degree to which genes are con-
nected within a cluster by keeping track of whether the
neighboring genes are put into the same cluster [5]. Let
us definemi(j) as thejth nearest neighbour of genei, and
let χimi(j)

be zero ifi and j are in the same cluster and
1/j otherwise. Then for a particular clustering solution
C1, C2, . . . , Ck of matrix M , which contains the expres-
sion values ofm genes (rows) inn different experimental
conditions or time points (columns), the connectivity is de-
fined as

Conn(c) =
m

∑

i=1

n
∑

j=1

χimi(j)
.

The connectivity has a value between zero and infinity
and should be minimized.

3.2.2 Silhouette Index

Silhouette index reflects the compactness and separation of
clusters [17]. SupposeC1, C2, . . . , Ck is a clustering solu-
tion (partition) of matrixM , which contains the expression
profiles ofm genes. Then theSilhouette Indexis defined as

s(k) =
1

m

m
∑

i=1

(bi − ai)/max{ai, bi},

whereai represents the average distance of genei to the
other genes of the cluster to which the gene is assigned,
andbi represents the minimum of the average distances of
genei to genes of the other clusters.

The values of Silhouette Index vary from -1 to 1 and
higher value indicates better clustering results.

4 Results and Discussion

In this section, the performance of the proposed PSO-based
clustering method on the benchmark datasets is presented.
The standard k-means and the proposed hybrid (combina-
tion of k-means and PSO) clustering algorithm are executed
in order to generate clustering solutions on each of the con-
sidered nine microarray matrices. The quality of these so-
lutions is evaluated using two cluster validation measures:
Silhouette Index (SI) and Connectivity. These cluster val-
idation measures have been implemented in C++. The
proposed PSO-based clustering algorithm has been imple-
mented in Java. The publicly available open source ma-
chine learning software WEKA3 is used by this implemen-
tation for the particle initialization and for the gene assign-
ment to the different clusters.

Initially, the number of cluster centers is identified for
the involved experiments. As discussed in [10], [19], this

3http://www.cs.waikato.ac.nz/ml/weka/



Figure 1. Optimal number of clusters as determined using
the Connectivity validation index for the 9 different exper-
iments. For 5 of the 9 datasetsk = 4 is identified as the
optimal cluster number.

can be performed by running the selected clustering algo-
rithm on each dataset for a range of different numbers of
clusters. Thus the k-means clustering algorithm is exe-
cuted for values ofk between 2 and 10 on each dataset.
Subsequently, the quality of the obtained clustering solu-
tions is assessed by using the Connectivity validation in-
dex. We search for the values ofk at which a significant
local change in value of the index occurs [10]. The opti-
mal number of clusters for the different experiments range
between 3 and 5 as it can be seen in Figure 1. However,
k = 4 prevails (encountered in five matrices) and therefore
it will be used for our experiments.

Next the proposed PSO-based clustering algorithm
(see Section 2.3) is executed on the whole test corpus. It
is run for 500 iterations andw = 0.72 andc1 = c2 = 1.49.
These values have been chosen to ensure good conver-
gence [15].

Figure 2 depicts the calculated fitness function (the
quantization error) values (see equation (3)) on the test
datasets at the initial time point versus those generated at
the last iteration of the PSO-based clustering. 11 separate
simulations are performed in total and the figure presents
the average values over them. It can be seen that the clus-
tering solutions of all the experiments are improved during
the algorithm execution. It is also interesting to note that
the global best clustering solution is generated in 80% of
the simulations by experimentcdc25-2.1.

Figure 3 compares the SI values generated by the k-
means and the proposed PSO-based hybrid clustering al-
gorithm on the individual matrices. Note that the SI val-
ues for the PSO-based algorithm are obtained by using the
global best solution found among the 9 different experi-
mental matrices, while the values for the k-means are pro-
duced by using the clustering solutions generated for each
of the corresponding individual datasets. It can be observed
that the proposed PSO-based algorithm outperforms the k-

Figure 2. Comparison of the fitness function scores gen-
erated by PSO-based clustering algorithm at the initial and
the final iteration and based on the average results of 11
separate simulations. The clustering solutions of all the
experiments are improved during the algorithm execution.
The global best clustering solution is generated in 80% of
the simulations by experimentcdc25-2.1.

means algorithm for the datasets with the worst (according
to the SI) clustering solution, namelyelu1, cdc25-2.1, elu-
cdc10, elu-cdc25. In addition, as it can be witnessed by
the SI results presented in Figure 3, the PSO-based clus-
tering solution is well supported by all the experiments. In
other words, the algorithm performs equally well on the
different experiments and clearly reduces the high SI fluc-
tuation among the different experiments as exhibited by the
k-means algorithm.

Figure 4 depicts the Connectivity values generated by
applying the conventional k-means clustering algorithm on
each test dataset versus the ones produced by the PSO-
based clustering on the whole test corpus. The Connec-
tivity scores generated by PSO-based clustering are sig-
nificantly better than the values obtained by applying the
k-means algorithm for all the experiments with the excep-
tion of elu-cdc10. However, as it can be seen the k-means
result produced on the latter experiment deviates consider-
ably from the Connectivity scores obtained for the rest of
the experiments. This may be due to the experiment spe-
cific characteristics.

Figures 5 and 6 compare the SI and Connectivity
values produced by the standard k-means and the PSO-
based clustering algorithm against the ones generated by
using the best k-means solution with respect to the both
validation indices. The latter one is attained for experi-
mentcdc25-2.2which generates the highest SI score and
the second best Connectivity result. As it can be noticed
the SI values produced by the best k-means clustering so-
lution slightly outperform the ones obtained by applying
the PSO-based algorithm for almost all the experiments.
However, the corresponding Connectivity results are sig-
nificantly worse than those produced by the proposed PSO-



Figure 3. Comparison of the SI values generated by the
standard k-means and the proposed PSO-based hybrid clus-
tering algorithm on the 9 different experiments. The SI
values for the PSO-based algorithm are obtained by using
the global best solution found among the 9 different exper-
imental matrices, while the values for the k-means are pro-
duced by using the clustering solutions generated for each
of the corresponding individual datasets.

Figure 4. Comparison of the Connectivity values gener-
ated by the standard k-means and the proposed PSO-based
hybrid clustering algorithm on the 9 different experiments.
The Connectivity values for the PSO-based algorithm are
obtained by using the global best solution found among
the 9 different experimental matrices, while the values for
the k-means are produced by using the clustering solutions
generated for each of the corresponding individual datasets.

Figure 5. Comparison of the SI values generated by the
standard k-means and the PSO-based clustering algorithm
and those obtained by using the best k-means clustering re-
sult on the 9 different experiments. The SI values for the
’k-means best’ are obtained by using the clustering solution
among the 9 different experimental matrices which has the
best performance with respect to the both, SI and Connec-
tivity, validation measures.

Figure 6. Comparison of the Connectivity values generated
by the standard k-means and the PSO-based clustering al-
gorithm and those obtained by using the best k-means clus-
tering result on the 9 different experiments. The Connec-
tivity values for the ’k-means best’ are obtained by using
the clustering solution among the 9 different experimental
matrices which has the best performance with respect to the
both, SI and Connectivity, validation measures.



Figure 7. Comparison of the SI values generated by the
known clustering solution published in [4], and those ob-
tained by applying the standard k-means and the proposed
PSO-based hybrid clustering algorithm on the 9 different
experiments.

based clustering algorithm. Evidently, it is difficult to find a
k-means clustering solution that presents equally well with
respect to all the evaluation criteria. This observation isfur-
ther confirmed by the fact that experimentelu-cdc10pro-
duces the best Connectivity result and the worst SI score at
the same time. While the proposed PSO-based clustering
algorithm finds a partitioning that performs uniformly well
under the both validation measures.

Figures 7 and 8 visualize the SI and Connectivity
values calculated by using the known clustering solution
found (manually) in [4] against those obtained by applying
the standard k-means and the proposed PSO-based cluster-
ing algorithm on the benchmark matrices. It can be seen
that in comparison to the k-means clustering solution the
performance of the PSO-based clustering for both indices
is much closer to that of the already published partitioning.

5 Conclusion

We have proposed a hybrid clustering method which com-
bines Particle Swarm Optimization and k-means for deriv-
ing a global clustering solution for multiple gene expres-
sion matrices. The performance of the proposed clustering
algorithm has been evaluated on a compendium of 9 time
series expression datasets obtained from a study examining
the global cell-cycle control of gene expression in fission
yeastSchizosaccharomyces pombe. The presented in the
article initial experimental results demonstrate that thepro-
posed PSO-based algorithm is able to produce good quality
clustering solution, which is representative for the whole
test compendium and at the same time adequately reflects
the specific characteristics of the individual experiments.
In addition, the proposed clustering algorithm outperforms
the k-means algorithm for majority of the datasets and in
particular for ones with the worst k-means performance.

Figure 8. Comparison of the Connectivity values gener-
ated by the known clustering solution published in [4], and
those obtained by applying the standard k-means and the
proposed PSO-based hybrid clustering algorithm on the 9
different experiments.

Our future work will focus on further improvement,
parameter optimization and validation of the proposed clus-
tering method on various different in terms of type and size
experimental datasets.
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