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OCTUPOLE CORRELATION EFFECTS NEAR Z =  56, N =  88 
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Partial decay schemes for the very neutron-rich nuclei t46,~4s.tso Ce have been determined by the study of ~,-y coincidences in 
~52 Cf fission fragments. Similar behavior to that seen in 144.146 Ba, t48Nd and ~5°Sm, and interpreted in terms of strong octupole 
correlations, has been observed in yrast levels of ~46 Ce but not in 148Ce and ~5°Ce. This is in agreement with the predictions of 

cranked mean field calculations. 

The existence of a new island of nuclei which show 
characteristics of octupole deformation has recently 
been established experimentally with the discovery 
of interleaved negative and positive parity rotational 
bands in the nuclei 144'146Ba [ 1 ]. Sequences of levels 
of alternating parity connected by strong electric di- 
pole transitions have also been identified in the nu- 
clei 146"148Nd [2] and 148'15°Sm [3,4]. These bands 

are called octupole bands in the discussion below. 
They are very similar to those observed even more 
clearly in certain light actinide nuclei [ 5,6 ]. In some 
regions of the nuclear periodic table strong octupole 
correlations between the valence nucleons are indeed 
anticipated. They arise from the occurrence of closely 
spaced, opposite parity single-particle orbits with 
A/= 3 and A j =  3. These correlations may induce sta- 
ble octupole deformation either in nuclear ground- 
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states or in excited states when rotation increases. 
Specifically, cranked mean field calculations [7-9] 
predict this to happen at rather low spin in limited 
sets of accessible nuclei near Z=56 ,  N = 8 8  and 
Z=88 ,  N =  132. While these models have proven to 
be very successful in the second region (see refs. [ 5,6 ] 
and references therein), extensive tests of their pre- 
dictive power for the first region have just begun. Iso- 
topes of Xe, Ba, Ce, Nd and Sm with N =  84, 86 and 
88 plus ~46Ba are predicted [9] to be the best even-  
even candidates for the onset of a stable axially sym- 
metric octupole deformation. This reflection asym- 
metric shape is expected to stabilize at spins >/7h. 
Here, we present a severe test of the calculations for 
the Ce isotopes. In this case, the specific prediction 
[9] is that Ce isotopes with N > 8 8  do not become 
octupole deformed, in contrast with the lighter iso- 
topes. The data presented below provide strong sup- 
port for the validity of the model; a single octupole 
band has been observed in ~46Ce88 while the heavier 
~48.~5OCe isotopes do not exhibit the same character- 
istic yrast structure. 

Fig. 1 shows part of the nuclear chart near N =  88. 
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Fig. I. Part of the nuclear period table showing nuclei where oc- 

tupole-band-type structures have been found (diamonds) .  Sta- 

ble isotopes are shown hatched. The double line shows, for each 

element, the most abundant isotope formed in the spontaneous 

fission of :~'~Cf. 

It includes the nuclei predicted to have an octupole 
shape. The nuclei which have already been observed 
to show features appropriate to rotation of asymmet- 
ric shapes are indicated as diamonds. It should be 
pointed out that a clear experimental signature ofoc- 
tupole deformation, i.e. an octupole band, will ap- 
pear only for deformed nuclei with rotational bands. 
Thus, there is hope to find octupole deformation in 
nuclei with N>~ 88, which are known to be prolate de- 
formed. Unfortunately, the nuclei with N~< 86, such 
as  142Bas6 [ 1 ] or 144Ce86, lack rotational bands and 
signatures ofoctupole deformation are more difficult 

to interpret. 
t46,~48Ce and ~X~Ce are very neutron-rich and can 

only be studied conveniently as final fragments in 
spontaneous fission. The average spin in these frag- 
ments is ~ 7h [ 10 ], and partial decay schemes ofyrast 
or near-yrast levels with spins up to ~ 12h can be de- 
termined when the nucleus being observed is one of 
the strongly produced fragments. The measurements 
were performed on fission fragments from 2s2Cf. 14SCe 
is the most abundant Ce fragment (fig. 1 ) and com- 
prises ~ 2% of the decay products of 252Cf, compared 
with ~ 3% for the strongest product 144Ba [ 1 1 ]. ~46Ce 
and ~5°Ce form ~ 1% of the ~52Cffinal fragments. The 
decay schemes were determined from prompt Y-7 co- 
incidences observed with the Argonne-Notre Dame 
y-ray facility which, at the time of the experiment, 
consisted of seven Compton-suppressed Ge detec- 
tors and one low energy photon spectrometer (LEPS). 

An additional coincidence was required in one of 
fourteen bismuth germanate detectors placed near the 
source and used as a multiplicity filter. The tech- 
niques and methods of analysis used have been de- 
scribed previously [1]. The starting points for 
disentangling the decay schemes were the 2 + - ,  
0 + and 4 + -*2 + y-rays known from earlier work [ 1 1 ] 
on 2£Cf decay products. 

Fig. 2 shows samples of the coincidence spectra 
from which the decay schemes were constructed. Fig. 
2a presents a sum of coincidence spectra obtained by 
gating on the 2 + - ,0  +,4 + ~ 2  + ,6  +-~4 + and 
7--~6~- transitions in 146Ce. The spectrum of events 
in coincidence with the 6 + --*4 + transition in 148Ce 
is given in fig. 2b. It can be seen that all the strong y- 
rays have been assigned either to the Ce isotopes un- 
der investigation or to the complementary Zr 

fragments. 
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Fig, 2. Samples of coincidence spectra obtained in the present 

experiment. (a) shows a sum of spectra obtained by gating on 
the 2 + ~O + , 4 + ~ 2 + , 6 + ~ 4  + and 7 ~ 6 ~  v-rays in 146Ce. (b) 

presents the spectrum in coincidence with the 6 + ~ 4  + transition 
in 14SCe. All y-rays which show up clearly are in '4°Ce and 14~Ce 

or in complementary Zr fragments. The assignments of the latter 

are referred to by mass number in the figure. 
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Fig. 3 shows the partial decay schemes obtained. 
The relative intensities, corrected for detector effi- 
ciencies, o f  y-rays in coincidence with the 2 + --,0 + y- 
ray are given in parenthesis, the 41 + --,2~ intensity 
being taken as reference. The 211.2 keV y-ray in la6Ce 
nearly overlaps the 212.5 keV 27 ~ 0  + y-ray in the 
complementary m°Zr fragment, but was clearly re- 
solved in the coincidence spectra seen in the LEPS 
detector, as was the 185.8 keV 8+--*7 - y-ray. 146Ce 
shows patterns similar to those seen in e.g., 144Ba [ 1 ] 
and 222Th [ 6 ]. At spin /> 7h two interweaved sets of  
levels occur, roughly approximating a single band, 
with the states interconnected by strong y-ray transi- 
tions. The analogy with established schemes in 144Ba, 
148Nd and ~5°Sm strongly suggests assignments of  the 
spins and parities to the levels according to their place 
in a single band appropriate for rotations of  a reflec- 
tion asymmetric nucleus (i.e. an octupole band). 
These assignments are supported, as in H4Ba, by the 
observed strengths of  the interconnecting y-ray tran- 
sitions compared to the relevant electric quadrupole 
decays. The strongly competing cross-overs suggest 
that they are of  electric dipole character. Further sup- 
port is given by previous likely assignments [ 12 ] of  
5 and 7-  to the levels at 1183 and 1552 keV, re- 
spectively. The interconnecting y-rays are thus as- 

sumed to be electric dipole in nature and their 
intrinsic strengths may be calculated as in ref [1] 
from the relative intensities shown in fig. 3. In these 
calculations it was assumed that the band has con- 
stant intrinsic quadrupole moment  which was de- 
rived from the measured [ 13 ] lifetime of  0.25 (4)  ns 
of  the 2~ level. 

Table 1 shows the derived B (E 1 ) / B  (E2) ratios for 
transitions from the different levels, and also the ab- 
solute B(E1 ) values. The latter values are large and 
similar in size to those observed in other nuclei with 
octupole deformation. Within the rotational model, 
the electric dipole reduced transition probabilities 
B(E1 ) may be related to an intrinsic dipole moment 
Do. The value extracted from the weighted mean of  
the strengths given in table 1 for transitions from 
states with spin >/8h ~ is 0.20( 1 ) efm. Table 2 com- 
pares experimental values of  Do found in octupole 
nuclei in the Z ~  56, N ~  88 region with predictions 
[ 9 ] based on the liquid drop model with shell correc- 
tions [ 14 ]. The overall agreement is very satisfactory. 

148Ce and ~5°Ce show structures different from 
those seen in the N =  88 nuclei. No side bands feeding 
into the ground state bands or interweaved with the 
ground state bands are seen in the decay schemes for 
levels with spins < 14h (see fig. 2b). Essentially the 
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Fig. 3. Partial decay schemes for H6~48Ce and ~5°Ce. The errors on the level energies and 3'-ray energies are ~<0.2 keV; there is an addi- 
tional uncertainty of  0.2 keV on the absolute "/-ray energies. The errors on the relative intensities vary from ~ 30% for the weak y-rays to 
~ 5% for the most intense. As discussed in the text, the spins and parities of  the new levels established in this experiment are assigned by 

analogy with neighboring nuclei. 
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Table 1 
Electric dipole transition strengths in 146Ce. 

PHYSICS LETTERS B 6 October 1988 

G l~n~--,l~,. I v B ( E I ) / B ( E 2 )  B ( E I ) / B ( E I )  ~ 
(keV) (10 -6fm 2) (X10 -3 ) 

368.1 7 ~ 5 3.1(8) 0.43(14) 
379.9 7 ~ 6 + 14.1(1.3) 0.86(28) 
565.7 8+~ 6 + 11.3(1.1) 1.54(40) 
185.8 8+~ 7 2.5(6) 3.07(42) 
468.4 9 ~ 7 4.4(6) 1.31(27) 
282.8 9 ~ 8 + 7.5(8) 2.60(54) 
614.9 10 +~ 8 + 2.8(6) 1.25(56) 
332.1 10+~ 9 1.9(7) 2.5(1.1) 
543.2 11-~ 9- 3.4(6) 4.2(1.5) 
211.2 11 ~10 + 3.7(1.5) 8.3(3.8) 

~'~ B(E2; 9+ "+, . ,  ~ u, ~ for t46Ce = 0.21 (2) e 2 b e. A constant quadrupole moment was assumed although a change with spin is possible. B( E 1 )w 
for 146Ce=0.0174e2 b. 

Table 2 
Experimental and predicted intrinsic dipole moments. 

Nucleus Do (exp) Do (theory) 
(efm) (efm) 

t44Ba 0.13 0.09 
146Ba 0.04 0.03 
146Ce 0.20 0.18 
J46Nd 0.18 0.20 
~4SNd 0.23 0.22 
'5°Sm 0.20 0.25 

only levels observed in these experiments in both 
148Ce and ~5°Ce form single quasi-bands taken to be 

K~= 0 + reflection symmetric. Thus if octupole rota- 
tional-like structures occur in these isotopes they do 
not form part of the yrast sequences at spins < 14h. 

There is a large difference in the observed feeding 
patterns of the yrast states in 148Ce and ~S°Ce com- 

pared to 146Ce. If it is assumed that the net "/-ray in- 

tensity depopulat ing an observed level of spin J 
represents the entry point  populat ion of states of that 
spin, the average spin ( J )  in Ce fragments can be 
calculated in a straightforward way. ( J )  values for 
~46'148Ce and JS°Ce are 5 .5(4) ,  7 .4(4)  and 7.5(4) ,  

respectively. These differences may be partly due to 
unobserved near-yrast side bands in 146Ce or to pro- 
cesses occurring at scission as recently suggested in 
ref. [15].  

In summary, the present experiments show that the 
yrast levels between spins ~ 7 h  and ~ 12,5 in the 

N =  88 isotones 144Ba, 146Ce, 148Nd and ~5°Sm all show 

the same behavior  - a quasi-band such as would arise 
from rotation of a reflection-asymmetric nucleus. This 

is in agreement with predictions of cranked mean field 
calculations for these nuclei which suggests that the 
m i n i m u m  potential energy surfaces at these spins 
have min ima  corresponding to octupole deforma- 
tion. The nuclei 148Ce and ~S°Ce do not show octu- 

pole patterns in their yrast sequences; this is also in 
agreement with theory. The intrinsic dipole mo- 
ments in the N =  88 nuclei are reproduced rather well 
in calculations based on octupole deformation. All 
these observations illustrate the importance of strong 
octupole correlations in nuclei near N =  88. 

This research was partly supported by the Science 
and Engineering Research Council  of the U K  and by 
the US Depar tment  of Energy, Nuclear Physics Di- 
vision, under  contract No. W-31-109-ENG-38, and 
by National  Science Foundat ion  Grant  No. PHY-84- 
16025. 

R e f e r e n c e s  

[ 1 ] W.R. Phillips et al., Phys. Rev. Lett. 57 (1986) 3257. 
[2] W. Urban et al., Phys. ken B 200 (1988) 424. 
[3] E. Hammaren et al., Nucl. Phys. A 321 (1979) 71. 
[4 ] W. Urban et al., Phys. Lett. B 185 ( 1987 ) 331 ; 

R.K. Sheline and P.C. Sood, Phys. Rev. C 34 (1986) 2362. 
[ 5 ] D. Ward el al., Nucl. Phys. A 406 ( 1983 ) 591. 
[6] P. Schuler el al., Phys. Len. B 174 (1986) 241. 

405 



Volume 212, number 4 PHYSICS LETTERS B 6 October 1988 

[ 7 ] G.A. Leander et al., Nucl. Phys. A 388 (1983) 452. 
[ 8 ] W. Nazarewicz and P. Olanders, Nucl. Phys. A 441 ( 1985 ) 

420. 
[9] W. Nazarewicz, Proc. Intern. Conf. on Nuclear structure 

through static and dynamic moments (Melbourne, 1987), 
ed. H.H. Bolotin (Conf. Proc. Press, Melbourne, 1987) p. 
180. 

[ 10] J.B. Wilhelmy et al., Phys. Rev. C 5 (1972) 2041. 

[ 11 ] E. Cheifetz et al., Phys. Rev. C 4 ( 1971 ) 1913. 
[ 12] G.M. Gowdy el al., Proc. 4th. Intern. Conf. on Nuclei far 

from stability (Helsingor, 1981) ed. L.O. Skolen, p. 562; 
CERN Report 1981-09. 

[ 13 ] E. Cheifetz et al., Nuclear spectra of fission products, ed. T. 
von Egidy (The Institute of  Physics, 1980) p. 193. 

[ 14 ] G.A. Leander et al., Nucl. Phys. A 453 ( 1986 ) 58. 
[ 15 ] Y. Abdelrahman et al., Phys. Lett B 199 (1987) 504. 

4 0 6  


