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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is a devastating pathogen responsible
for a variety of life-threatening infections. A distinctive characteristic of this pathogen is its ability to
persist in the bloodstream for several days despite seemingly appropriate antibiotics. Persistent MRSA
bacteremia is common and is associated with poor clinical outcomes. The etiology of persistent MRSA
bacteremia is a result of the complex interplay between the host, the pathogen, and the antibiotic
used to treat the infection. In this review, we explore the factors related to each component of the
host–pathogen interaction and discuss the clinical relevance of each element. Next, we discuss the
treatment options and diagnostic approaches for the management of persistent MRSA bacteremia.
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1. Introduction

With almost 20,000 deaths attributed to Staphylococcus aureus bloodstream infections
in the USA in 2017, S. aureus bacteremia (SAB) is one of the most frequent and severe
bacterial infections [1]. Methicillin-resistant Staphylococcus aureus (MRSA) is the most
common cause of infections due to multidrug-resistant bacteria in the United States [2].
Bacteremia due to MRSA has long been associated with higher mortality rates than its
more susceptible counterpart [3]. Although most studies have shown higher mortality
rates, MRSA bacteremia (MRSAB) has only a slightly higher adjusted mortality compared
to methicillin-susceptible SAB [4]. More recent high-quality studies in the field suggest a
limited odds ratio (OR) or relative risk (RR) increase in death of around 1.3–1.8 [4].

We have learned over the decades that mortality in patients with SAB can be decreased
through standardized clinical management practices such as obligatory infectious diseases
consultation, routine echocardiography and follow-up blood cultures, and appropriate
antibiotics [5–10]. Despite these insights, ≈25% of patients with SAB will die within
3 months of diagnosis [4].

One of the unique and disturbing features of SAB is the tendency of the organism to
persist in the bloodstream despite the presence of microbiologically appropriate antibiotics.
The phenomenon of persistent bacteremia remains poorly understood, and we lack great
tools to identify who is at risk for persistent SAB.

This paper reviews the basic science and clinical literature behind persistent MRSAB.
We discuss the contribution from the host and the pathogen in the pathophysiology of SAB.

Persistent MRSAB

Persistent SAB is the strongest predictor of complicated SAB [11]. Multiple observa-
tional studies have identified the stark difference in mortality in patients with persistent
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SAB compared to those whose bacteremia promptly resolves [12–14]. One recent cohort
of 884 patients with SAB (approximately one-third with MRSAB) determined that increas-
ing duration of positive S. aureus blood cultures was associated with increased rates of
metastatic complications, length of stay, and 30-day mortality [12]. The investigators con-
cluded that each additional day of bacteremia was associated with a relative risk of death
of 1.16 [12]. Another multinational cohort of 1588 patients with SAB found that 90-day
mortality almost doubled (22 to 39%) when the duration of bacteremia increased from
1 day to 2–4 days [14]. Both studies underlined the severe consequences of persistent SAB.
The consequences relating to treatment and further diagnostic evaluation are discussed
later in this review.

Both the definition and the frequency of persistent SAB have evolved over the past two
decades [15]. In the early 2000s, Fowler et al. defined persistent bacteremia as ≥7 days of
positive blood cultures [16] on the basis of the median duration bacteremia in patients with
MRSA [17,18]. The reliable therapeutic options for MRSAB during that era were limited to
vancomycin only. As a result, the designation of persistent MRSAB had little therapeutic
consequence, as in most clinical cases, the vancomycin was simply continued. Since then,
however, several new antibiotics with effectiveness against MRSA have been approved
by the Food and Drug Administration (FDA). One antibiotic, daptomycin [19], has been
approved specifically for MRSAB. In addition, other antibiotics such as the fifth-generation
cephalosporin ceftaroline [20] are frequently used off-label for MRSAB. Given the ability
to use alternate antibiotics and some data supporting combination antibiotic therapy for
MRSAB (discussed in Section 4.2), more recent reports have suggested modifying the
definition of persistent MRSAB to include patients with positive blood cultures for as few
as 2 days [14].This shorter duration allows for a “check point” to consider alternate therapy
and broader diagnostic evaluation [21].

2. Host Factors Associated with Persistent MRSAB
2.1. Clinical Risk Factors

Numerous observational studies have identified independent patient risk factors for
the development of persistent SAB (Table 1) [22–28]. A recurring theme is the presence
of retained intravascular devices or foreign bodies, which are independently associated
with persistent SAB [15,22,24–26,28]. Similarly, metastatic infection (including endocarditis,
bone and joint infection), chronic renal failure, cirrhosis, and diabetes are also associ-
ated with persistent SAB [22,23,25,26,28]. The largest study was a nested case–control
study examining risk factors for persistent SAB, performed by Chong et al., who included
483 patients with persistent SAB and 212 patients with resolving SAB [22]. In addition
to the previously described risk factors, multivariate analysis revealed community-onset
bacteremia, methicillin resistance, central venous catheter (CVC)-related infection, and
vancomycin trough of <15 mg/L as risk factors for persistent SAB [22].

The majority of these studies do not distinguish methicillin-susceptible S. aureus
(MSSA) from MRSAB, often citing vancomycin use as a risk factor for persistence [23,26].
Yoon et al. limited their investigation to MRSA only, identifying retention of implanted
devices and metastatic infection of at least two sites as predictors of persistent MRSAB [24].

While these studies represent an important component in the understanding of per-
sistent SAB and MRSAB, it currently comes as little surprise that unresolved sources of
infection are the most frequently reported clinical risk factors for persistence. However,
clinical risk factors only partially explain which patients develop persistent SAB.
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Table 1. Clinical risk factors for persistent SAB.

Study Year MSSA or MRSA Definition of Persistent
Bacteremia Clinical Risk Factors Identified

Khatib et al. [26] 2006 MSSA and MRSA 3 days

• Intravascular catheter (RR, 1.27; 95% CI 1.03–1.54)
• Cardiovascular prosthesis (RR, 1.24;

95% CI 0.97–1.59)
• Metastatic infection (RR, 1.16; 95% CI 1.05–1.28)

Hawkins et al. [25] 2007 MSSA and MRSA 7 days

• Chronic renal failure (OR, 2.08; 95% CI 1.09–3.96)
• >2 sites of infection (OR, 3.31; 95% CI 1.17–9.38)
• Infective endocarditis (OR, 10.3; 95% CI 2.98–35.64)
• Presence of intravascular catheter or foreign device

(OR, 2.37; 95% CI 1.11–3.96)

Khatib et al. [23] 2009 MSSA and MRSA 7 days

• Metastatic infection (OR, 5.6; 95% CI 3.00–10.47)
• Vancomycin treatment (OR, 4.17; 95% CI 2.14–8.11)
• Endovascular source (OR. 3.35; 95% CI 1.92–5.85)
• Diabetes (OR, 2.14; 95% CI 1.26–3.64)

Ganga et al. [28] 2009 MRSA and MSSA 7 days
• Metastatic infection (OR, 11.35; 95% CI 4.24–31.43
• Diabetes (OR, 3.64; 95% CI 1.45–9.155)
• Prosthetic device (OR, 3.22; 95% CI 1.30–8.00)

Yoon et al. [24] 2010 MRSA 7 days

• Retention of infected medical device (OR, 10.35; 95%
CI 1.03–104.55)

• Infection of at least two metastatic sites (OR, 10.24;
95% CI 1.72–61.01)

Chong et al. [22] 2013 MSSA and MRSA 7 days

• Community-onset bacteremia (OR, 2.91;
95% CI, 1.24–6.87)

• Bone and joint infection (OR, 5.26; 95% CI,
1.45–19.03)

• Central-venous-catheter-related infection (OR, 3.36;
95% CI, 1.47–7.65)

• Metastatic infection (OR, 36.22;
95% CI, 12.71–103.23)

• Delay in removal of eradicable foci >3 days (OR,
2.18; 95% CI, 1.05–4.55)

Abbreviations: MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistant Staphylococcus
aureus; RR, risk ratio; CI, confidence interval; OR, odds ratio.

2.2. Host Genetic Variation and SAB

Genetic risk factors for infection have been identified in a wide range of infectious
diseases [29]. A landmark study performed in the 1980s determined children of adults
who experienced premature death due to infection were more likely to experience death
due to infection themselves, suggesting a heritable basis for their infection risk [30]. Rare
primary immunodeficiency syndromes such as chronic granulomatous disease, hyper-IgE
syndrome, and Chédiak–Higashi have been associated with increased susceptibility to
S. aureus infection [31–34]. Few studies have examined the genetic risk factors for S. aureus
bloodstream infections and even less focus on persistent MRSAB. A fascinating study by
Oestergaard et al. was performed in 2016 by examining a database consisting of almost
all parents and children born in Denmark between 1954 and 2016 (n = 8,951,393) [35]. On
the basis of 18,626 reported cases of SAB and 34,774 first-degree relatives, the investigators
found that first-degree relatives of patients hospitalized for SAB were more likely to
experience an episode of SAB themselves (standardized incidence ratio (SIR) of 2.49; 95%
confidence interval (CI) 1.95–3.19). The risk was particularly notable in siblings of patients
with SAB (SIR, 5.01; 95% CI 3.30–7.62) compared to parents (SIR, 1.96; 95% CI 1.45–2.67).
While these data provide compelling evidence for heritable risk factors for acquiring SAB,
the specific genetic defect remains unknown.
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Three genome-wide association studies (GWAS) have been performed to identify
host genetic variability that can predispose to SAB. Two smaller studies by Nelson et al.
(361 SAB cases and 699 controls) and Ye et al. (309 cases and 2925 controls) did not
identify single-nucleotide polymorphisms (SNPs) with genome-wide significance for risk
of acquiring or severity of SAB [36,37]. A third larger GWAS study of 4701 SAB cases and
45,344 matched controls identified two SNPs that achieved genome-wide significance for
altered susceptibility to S. aureus infection in individuals of European ancestry (rs35079132:
p = 3.8 × 10−8, and rs35079132 p = 3.8 × 10−8) [38]. These loci were located near the HLA-
DRA and HLA-DRB1 genes in the HLA class II region. Using admixture mapping, that same
genetic region of European origin was also identified in African Americans as associated
with SAB at a genome-wide level of significance [39]. This discovery was the first of its kind
in S. aureus research and built on the enlarging body of evidence linking HLA haplotypes
to susceptibility and severity of bacterial infection [40–45].

2.3. Host Genetic Variation and Persistent MRSAB

Despite the advances in our understanding of genetic risk factors for SAB, none of
these studies addressed which genetic variants protect or place patients at risk of persistent
methicillin-susceptible or methicillin-resistant SAB. A breakthrough discovery was made
by Mba Medie et al., who identified a key association between genetic variation in the
DNMT3A gene and protection against persistent MRSAB [46]. This elegant study performed
whole-exome sequencing (WES) on a cohort of 68 patients with persistent MRSAB (n = 34),
defined as persistently positive blood cultures for ≥5 days, and resolving MRSAB (n = 34),
defined as blood culture positivity for <5 days. These patients were matched by sex, age,
race, presence of implanted devices, diabetes mellitus status, and hemodialysis status. The
study revealed a specific polymorphism (g.25498283A > C) in the DNA methyltransferase
3A intronic region of DNMT3A that was associated with a reduced risk of persistent
MRSAB. The variant was identified in 61.8% of the cohort with resolving bacteremia and
just 8.8% of patients with persistent bacteremia (p = 7.8 × 10−6). Examination of the DNA
methylation patterns between patients with and without the g.25498283A > C mutation
revealed significantly higher levels of methylation in gene-regulatory CpG island regions in
patients expressing the homozygous genotype. Cytokine analysis also revealed significantly
lower levels of anti-inflammatory cytokine interleukin-10 (IL-10) in acute phase serum from
patients with resolving MRSAB compared to persistent MRSAB (114 pg/mL in persistent
bacteremia patients vs. 13.1 pg/mL in resolving bacteremia patients; p = 0.009). IL-10
levels were also found to be lower in the subset of patients with the g.25498283A > C
polymorphism, regardless of whether the serum was from patients with persistent MRSAB
or resolving MRSAB (A/C: 18.9 pg/mL vs. A/A: 68.9 pg/mL in patients with persistent
MRSAB and A/C:8.7 pg/mL vs. A/A:14.95 pg/mL in patients with resolving MRSAB).
The proposed mechanism for decreased susceptibility to persistent MRSAB is thought to
revolve around suppression of IL-10 production via DNA-methyltransferase-3A-mediated
DNA methylation (Figure 1). While the exact role of IL-10 in promoting persistent MRSAB
is unclear, this finding was consistent with prior studies that also found an association
between elevated IL-10 and mortality from SAB and persistent SAB [13,47]. IL-10 is an
immunosuppressive cytokine and is known to prevent the activation of Th1 helper T cells
and subsequently can increase survival of some intracellular bacteria [48]. It is known
that IL-10 signaling can suppress proinflammatory macrophage and cytokine production,
resulting in less reactive oxygen species (ROS) and reactive nitrogen species (RNS) known
to play a crucial role in fighting S. aureus and other pathogens [48–52]. One can hypothesize
that the reduced IL-10 production in patients with the g.25498283A > C polymorphism
allows for a more robust pro-inflammatory response, which assists with efficient clearance
of bacteria from the bloodstream. However, more research in this field is needed to further
unravel the complex mechanism.
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A 2020 follow-up study by Chang et al. examined the DNA methylation pattern
in leukocytes from 142 patients with persistent MRSAB (blood culture positive >5 days;
n = 70) and resolving MRSAB (blood culture positive <5 days; n = 72) [53]. This study
used advanced sequencing techniques to quantify and localize differences in the DNA
methylome. DNA extracted from persistent MRSAB patients’ leukocytes exhibited signifi-
cantly lower levels of methylation localized to binding sites for two transcription factors
involved in immune regulation: signal transducer/activator of transcription 1 (STAT1) and
CCAAT enhancer binding protein-β (C/EBPβ) (Figure 2). In contrast, the profile of the
resolving MRSAB patients’ methylome localized differences in the histone acetyltransferase
p300 and glucocorticoid receptor binding site. The mechanistic basis for these changes is
proposed by the authors. Firstly, C/EBPβ has a role in emergency granulopoiesis [54], and
the abundance of immature granulocytes arising from activation of the C/EBPβ gene may
impair the ability of the immune system to assimilate the circulating bacteria, promoting
persistence. Second, activation of STAT1 is known to induce T-helper cell polarization into
the Th1, which tips the see-saw balance away from Th17-mediated interleukin-1 (IL-1) and
interleukin 17 (IL-17) production known to mediate neutrophil recruitment and activation
critical for bactericidal activity. Third, in resolving persistent MRSAB patients, the hy-
pomethylation in glucocorticoid receptor and associated co-factor p300 histone acetyltrans-
ferase promoter regions likely helps counter-regulate the life-threatening pro-inflammatory
response that occurs during bloodstream infections [55].

2.4. Biomarkers for Persistent SAB

These studies represent a potential breakthrough in unraveling the astonishingly com-
plex genomic and epigenetic distinctions between patients with persistent MRSAB and
resolving MRSAB. The clearest application of this discovery is the potential to identify
patients at risk for persistent MRSAB, which could lead to alterations of initial therapy,
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expediting of additional diagnostic evaluation, and the capacity to improve clinical out-
comes. Concurrent work in identifying biomarkers in patients with persistent SAB and
persistent MRSAB has identified a handful of possible candidates. Using a threshold of
blood cultures positive for >5 days to define persistent SAB, Guimaraes et al. identified
eight proteins correlating with persistent SAB, with interleukin 17A (IL-17A), IL-10, and
soluble E-selectin levels, showing the most robust association [47]. A follow-up study by
Cao et al. found levels of IL-17A, IL-10, or soluble E-selectin levels were able to individually
identify patients at risk of microbiologic failure and persistent SAB [56]. These biomarkers
were more predictive than clinical risk factors known to increase risk for persistence (age,
steroid use, hemodialysis, non-removable infection foci, hospital vs. community onset, and
MRSA vs. MSSA). Given the association of persistent SAB with mortality, it is unsurprising
that elevated IL-17A and IL-10 levels were each associated with increased mortality in this
study [13,56].
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While these discoveries are exciting and show promise for future diagnostic options
to stratify patient risk for persistence, the clinical utility at the present day is hampered
by availability only in specific academic centers and reliance on external laboratories to
perform the tests. Fast turnaround time will be the key to the real-world use of these tests to
identify patients at risk of persistent SAB. This could allow for early detection of persistent
SAB and subsequently altered therapeutic and diagnostic strategies that could potentially
save lives.

3. Pathogen-Associated Risk Factors for Persistent S. aureus Bacteremia

To survive and replicate in the bloodstream, S. aureus must avoid a barrage of host
defenses while attempting to adhere to and proliferate upon an endothelial surface of the
vasculature. The establishment of endovascular infection is a complex process requiring
coordinated expression of multiple adhesins, exotoxins, and exoenzymes at various stages
of infection. Meanwhile, S. aureus must resist or avoid phagocytosis by neutrophils and
the resulting oxidative and non-oxidative burst, in addition to the circulating platelet-
derived antimicrobial peptides. There is significant heterogeneity in the catalog of virulence
factors produced by different S. aureus clinical isolates [57–60], the regulators mediating
virulence factor expression [61–64], and susceptibility to antimicrobial peptides [65–68].
This section discusses the key genetic and phenotypic characteristics of S. aureus that have
been associated with persistent SAB.
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3.1. Accessory Gene Regulator Dysfunction

Virulence factor production is tightly controlled by a series of regulatory mechanisms
including several two-component systems and SarA-family regulators [69]. One of the most
well-characterized global regulators of virulence factor production is the two-component
quorum-sensing accessory gene regulator (agr) system of S. aureus [70]. The agr system is a
quorum-sensing system that mediates expression of exotoxins and exoenzymes [69]. The
essentiality of agr to virulence in S. aureus infection depends on the type of infection [70].
Murine skin and soft tissue models have shown that agr deletion mutations are severely
attenuated. However, agr-null S. aureus strains are frequently isolated from the bloodstream
of human subjects with SAB [16,61–63,71–73]. Several groups have shown that specific
agr genotypes are associated with persistent MRSAB [16,74,75]. Fowler et al. discovered
that isolates from patients with persistent MRSAB were predominantly (≈85%) of similar
agr genotypes and lacked agr activity, as measured by δ-lysin production. The same
study also noted that isolates from patients with persistent MRSAB were less susceptible
to killing by thrombin-induced platelet microbicidal protein, an antimicrobial peptide
produced by host platelets. Another study by Park et al. examined the agr genotype
in MRSAB patients without retained foci of infection (e.g., prosthetic joint, intravenous
catheter) [74]. They found that persistent MRSAB isolates more frequently possessed agr
dysfunction compared to those from patients with resolving bacteremia (94% vs. 75%,
p = 0.03). A third investigation by Kang et al. limited their investigation to 152 patients
with persistent MRSAB and asked if infections due to isolates with agr dysfunction had
worse clinical outcomes compared to agr positive strains [75]. They found significantly
higher rates of in-hospital mortality in patients with persistent MRSAB if the bloodstream
isolate had a dysfunctional agr system (68% vs. 49%, p = 0.029). The mechanism for the
reciprocal relationship between agr activity and persistence remains unclear but is likely
multifactorial. First, the reduction in cytotoxic leukocidin production in agr-null isolates
may lead to decreased host-cell toxicity and increased bacterial survival [75]. Second, the
agr operon also repressed adhesins such as fnbA, which are required for adhesion and
invasion of endothelial cells. The lack of a functional agr would result in upregulated
adhesins and potentially enhanced intracellular invasion, where it would be shielded from
the effects of numerous antibiotics including vancomycin. Third, multiple studies have
linked agr dysfunction with glycopeptide intermediate-resistance or vancomycin tolerance
(discussed further in Section 3.4 The mechanism of increased antibiotic tolerance is thought
to be due to altered autolysin activity, blunting the bactericidal effect of vancomycin [61,74].
These studies provide some compelling evidence that agr dysfunction can be a driver of
persistent SAB.

3.2. Variability in Virulence Factor Production

Despite several decades of mechanistic studies examining S. aureus virulence factor
function and regulation, the field has been unable to pinpoint which specific virulence
factors are responsible for microbial survival in bloodstream infections. It appears that no
single virulence factor can dictate the pathophysiology, which points towards combinations
that are likely expressed in different infectious niches. Few studies have examined virulence
factor expression to specifically differentiate persistent MRSAB from resolving MRSAB
isolates. Xiong et al. performed an in vitro analysis on isolates from patients with persistent
MRSAB and resolving MRSAB to determine phenotypic characteristics that may distinguish
the two isolates [76]. They found that isolates from persistent MRSAB patients differed in
several characteristics. First, the persistent MRSAB isolates were more resistant to killing
by hNP-1, an antimicrobial peptide produced by neutrophils. Second, they discovered that
persistent MRSAB isolates were more adept at binding to fibrinogen and fibronectin, which
are thought to act as the anchors allowing S. aureus to establish endovascular infection.
Third, multiplex genotyping identified the genes cna, sdrD, and sfrE more frequently in
persistent MRSAB isolates compared to resolving MRSAB isolates. However, another
larger study using the same definition of persistent MRSAB (cultures positive >7 days) was
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unable to find differences in the presence of virulence factor genes (including sdrD) or agr
dysfunction [22]. Similarly, Seidl et al. did not note any differences in fibronectin binding
between persistent versus resolving MRSAB isolates [77]. These inconsistencies between
studies may highlight epidemiological differences between SAB isolates from different
geographic centers.

3.3. Phenotypic Variability of SAB Isolates

While genotypic analysis has been extremely informative in differentiating persistent
MRSAB from resolving MRSAB isolates, often the downstream effects on function are a
result of multiple interacting processes. Following on from Xiong et al.’s work discussed in
Section 3.2, Seidl et al. performed several in vitro studies to distinguish functional differ-
ences between isolates from patients with persistent MRSAB vs. resolving MRSAB [77].
They again confirmed that persistent MRSAB isolates exhibited significantly less killing
by the neutrophil-derived AMP hNP-1 (p = 0.02) and platelet-derived thrombin-induced
platelet microbicidal proteins (tPMPs, p = <0.001). Other findings from the study noted
no significant difference in overall biofilm biomass produced, but they did report biofilms
from persistent MRSAB isolates contained a lower carbohydrate content (58.4% vs. 30.6%;
p = 0.04). It is thought that platelet-derived antimicrobial peptides, such as tPMPs, play a
key role in assisting clearance of S. aureus in the bloodstream, particularly around areas
of endothelial damage that are thought to serve as an anchor in the establishment of an
endovascular infection [78]. S. aureus isolates exhibiting decreased killing by tPMPs in-vitro
show increased virulence in an in vivo rabbit endocarditis model [66,79]. Furthermore,
S. aureus bloodstream isolates from patients with confirmed endovascular infections were
less susceptible than bacteremia strains without an endovascular source [67,68]. It is reas-
suring to see the clinical relevance of the in vitro studies by establishing the relationship
between decreased tPMPs killing and persistent MRSAB [16,76]. The relationship between
decreased hNP-1 killing and persistence is less well established but could be a result of
increased survival inside neutrophils after phagocytosis [76,77].

3.4. Antibiotic Tolerance

Antibiotic resistance is the inherited ability of bacteria to grow in the presence of ele-
vated concentrations of antibiotics and is quantified by measuring the minimum inhibitory
concentration (MIC). Antibiotic tolerance refers to the ability of a population of bacterial
cells to survive in the presence of lethal concentrations of bactericidal antibiotics without a
change in the MIC [80]. Resistance generally involves a specific mechanism, such as modifi-
cation of the target, efflux pumps, or deactivation of the antibiotic, whereas the mechanisms
of antibiotic tolerance are more general and are commonly associated with slower growth
and decreased metabolic activity. The absence of MIC alteration and the wide variability in
the pathways that lead to tolerance means the phenotype is challenging to detect. There is
currently no standardized testing protocol allowing for detection of antibiotic tolerance
in the clinical microbiology laboratory. Additionally, tolerance is highly dependent on the
environment, making it difficult to measure under ex vivo conditions. Studies have shown
a proportion of S. aureus can survive phagocytosis by host immune cells and persist in
the intracellular space [81]. Due the poor intracellular permeability of antibiotics such as
vancomycin and daptomycin, these intracellular bacteria are shielded from the effects of
serum antibiotics [82]. Recent work by Rowe et al. discovered that host immune cells can
also induce antibiotic tolerance in S. aureus by ROS-mediated inactivation of key tricar-
boxylic acid cycle (TCA) enzymes [83,84]. Another mechanism of host-induced tolerance
was identified by Ledger et al., who report that human serum can induce daptomycin
tolerance through LL-37-mediated activation of the GraRS two-component system and
membrane lipid remodeling [85]. These studies emphasize the diversity in the mechanisms
of antibiotic tolerance and underline the difficulty of detecting these phenotypes once the
bacteria is removed from the host environment. The most common method for determining
antibiotic tolerance is by performing a time-kill curve, which looks at the rate of antibiotic
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killing of a pathogen by an antibiotic over time [86], which is laborious and not feasible
in a busy clinical microbiology laboratory. The devastating consequences of antibiotic
resistance are ubiquitously acknowledged through the scientific community, although
the clinical impact of antibiotic tolerance is less well understood. In addition, there is no
standardized definition of antibiotic tolerance, although some groups have agreed that a
minimum bactericidal concentration (MBC) to MIC ratio of >32 is consistent with tolerant
bacteria [87–90]. A key study by Levin-Reisman revealed that antibiotic tolerance acts as a
precursor to antibiotic resistance [91]. The mechanism proposes that decreased antibiotic
killing in antibiotic-tolerant cells results in an increase in the pool of viable cells available
to acquire mutations that confer resistance. Further studies are needed to explore if this
phenomenon can be extrapolated beyond ampicillin tolerance and resistance in Escherichia
coli. While the clinical relevance of this finding will require further experiments, it provides
further evidence that tolerance may be an unappreciated pathway to treatment failure [91].

Glycopeptide tolerance has been frequently observed in S. aureus, with a prevalence
of up to 43% in MRSA isolates [87,92]. While it is suspected that antibiotic tolerance is a
contributor to refractory and relapsing infections, there are few studies that have directly
addressed this question. Given the definition of decreased antibiotic killing in antibiotic
tolerance, one could hypothesize that antibiotic tolerance may play a role in persistent
bacteremia. Britt et al. performed a retrospective cohort study of 225 patients with SAB
comparing frequency of clinical failure (30 day all-cause mortality, persistent signs and
symptoms of bacteremia, recurrent bacteremia within 30 days, and blood culture positive
>5 days) between isolates with and without vancomycin tolerance [88]. In their study, 26.7%
of the isolates exhibited vancomycin tolerance, which was associated with clinical failure in
unadjusted (68.3% vs. 40.6%) and multivariable analysis (adjusted risk ratio, 1.74; 95% CI,
1.35–2.24; p < 0.001). The average bacteremia duration did not significantly vary between
the two groups, nor did the proportion with blood cultures positive for >3 days (48.2%
in vancomycin-tolerant (VT) vs. 38.4% in non-VT). Another smaller study of 163 patients
with MRSAB from St. Louis, USA, noted just 4.3% of isolates were vancomycin-tolerant
with no statistically significant effect on clinical outcomes. Finally, a study by Moise et al.
noted increased duration of bacteremia (median time to clearance 6.5 days vs. >10.5 days,
p = 0.025) when MRSA isolates were stratified by tolerance (≤2.5 log10 decrease in colony-
forming units/mL over 24 h of vancomycin treatment) [93]. Larger studies are needed to
determine the clinical impact of antibiotic tolerance in persistent MRSAB.

The mechanisms of antibiotic tolerance are incompletely understood, especially in
S. aureus. To identify if antibiotic tolerance evolves within patients, Elgrail et al. performed
WGS on 206 MRSA isolates from 20 patients with persistent MRSAB [94]. Their results
showed that MRSA can evolve antibiotic tolerance within the host due to mutations in the
TCA cycle (odhA and citZ) and stringent response (relA). Interestingly, these mutants were
transient and were not present in subsequent positive blood cultures, suggesting there is
phenotypic heterogeneity and a fitness cost to tolerance, which has been described in other
pathogens [95].

3.5. Reduced Vancomycin Susceptibility and Heterogenous Vancomycin-Intermediate S. aureus

Vancomycin is the oldest and most frequently used drug in our arsenal against MRSA [96].
Despite being used for almost 65 years, vancomycin resistance (MIC ≥ 16 µg/mL) is extraordi-
narily uncommon, with just 52 incidents of vancomycin-resistant S. aureus (VRSA) reported
worldwide in the past two decades [97]. Vancomycin-intermediate S. aureus (VISA) is
defined by a vancomycin MIC between 4 and 8 µg/mL and is more frequent with an
estimated prevalence of between 0.3 and 18% depending on the geographic area [98]. In
theory, vancomycin is an appropriate treatment for MRSAB isolates with vancomycin MIC
between 1 and 2 µg/mL. There has been a long-standing debate questioning whether MRSA
with elevated vancomycin MIC (>1.5 µg/mL) is associated with worse clinical outcomes
or not. The majority of data, including two systematic reviews and meta-analyses, indi-
cates that MRSAB due to isolates with high vancomycin MIC (>1.5 µg/mL) is associated
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with increased mortality compared to MRSAB due to isolates with low-vancomycin MIC
(<1.5 µg/mL) [93,99,100]. This finding is not necessarily related to failure of vancomycin,
as an elegant study by Holmes et al. also found worse clinical outcomes in MSSA bac-
teremia isolates with elevated vancomycin MIC, despite treatment with flucloxacillin and
not vancomycin [101]. This finding is consistent with the Infectious Disease Society of
America (IDSA) recommendations to base treatment decisions in patients infected with
MRSA isolates with vancomycin MIC of 2 µg/mL upon clinical conditions [91]. The ma-
jority of studies examining the risk of elevated vancomycin MIC with clinical outcomes
used composite outcomes for treatment failure, often including (but not always specifying)
persistent bacteremia [100]. When the systematic review and meta-analysis by van Hal
et al. limited their analysis exclusively to studies that examined persistent MRSAB, the
OR was 2.44 but was not significant (95% CI, 0.72–8.24) [100]. Some individual studies did
show an association, such as a retrospective cohort of 222 MRSAB patients by Neuner et al.
that identified a significantly higher rate of persistent MRSAB when vancomycin MIC was
2 µg/mL compared to <2 µg/mL (16% vs. 5 %, p = 0.012) [102]. Another smaller study
by Yoon et al. also found vancomycin MIC of 2 µg/mL is an independent predictor of
persistent MRSAB (OR 6.34; 95% CI, 1.21–33.09) [65]. Another newer study by Adani et al.
of 166 patients from an institution with blinded vancomycin MIC showed no significant
difference in persistent bacteremia rates between isolates with MIC < 2 µg/mL vs. 2 µg/mL
(16.5% vs. 17.3%, p = 0.884) [103].

Heterogenous VISA (hVISA) is another microbiologic phenomenon that could con-
tribute to decreased vancomycin efficacy [104]. The first reported case of hVISA was in 1996
from a patient in Japan with MRSA pneumonia that did not respond to vancomycin [105].
Despite susceptibility testing showing vancomycin MIC of 4 µg/mL, a subpopulation was
discovered with MICs ranging from 5 to 9 µg/mL. An isolate with vancomycin MIC in
the susceptible range (≤2 µg/mL) with a subpopulation with vancomycin MIC in the
intermediate range (4–8 µg/mL) has become diagnostic of hVISA [106]. Similar to the chal-
lenges of identifying antibiotic tolerance, the detection of hVISA is laborious and utilizes
the population analysis profile (PAP) area under the curve (AUC) technique, which is not
feasible in the clinical microbiology lab on a routine basis [104]. It was previously thought
that hVISA is a precursor to VISA as selection pressure during treatment with vancomycin
generates outgrowth of the VISA subpopulation [107,108], although more recent data from
in vitro evolutionary experiments suggests that may not be correct [109]. Whether hVISA
in MRSAB results in increased vancomycin failure and persistent MRSAB remains debated.
Some studies report worse clinical outcomes [110–116] and increased risk of persistent
MRSAB [110,112–114], with others, including one systematic review and meta-analysis,
showing no significant difference in mortality or persistent MRSAB [104,117–121]. Overall,
the mixed data suggest that hVISA may play a role in persistent MRSAB. However, the
lack of strong evidence does not necessarily justify deviating from vancomycin in routine
hVISA MRSAB cases.

In summary, there is unlikely to be a single pathogen component that is individually
responsible for persistence in MRSAB. The inability of the host to clear the bloodstream is
likely a result of complex interplay between the bacteria, the host immune system, and the
circulating antibiotic (Figure 3). Understanding characteristics of S. aureus increasing the
probability of persistent bacteremia opens the door to novel diagnostics, which could allow
for a more aggressive antibiotic strategy up-front, potentially improving patient outcomes.
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4. Treatment of Persistent MRSAB

Limited high-quality evidence exists for the most effective treatment of MRSAB in
general, and even less for the treatment of persistent MRSAB in particular [122]. No random-
ized controlled trials to date have addressed this specific question, leaving an unmet need
for medical practice. However, until high-quality evidence is available, the available litera-
ture provides suggestions for best practice regarding the treatment of persistent MRSAB.

The management of MRSAB consists of three important pillars: source control, antibi-
otic treatment, and follow-up blood cultures. For evaluation of metastatic infection sites
as targets for source control, the transesophageal echocardiogram is the most evidence
based [123,124]. For positron emission tomography/computed tomography (PET-CT),
there is evidence for impacting management and for reducing mortality in patients with
SAB [125,126], although this latter finding may have been confounded by the introduction
of immortal time bias related to including patients dying before undergoing PET-CT. Thor-
ough clinical assessment by a trained infectious diseases consultant has been proven to
be beneficial in the management of MRSAB [127]. In the case of positive follow-up blood
cultures and thus persistent bacteremia despite adequate treatment, potential targets for
source control must be reevaluated, and subsequently also the antibiotic therapy. This is
particularly true now, as the specific antibiotic treatment options have evolved over time.

4.1. The Past

For decades, vancomycin monotherapy was the only recommended antibiotic treat-
ment for MRSAB. This was primarily due to the lack of other options for monotherapy.
There has been a multiplicity of attempts to craft an effective combination antibiotic therapy
for SAB. Adjunctive gentamicin appeared to be an attractive option according to in vitro
data, but was associated with increased nephrotoxicity without any clinical benefit [128].
Alternatives for vancomycin, such as trimethoprim-sulfamethoxazole, did not achieve non-
inferiority for the treatment of MRSAB [18,129]. For many years, the addition of rifampin
was thought to improve outcomes, but the ARREST trial has ruled out that hypothesis:
outcomes in both MSSA and MRSAB did not improve with adjunctive rifampin [130].
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Historically, there were few options for treatment of persistent MRSAB. When con-
fronted with persistent MRSAB > 7 days after vancomycin initiation and a MIC of 2 µg/mL,
almost three-quarters of surveyed American ID consultants in 2005 would continue van-
comycin and add another drug, usually rifampin or gentamicin. Less than 20% would
switch to another agent [131]. Rather than clinical inertia, this approach was likely a conse-
quence of the paucity of agents with proven efficacy for SAB. This changed in 2006, when
daptomycin was proven to be non-inferior to vancomycin in the treatment of MRSAB [19].

4.2. The Present

Following the non-inferiority trial in 2006, the U.S. guideline included daptomycin
as first-choice therapy, comparable to vancomycin, for MRSAB in 2011 [10,19]. Although
daptomycin monotherapy was shown to be non-inferior to vancomycin for treatment
of MRSAB, the possibility of treatment-emergent resistance and treatment failure has
become apparent over time [132,133]. Therefore, it is often recommended to add a sec-
ond antibiotic agent to daptomycin (e.g., trimethoprim-sulfamethoxazole) with the goal
of preventing daptomycin resistance from emerging, especially if source control is not
achieved [10]. In Europe and the UK, the only first-choice agent in the guidelines remains
vancomycin [134,135]. However, when the MIC is 2 µg/mL or higher, vancomycin is
believed to be less effective, and alternative treatment options should be considered.

Multiple mono- or combination therapy options for the treatment of MRSAB have
been studied in the last decade. One promising concept was the combination of van-
comycin or daptomycin with an anti-staphylococcal beta-lactams (ASBLs) such as nafcillin
or flucloxacillin. This clinical approach was based on exciting in vitro data demonstrat-
ing the synergy with both vancomycin and daptomycin when an ASBL was added. The
CAMERA2 trial addressed this question by randomizing MRSAB patients to receive either
standard therapy (daptomycin or vancomycin) or standard therapy with the addition of
an ASBL. While the proportion of patients with persistent S. aureus bacteremia at day five
was significantly lower in the combination therapy group, all-cause mortality was not sig-
nificantly different and combination therapy was associated with a significantly increased
rate of acute kidney injury [136]. However, whether this is true for all beta-lactams and
for all patient categories has not yet been clarified [137]. The DASH trial, which enrolled
only MSSA bacteremia patients, demonstrated that the addition of daptomycin to anti-
staphylococcal beta-lactam did not reduce the duration of bacteremia, 90-day mortality, or
rate of recurrence [138].

Ceftaroline is a fifth-generation cephalosporin with robust activity against MRSA
due to its unique ability to bind with high affinity to PBP-2a [139]. It is FDA approved
for the treatment of community-acquired pneumonia and acute bacterial skin and skin
structure infections (including those with concurrent bacteremia) but is frequently used
off-label, either alone or in combination with another antibiotic, as a treatment for MRSAB.
The combination of daptomycin and ceftaroline, especially when initiated early in the
disease course, is possibly associated with reduced in-hospital mortality compared to
monotherapy with vancomycin or daptomycin [140–142]. Although we are lacking high-
quality data to support such an approach, ceftaroline is commonly used in clinical practice
in combination with vancomycin or daptomycin to treat persistent MRSAB [143,144]. There
are several observational studies showing expedited bacterial clearance when deployed as a
salvage therapy in refractory MRSAB, but the effect on mortality remains unclear [145–149].
Fortunately, a large, well-designed Phase 3 randomized clinical trial that tested ceftobiprole,
another cephalosporin with efficacy against MRSA, has recently completed enrollment and
reported positive topline results (discussed later).

The emergence of possible alternatives for the treatment of MRSAB has an effect on
the decisions that physicians make in clinical practice. In contrast to the situation in 2005, a
second survey in 2017 showed that less than 20% of the surveyed American ID consultants
would continue vancomycin and simply add another agent in case of persistent MRSAB on
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day 6. Instead, more than half of them would switch to another agent (either a single agent
or daptomycin with a second agent) [150].

Although there is much (clinically unsubstantiated) debate about the most appropriate
therapeutic modification in patients with persistent MRSAB, the single most important
management component of these patients remains adequate source control. In the sug-
gested management algorithm for MRSAB by Holland et al., a single positive follow-up
blood culture represents a “worry point”, prompting reevaluation of potential sites of
metastatic infection [21]. If blood cultures continue to be positive at the 3–5-day point
despite appropriate antibiotic therapy, Holland et al. presume the patient has experienced
monotherapy failure and recommend the addition of ceftaroline to vancomycin or a change
of therapy to daptomycin plus a second antibiotic. The recommendation to add a second
antibiotic to daptomycin or vancomycin, while unproven, is primarily to thwart the de-
velopment of treatment-emergent daptomycin resistance rather than to improve efficacy
based upon data using simulated vegetations [151].

4.3. The Future

There are a handful of clinical trials investigating future therapeutics for the treatment
of MRSAB. Ceftobiprole is another fifth-generation cephalosporin currently under investi-
gation with activity against MRSA [152,153]. Its safety and efficacy were recently evaluated
in a landmark clinical trial. The ERADICATE trial is the largest clinical trial to evaluate a
new antibiotic for complicated SAB and the first double-blind, placebo-controlled Phase 3
ever conducted for that indication [154]. Results were presented at IDWeek2022. Topline
data from the ERADICATE trial indicate that ceftobiprole met its primary efficacy endpoint
without significant obvious toxicity concerns.

Dalbavancin is approved for use in S. aureus bacterial skin infections, with the great
advantage of having a uniquely long half-life [155]. A potential role of dalbavancin in
endovascular infections has not yet been established [156]. The superiority of dalbavancin
compared to standard parenteral antibiotic therapy for the completion of treatment is
currently being studied in patients with complicated SAB in a phase 2b randomized clinical
trial (DOTS trial) [157]. A potential role for dalbavancin in persistent bacteremia naturally
warrants more follow-up research.

Driven by the lack of major breakthroughs in antibiotic treatment to improve clinical
outcomes in SAB, new nonantibiotic antimicrobial modalities are an increasing subject
of research. Exebacase, an anti-staphylococcal lysin, as an addition to standard-of-care
antibiotics, led to a higher clinical response rate in patients with MRSAB in a proof-of-
concept study [158]. A subsequent randomized trial addressing the superiority of exebacase
in addition to standard-of-care antibiotics in both MSSA and MRSAB (DISRUPT trial) was
terminated early for futility, following interim efficacy analysis [159]. A second anti-
staphylococcal lysin, LSVT-1701, showed reduced bacterial bioburden in MRSA animal
studies and demonstrated a good safety profile in a Phase I study in healthy human
subjects [160]. In June 2022, further development of this asset was terminated by Roivant
Sciences. Furthermore, bacteriophage therapy as an adjunctive intravenous therapy for
SAB patients is currently being investigated. It was shown to be well tolerated in a group
of 13 patients with severe S. aureus infections, including endocarditis and septic shock [161].
The diSArm trial is a phase 1b/2a randomized trial on the efficacy and safety of adjunctive
bacteriophage therapy in SAB patients, which is estimated to be completed at the end of
2023 [162].

In conclusion, the unfavorable safety profiles of many combinations of antibiotics
have prevented them from replacing vancomycin as the most frequently used antibiotic
treatment in MRSAB. High-dose daptomycin (with a second antibiotic agent to prevent
treatment-emergent resistance) and the addition of ceftaroline are currently the best practice
in persistent MRSAB. Future treatment options may include dalbavancin, ceftobiprole, and
novel non-antibiotic agents such as bacteriophages.
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5. Conclusions

Persistent MRSAB is a devastating and complex disease. Understanding the interaction
between host and pathogen is crucial to the challenge of improving patient outcomes. Given
the lack of major breakthroughs in patient outcomes in the last decades, there seems to be
a need for novel diagnostics and treatment options. Trials on genetics, biomarkers, and
novel non-antibiotic agents in persistent MRSAB should be encouraged, as well as the
implementation in daily practice of those that were successful. Meanwhile, it is promising
that antibiotic agents such as dalbavancin [157] and ceftobiprole [154] are being studied in
randomized clinical trials for SAB. These new high-quality studies represent an important
step towards better understanding and ultimately improving clinical outcomes in patients
with SAB.
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