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Abstract: The effect of Bartonella henselae on the microbiome of its vector, Ctenocephalides felis (the cat
flea) is largely unknown, as the majority of C. felis microbiome studies have utilized wild-caught
pooled fleas. We surveyed the microbiome of laboratory-origin C. felis fed on B. henselae-infected cats
for 24 h or 9 days to identify changes to microbiome diversity and microbe prevalence compared
to unfed fleas, and fleas fed on uninfected cats. Utilizing Next Generation Sequencing (NGS) on
the Illumina platform, we documented an increase in microbial diversity in C. felis fed on Bartonella-
infected cats for 24 h. These changes returned to baseline (unfed fleas or fleas fed on uninfected cats)
after 9 days on the host. Increased diversity in the C. felis microbiome when fed on B. henselae-infected
cats may be related to the mammalian, flea, or endosymbiont response. Poor B. henselae acquisition
was documented with only one of four infected flea pools having B. henselae detected by NGS. We
hypothesize this is due to the use of adult fleas, flea genetic variation, or lack of co-feeding with B.
henselae-infected fleas. Future studies are necessary to fully characterize the effect of endosymbionts
and C. felis diversity on B. henselae acquisition.
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1. Introduction

Despite its ability to transmit multiple zoonotic pathogens to humans and animals,
Ctenocephalides felis (the cat flea) is poorly studied as a vector [1]. The most pathogenic
C. felis transmitted bacterium is Bartonella henselae, the primary causative agent of cat scratch
disease [2]. Infection with B. henselae is difficult to diagnose using culture, serology, or
molecular methods due to the organism’s immune evasive mechanisms as well as the low
levels of bacteremia in humans, dogs, horses, and other diseased non-reservoir hosts [3]. In
a subset of bacteremic individuals, therapeutic elimination of B. henselae is exceptionally
difficult to achieve due to pathogen evasive strategies (diverse virulence factors, intracellu-
lar niche, biofilm formation, widespread tissue distribution within the infected host, and
immunomodulatory mechanisms), incomplete antibiotic efficacy, and the lack of available
targeted therapeutics [4–7]. Therefore, preventing B. henselae transmission and subsequent
infection is critical to both animal and human health. Disrupting the transmission of vector-
borne diseases requires an understanding of the complex systems in which the vector
and pathogen(s) are maintained and transmitted [8]. The vector microbiome represents
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a growing area of research that aims to assess the effects and interactions of pathogenic
and nonpathogenic microorganisms on the survival, proliferation, and transmission of
vector-borne pathogens [9,10]. These research efforts have given rise to control efforts
for arboviruses and a greater understanding of the expanding epidemiology of several
tick-transmitted pathogens [11,12].

Unfortunately, the C. felis microbiome remains incompletely described with reports
mostly limited to wild-caught fleas, often with unknown hosts and feeding histories [13,14].
Wild-caught C. felis are primarily colonized by the genera Bartonella, Rickettsia, and Wol-
bachia. Rickettsia spp. associated with C. felis are primarily those in the transitional or
Rickettsia felis-like organism group (RFLO), including Rickettsia felis, Rickettsia asembonensis,
and ‘Candidatus Rickettsia senegalensis’ [13–16]. Three strains of Wolbachia have currently
been associated with C. felis: wCfeT, wCfeJ, and wCfeF [17,18]. Wolbachia spp. display
strain-specific effects on their host with many variants acting as extraordinary manipulators
of insect biology including effects on reproduction (e.g., parthenogenesis and cytoplasmic
incompatibility) and bacterial acquisition via cholesterol competition and insect immune
modulation [19–21]. The effect of Rickettsia and Wolbachia infection in B. henselae acquisition,
proliferation, and transmission by C. felis is largely unknown.

Previous studies tracking the dynamics of B. henselae establishment and proliferation
within C. felis document decreasing bacterial loads over the first two days of flea feed-
ing [22,23]. During this period (24 h), the C. felis immune system is believed to contribute
to a period of bacterial purging. Subsequently, B. henselae bacterial loads are known to
consistently increase up to the 9 day time point [22].

In order to investigate the effect of B. henselae on the C. felis microbiome, we utilized
Next Generation Sequencing (NGS) of the 16S rRNA gene to assess the C. felis microbiome
response to blood feeding and host B. henselae infection status. Our first objective was to
compare the microbial diversity of C. felis before and after blood feeding for 24 h or 9 days.
As a second objective, we assessed changes to the C. felis microbiome caused by feeding on
B. henselae-infected versus uninfected cats. To accomplish these objectives, we performed
16S NGS of pooled C. felis prior to blood feeding or after 24 hrs or 9 days of blood feeding
on naïve (uninfected) or B. henselae-infected cat.

2. Materials and Methods
2.1. Cat Bartonella henselae Infection and C. felis Feeding

Ctenocephalides felis, cats, and Bartonella henselae (CSU Bh-1 Strain) acquisition and cat
infection was performed as described in André et al. [24]. The study was reviewed and
approved by Kansas State University KSU IACUC #4511-VMS and High Quality Research
(HQR), Fort Collins, CO, USA (number #170.059). All four young female cats were housed
in an ectoparasite flea facility at High Quality Research (Fort Collins, CO, USA) and fed a
dry maintenance cat food. Cats underwent physical exam and qPCR to confirm overall
health and Bartonella spp. naïve infection status, respectively. Four weeks prior to C. felis
infestation, two of the cats were intradermally inoculated with sterile saline (cats #3363 and
#3508) and two of the cats were inoculated with approximately 1.5 × 108 B. henselae (cats
#3320 and #3711). Experimental infection reduced the risk of vector-borne coinfection and
allowed flea infection at the peak of bacteremia. Blood and serum collected from each cat
on a weekly basis was utilized for qPCR and immunofluorescence antibody testing (IFA)
to assess pathogen presence and B. henselae seroreactivity, respectively. Bacteremia was
confirmed with culture isolation using blood agar plates.

Ctenocephalides felis were obtained from the Kansas State University (KSU, Manhattan, KS,
USA) laboratory colony and raised as described previously [24]. The C. felis used to supply
and replenish the KSU flea colony were obtained from the greater Manhattan, KS area. In
short, C. felis eggs were obtained from adults feeding on seven cats. Eggs were incubated in a
Petri dish at 28 ◦C and 70% relative humidity. Larvae and pupae were sifted from the media
and placed into jars to emerge into adults; after that they were collected and transported to the
animal facility for our study. At time 0, C. felis were placed on the cats. Each cat had 340 C. felis
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divided in two chambers attached to their shaved thorax and flank. For microbiome analysis,
two groups of 15 C. felis were collected prior to being placed on a cat and served as the unfed,
uninfected controls. At 24 h and 9 days after placement onto each cat, 15 C. felis per cat were
collected and pooled [24]. The study timeline is depicted in Figure 1.
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pestle for each group (Fisherbrand Pellet Pestle Cordless Motor). To avoid DNA carryo-
ver, DNA extraction and molecular testing were performed at separate benches. DNA was 
extracted using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) 
following the manufacturer’s tissue extraction protocol. Three 200 μL PBS controls (crush-
ing controls) were introduced prior to crushing using liquid nitrogen and three 200 μL 
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controls will henceforth be referred to as negative controls and served to identify contam-
inants from reagents that may be amplified during NGS [25]. 
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Figure 1. Study timeline beginning with the introduction of C. felis to the cats (day 0). Flea pools
(15 fleas per cat per time point) were collected and are represented by a single flea with the sample
number indicated. Red indicates a B. henselae infected cat or fleas from an infected cat. Bartonella
henselae infection of cats occurred 4 weeks prior to introducing fleas onto the host cats.

Following collection, each C. felis pool underwent four washes, two with PBS and two
with ethanol. The fleas were then crushed using liquid nitrogen and a new sterile pestle
for each group (Fisherbrand Pellet Pestle Cordless Motor). To avoid DNA carryover, DNA
extraction and molecular testing were performed at separate benches. DNA was extracted
using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s tissue extraction protocol. Three 200 µL PBS controls (crushing controls)
were introduced prior to crushing using liquid nitrogen and three 200 µL PBS controls
(reaction controls) were introduced prior to the DNA extraction phase. These controls will
henceforth be referred to as negative controls and served to identify contaminants from
reagents that may be amplified during NGS [25].

2.2. PCR Assays

Detection of B. henselae was assessed via qPCR targeting the 16S–23S intergenic spacer
(ITS) region [5]. Flea phylogeny was assigned utilizing PCR of the cox1 gene with the
Cff-F and Cff-R primers according to previously published conditions [26]. Following
amplification and sequencing, flea cox1 sequences were compared to the haplotypes and
clades defined by Lawrence et al. [27].

2.3. Library Preparation and Sequencing

DNA samples and controls were submitted to the North Carolina State University Genomic
Sciences Laboratory for 16S rRNA amplification, bead cleanup with AMPure XP beads, index
PCR, and Next Generation Sequencing targeting the V3–V4 region on the Illumina MiSeq plat-
form. This region was selected using primers designed by Klindworth et al.: forward primer 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and the
reverse primer 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTA-
TCTAATCC-3′ and generated an approximately 402-base-pair sequence [28].
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2.4. Data Analysis

Data analysis was performed in R. We first utilized the DADA2 pipeline (version 1.20.0)
to visualize quality profiles, filter, and trim sequences then infer amplicon sequence variants
(ASVs) and remove chimeras. The DADA2 assignTaxonomy function and non-redundant
Silva taxonomic training database version 138.1 (“silva_nr99_v138.1_train_set.fa”, https:
//www.arb-silva.de/ (accessed on 3 May 2021)) were then utilized to assign sequence
taxonomy to the genus level.

We first attempted to utilize the decontam frequency and prevalence methods under
default conditions. The decontam frequency method compares the abundance of ASVs in
samples (including negative controls) with respect to sample DNA concentration following
NGS sequencing library preparation. The decontam prevalence method compares the
presence of ASVs in true samples to the presence in negative controls, regardless of ASV
abundance. Given our low biomass, the decontam frequency method was not able to ap-
preciate the difference between our negative control and true samples while the prevalence
method did not account for differential ASV abundance. Therefore, we implemented an
alternative filtering method in two steps: the first phase of filtering utilized negative control
samples and is summed up by the equation below, where a is the abundance of reads in
either true samples or negative controls and n is the number of true samples or negative
controls containing that ASV. When γ is greater than 1, samples were considered true
sequences, and when γ is less than 1, samples were removed as contamination. Secondly,
ASVs accounting for fewer than 0.001% of reads in true samples were first removed.

γ =
∑ atrue samples/ntrue samples

∑ anegative controls/nnegative controls

Following the removal of contaminants, diversity indices were calculated via the
vegan package [29]. Sample richness, the number of different taxa, and Pielou’s evenness
were calculated. Pielou’s evenness is represented by a number between 0 and 1 with a lower
number indicating a more uneven distribution of species and a higher number indicating
a more even community. Sample alpha diversity was calculated via the Shannon index
and inverse Simpson index [30]. The Simpson index places greater weight on the evenness
of species distribution while the Shannon index equally weighs richness and evenness.
Statistical significance of sample diversity was compared using a standard t-test based on
B. henselae status and time spent on cat.

Identification of specific ASVs associated with the flea fed status, cat Bartonella infection
status, or time spent on the cat host was accomplished via the DEseq2 package in R utilizing
the LRT test with an alpha of 0.01 [31].

3. Results
3.1. NGS Filtering

NGS library preparation and application of the DADA2 pipeline identified 2419 ASVs
from the ten flea pools and eight control samples with a minimum library size of 96,079 reads
for control samples and 152,708 reads for flea samples. All filtering methods excluded the
1198 reads detected only in negative controls and retained the 882 ASVs detected only in
true samples. Application of our novel filtering method identified 57% of ASVs (1386/2419)
as contaminants due to their increased abundance in negative controls compared to flea
pools. An additional 550 ASVs did not have an abundance over 0.001% of total reads,
leaving 483 non-contaminant ASVs belonging to 58 orders, 77 families, and 114 genera
(Figure 2). All detected genera and the proportion of reads assigned to each genus are avail-
able in Supplementary Table S1. The decontam prevalence and frequency method identified
1276 (53%) and 1206 (50%) ASVs as contaminants, respectively (Supplementary Figure S1).
All contaminants identified by the prevalence method were also identified by our novel
method. The decontam frequency method identified four contaminant ASVs not considered
contaminants by our filtering or the prevalence method. As the frequency method did not
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separate the negative control and true samples, we opted to retain the four ASVs that were
filtered out by the frequency method but not our method as these sequences were consid-
ered true sequences by both our filtering and the decontam prevalence method: ASV630
family Enterobacteriaceae, ASV885 family Bifidobacteriaceae, ASV925 genus Prevotella, and
ASV1617 genus Bacteroides.
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3.2. Length of Feeding

Flea pools from all cats displayed a decrease in alpha diversity from 24 h to 9 days;
however, this finding was not statistically significant (p = 0.10, Figure 3C). This decrease in
alpha diversity is due to a decrease in both species richness and evenness for a majority of
pools (Figure 3A,B). An NMDS plot did not consistently separate samples by fed status or
time spent on a cat (Figure 4).
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Figure 4. Non-metric Multidimensional Scaling (NMDS) plot of Next Generation Sequencing data to
visualize sample similarity on a two dimensional plane. Samples are labelled with the cat number
(#3363; #3508; #3320; #3711) and time point (24 h vs. 9 days) or unfed (UF), with color (red vs. black)
indicating cat host Bartonella infection status (infected vs. uninfected).

The three most prevalent ASVs (all Wolbachia ASVs) displayed an inconsistent abun-
dance response relative to the time fleas remained on a cat. In flea pools from all cats
regardless of B. henselae status, ASV1 and ASV3 decreased in proportion of reads from 24 h
to 9 days, whereas ASV2 increased in proportion of reads (Figure 5).
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point (unfed; 24 h; 9 days) and cat B. henselae status (infected vs. uninfected). Samples from the same
cat are connected by a line.

3.3. Host Bartonella Status

On the basis of the Shannon and Simpson alpha diversity index, flea pools fed on
Bartonella-infected cats for 24 h displayed greater diversity than fleas fed on uninfected cats
(p = 0.09), which decreased by the 9 day time point (Figure 3C). This was accompanied
by an increase in both species richness, and community evenness (Figure 3A,B). NMDS
indicated that the flea pools fed on B. henselae-infected cat hosts for 24 h were distinct from
other flea pools but were not similar to one another (Figure 4). By the 9 day time point,
fleas fed on the B. henselae-infected cats clustered with flea pools from one uninfected cat
(3508). Host B. henselae status did not influence the proportion of the three most abundant
ASVs (all Wolbachia ASVs) over time (Figure 5).

3.4. Bacterial Detection

One Bartonella spp. ASV (ASV696) was identified from a single flea pool (cat 3711 at time
point 24 h) with relatively low abundance (122 reads, 0.05%). qPCR amplified B. henselae DNA
from the 24-h and 9 day flea pools from cat 3711 and 3320 (Table 1). Fleas from cat 3711 had
consistently higher B. henselae concentration as indicated by lower cycle threshold values.

Table 1. Bartonella spp. qPCR results of flea samples by cat and time point (24 h or 9 days). Indicated
as + (positive) or – (negative) with qPCR cycle threshold indicated in parentheses.

Sample Host Cat B. henselae Status ITS qPCR (Ct)

3711-24 h Infected + (31.61)
3711-9 d Infected + (32.48)

3320-24 h Infected + (38.13)
3320-9 d Infected + (41.48)

3363-24 h Naïve − (N/A)
3363-9 d Naïve − (N/A)

3508-24 h Naïve − (N/A)
3508-9 d Naïve − (N/A)

Rickettsia ASVs were not detected in any flea pool, at any time point.
Of the 483 ASVs derived from all flea pools, 34 (7%) ASVs and 96.66% of reads were

assigned to the family Anaplasmataceae and genus Wolbachia, the dominant genus in
all flea pools. Eleven Wolbachia ASVs were detected in all flea pools including the three
most prevalent Wolbachia: ASV1, ASV2, and ASV3. ASV1 displayed 100% homology with
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Wolbachia strain wCfeT (GenBank accession number CP051156.1, 402/402), ASV2 displayed
100% homology with Wolbachia strain wCfeF (GenBank accession number CP116767.1,
402/402), and ASV3 displayed 100% homology with Wolbachia strain wCfeJ (GenBank
accession number CP051157.1, 402/402).

3.5. Flea Cox1 Haplotypes

The portion of the cox1 gene we amplified was identical across flea pools (GenBank
accession number MG668605.1, 479/479). When compared to the Lawrence et al. dataset,
our C. felis resided within Clade 6, a tropical clade [27].

3.6. Differential Sequence Abundance Analysis

Differential sequence abundance analysis of all ASVs that were detected in two or
more flea pools did not identify any specific ASV that was associated with fed status, time
spent on the cat, or cat B. henselae infection status.

4. Discussion

In this study, there was an early increase in the C. felis microbiome richness, evenness,
and alpha diversity when fleas were fed on B. henselae-infected cats for 24 h, followed
by a return to that of unfed C. felis or C. felis fed on uninfected cats by the 9 day time
point. Similarly, a Non-Metric Multidimensional Scaling (NMDS) plot of the study samples
indicated that pooled C. felis fed on Bartonella-infected cats for 24 h were distinct from other
samples at the 24 h time point, but clustered with samples from a B. henselae naïve cat (3508)
at the 9 day time point. We hypothesize that the increase in C. felis microbiome diversity
in response to feeding on a B. henselae-infected host may be due to factors that transiently
suppressed the cat or C. felis immune system [24,32,33]. The decrease in microbial diversity
in all fleas from the 24 h to 9 day time point (regardless of B. henselae infection) may be
attributed to a lag in colonization resistance conveyed by resident microbes (e.g., Wolbachia)
or the response of the C. felis immune system, which is known to be activated by blood
meal ingestion [34]. Additional investigation of the larger diversity of microbes detected in
C. felis is warranted.

Next Generation Sequencing results identified a large diversity of Wolbachia spp.
within the microbiome of laboratory fleas, including 34 distinct ASVs. It is important
to note that Wolbachia coinfection with multiple known strains in individual C. felis is a
phenomenon believed to primarily occur in laboratory fleas [17]. Due to pooling fleas,
our study did not address the individual C. felis microbiome; however, the presence of
three Wolbachia strains in approximately equal proportions within this population suggests
that they may stably coexist. Blood feeding was shown to affect the prevalence of the
three dominant Wolbachia ASVs regardless of the cat host B. henselae infection status, with
ASV1 and ASV3 displaying a decrease in abundance over time and ASV2 displaying an
increase in abundance over time. Given the results of this study, further investigations
of Wolbachia dynamics following blood feeding, as well as the effect of Wolbachia strains
on flea-borne pathogen colonization and proliferation within C. felis, are warranted, as is
research utilizing Wolbachia for pathogen control, as in other vector species [12].

Next Generation Sequencing only identified Bartonella infection in one of four pools
derived from fleas feeding on Bartonella infected cats, whereas B. henselae DNA was success-
fully amplified from all four pools by qPCR at low cycle threshold values (Table 1). This
low detection by NGS and low cycle threshold by qPCR is surprising given the number of
fleas within each pool when feeding on a host infected with B. henselae. Previous studies
have primarily used artificial membrane feeding systems for the infection of C. felis with B.
henselae: Bouhsira et al. tested pools of 20 fleas fed on an artificial membrane and were able
to detect B. henselae in the majority of samples over a 13-day study period by qPCR [23]. In
another artificial membrane study utilizing qPCR, Robinson et al. detected B. henselae in
86% of individual membrane fed C. felis [35]. A few studies have evaluated the prevalence
of B. henselae in C. felis fed on known infected cats: Finkelstein et al., reported PCR detection
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in 66% (2/3) of flea pools with 20 fleas per pool when fed on cats naturally infected with
B. henselae [36]. Despite inconsistent detection in laboratory fleas, wild-caught C. felis with
unknown feeding history are regularly reported to be infected with B. henselae by NGS,
whether pooled or submitted as individual fleas [13,14,26]. While B. henselae acquisition
efficiency is known to be imperfect, given the flea pool sizes and confirmed cat bacteremia
(via blood culture and qPCR) prior to and after infestation [24], we expected all flea pools
to harbor B. henselae at levels detectable by NGS.

We offer five preliminary hypotheses regarding the low B. henselae acquisition by
C. felis in this study. (1) Vertical nontransovarial transmission of Bartonella spp. via the
consumption of debris and flea feces by larval fleas, as documented in Xenopsylla ramesis
fleas, may be more important for maintenance within the flea population than horizontal
transmission from a cat to flea [37]. (2) Long term C. felis infestation may be necessary to
trigger Bartonella host bacteremia in the quantities necessary for transmission or to facilitate
localization in the cat’s skin to infect naïve C. felis. (3) Co-feeding with Bartonella-infected
C. felis is necessary to achieve significant acquisition by naïve fleas. Horizontal transmission
of R. felis between fleas co-feeding on an artificial system has been documented; however,
the importance of co-feeding in the infection of the flea on host has not been established for
R. felis or other flea-borne pathogens [38]. (4) B. henselae may display variable acquisition by
C. felis dependent upon C. felis genetic diversity and the presence or absence of coinfecting
bacteria (e.g., Rickettsia felis-like organisms). The fleas within this study were assigned
to Clade 6, a clade typically found in the more humid and warm areas associated with
B. henselae, such as the Southeastern United States [27,39]. (5) A large amount of flea DNA
may have overwhelmed B. henselae DNA resulting in poor amplification. Unfortunately,
due to the low biomass of our samples, dilution for NGS was considered disadvantageous.

The insect immune system functions via various cellular and humoral mechanisms.
Within the digestive tract, serine proteases function in blood meal digestion and have
been implicated in the cat flea immune response to B. henselae [24] and R. typhi [40]. Phos-
phoenolpyruvate carboxykinase, succinic semialdehyde dehydrogenase (SSADH), and
secreted salivary acid phosphatase are also associated with B. henselae ingestion by cat
fleas, with a known role in responding to environmental stress, energy production, and
preventing homeostasis, respectively [24]. Further exploration of their role in the immune
response is warranted. Phagolysozyme mediated destruction is documented following
C. felis ingestion of R. felis; however, it is unknown if this occurs with B. henselae [41]. Among
the most common insect immune pathways, all Imd and Toll pathway genes have been
identified within the C. felis genome with the Imd pathway known to modulate R. typhi
infection [42]. Further research regarding the C. felis immune system’s effect on pathogenic
and non-pathogenic bacteria is necessary.

As mentioned above, various microbiome members beyond Bartonella and Wolbachia spp.
were detected. The four most abundant families were the Anaplasmataceae, Lachnospiraceae,
Staphylococcaceae, and Ruminococcaceae. The Anaplasmataceae family was exclusively
represented by Wolbachia spp. The Lachnospiraceae family, with the highest number of distinct
ASVs (n = 99), as well as the Ruminococcaceae family, are associated with the digestive process
in mammals and insects alike suggesting a similar role in C. felis [43,44]. Staphylococcaceae
are regularly reported in other blood-sucking insects [45] and are believed to be acquired via
habitat or host skin contamination [46].

Our alternative NGS ASV filtering method identified 1386 ASVs as contaminants
on the basis of higher abundance in negative controls than infected true samples. Both
methods implemented by decontam identified fewer ASVs as contaminants under default
conditions. Increasing the stringency of decontam filtering would increase removal of
contaminants yet not address the abundance differences in true samples and negative
controls. Given the low biomass of our samples, the decontam frequency method was not
able to separate true samples and negative controls based on DNA concentration. The
decontam prevalence method does not consider the abundance of ASVs in true samples
versus negative controls and is best employed for sample types with a dominance of non-
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contaminant ASVs. Therefore, we suggest that our filtering method is better suited to the
present sample set that includes low biomass samples and low sample number.

Differential sequence abundance analysis did not identify any ASVs as significantly
associated with fed status, time fleas spent on a cat, or the cat B. henselae infection status.
This may be attributed to the small number of replicates or utilization of laboratory-raised
C. felis that lack microbiome members observed in wild-caught fleas that may be important
for the acquisition of pathogens.

The limitations of the current study include the small sample size (number of cats
and flea pools), which limited the power of statistical techniques utilized for analysis.
Furthermore, as our C. felis were pooled together, we were unable to draw conclusions
regarding the coinfection of specific bacteria within the individual C. felis microbiome.
However, this pooling was necessary to acquire sufficient biomass for NGS. Additionally,
the laboratory setting fails to recapitulate the complexity of C. felis exposure to diverse
host species, genetic diversity among C. felis strains, and full diversity of microbiome
members. Finally, the artificial cat infection model used may not accurately mimic the
events occurring in natural C. felis–B. henselae infection, including microbiome changes.
Future laboratory and field work is necessary to further elucidate the effect(s) of specific
microbiome members in the response of C. felis to feeding on a B. henselae-infected host.

5. Conclusions

In conclusion, this study documented an increased C. felis microbial diversity when
fed for a limited time (24 h) on cats infected with B. henselae, with diversity returning to
that of unfed C. felis or C. felis fed on uninfected cats by the 9 day time point. This finding
may indicate altered response by the C. felis immune system or microbiome when ingesting
B. henselae. Despite the increase in microbial diversity, B. henselae infected C. felis at a low
abundance compared to wild-caught or previous laboratory C. felis studies. We confirmed
Wolbachia spp. as the dominant member within the laboratory C. felis microbiome with three
strains dominating all C. felis pools. These Wolbachia strains appeared to respond differently
to long-term blood-feeding, with two strains decreasing and one strain increasing in
abundance over time. To assess if C. felis feeding influences pathogen acquisition by naïve
C. felis, future research should examine the effect of long-term C. felis colonization of
the cat host in relation to B. henselae bacteremia and bacterial skin localization in the cat.
Ctenocephalides felis genetic variation is an exciting new frontier that may facilitate a deeper
understanding of pathogen spread and the extent to which vector diversity influences
epidemiology and pathogen transmission. Finally, examining the effect of pathogenic and
non-pathogenic bacterial coinfection of C. felis via laboratory and field studies presents an
opportunity to better understand and potentially interrupt B. henselae transmission by the
flea vector, thereby preventing bartonellosis in animals and humans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12030366/s1. Figure S1: p-value assigned to ASVs by
the Decontam prevalence method (A) or Decontam frequency method (B). If greater abundance was
identified in infected positive controls or negative controls, the basis of our filtering (C). Table S1: all
114 genera reported by our filtering method as true sequences. The family, and proportion of reads
from all flea pools assigned to these genera, is reported.
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