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Abstract

Protein kinases play a vital role in a wide range of cellular processes, and compounds that

inhibit kinase activity emerging as a primary focus for targeted therapy development, espe-

cially in cancer. Consequently, efforts to characterize the behavior of kinases in response to

inhibitor treatment, as well as downstream cellular responses, have been performed at

increasingly large scales. Previous work with smaller datasets have used baseline profiling

of cell lines and limited kinome profiling data to attempt to predict small molecule effects on

cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accu-

racy with very limited external validation. This work focuses on two large-scale primary data

types, kinase inhibitor profiles and gene expression, to predict the results of cell viability

screening. We describe the process by which we combined these data sets, examined their

properties in relation to cell viability and finally developed a set of computational models that

achieve a reasonably high prediction accuracy (R2 of 0.78 and RMSE of 0.154). Using these

models, we identified a set of kinases, several of which are understudied, that are strongly

influential in the cell viability prediction models. In addition, we also tested to see if a wider

range of multiomics data sets could improve the model results and found that proteomic

kinase inhibitor profiles were the single most informative data type. Finally, we validated a

small subset of the model predictions in several triple-negative and HER2 positive breast

cancer cell lines demonstrating that the model performs well with compounds and cell lines

that were not included in the training data set. Overall, this result demonstrates that generic

knowledge of the kinome is predictive of very specific cell phenotypes, and has the potential

to be integrated into targeted therapy development pipelines.
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Author summary

Being able to predict how a patient’s tumor will respond to a specific drug treatment is a

core goal in the field of precision oncology. An emerging trend in targeted therapies is a

focus on protein kinases, a family of over 500 proteins that form an integrated communi-

cation network that plays a central role in the development and progression of nearly all

cancers. Despite the growing importance of these drugs in the oncologist’s therapeutic

toolbox, our ability to predict the response of a tumor to a given treatment is poor. To see

if we could improve our ability to predict a cancer’s response to kinase inhibitor treat-

ment, we leveraged a large experimental dataset that quantifies the effect of these drugs on

the kinases. Using these kinase inhibition state data within machine learning models, we

found that we could predict the response of cancer cell lines representing over 27 cancer

types with high accuracy. Including cell line-specific gene expression data that could be

gathered in a clinical setting further improved the accuracy of predictions. Together, these

results suggest that knowledge of the inhibition state of the kinome has significant poten-

tial to improve our ability to design and deliver more effective targeted cancer treatments.

Introduction

While chemotherapy remains a mainstay in cancer treatment, the use of targeted therapies

clearly holds significant promise, with their use leading to improved outcomes in a variety of

cancers [1,2]. Examples include the use of imatinib (Gleevec) for chronic myelogenous leuke-

mia, crizotinib and other anaplastic lymphoma kinase (ALK) inhibitors for non-small-cell

lung cancers, and trastuzumab and lapatinib for ERBB2/HER2 amplified breast cancers [3–8].

Together with the potential to reduce toxicity and associated side effects, the development of

targeted therapies has gained increasing momentum over the last two decades [9,10].

Since the development of imatinib, protein kinases have emerged as a primary focus for tar-

geted therapy development [11–14]. Kinases are a ~500-member enzyme family that catalyzes

the transfer of phosphate groups from ATP to specific substrates. Integrated into a complex

network of interactions defined as the kinome, kinases regulate information transfer across a

myriad of cellular processes including growth, proliferation, differentiation, motility, and apo-

ptosis [15]. Linked to its role in this wide array of functions, dysregulation of one or more

members of the kinome is directly implicated in numerous pathologies, especially cancer [16].

Modulation of kinase activity through targeted inhibition has been the primary therapeutic

approach to date and as of 2021, over 85 kinase inhibitors have been clinically approved world-

wide, though only targeting 42 kinases from the 21 kinase families [17], highlighting the

opportunity for further advancement of this large family of druggable targets.

Recent work characterizing kinome behavior in response to targeted kinase inhibitor thera-

pies has established that the kinome is a highly dynamic system, with significant ramifications

in our understanding of drug resistance, adaptive reprogramming and the broader design of

effective therapies [18–23]. Underlying these investigations of kinome dynamics are the

advancement of proteomic approaches that enable the characterization of protein kinome

behavior in response to perturbation en masse, allowing characterization of changes not just to

the kinase to which the inhibitor was designed, but also across the entire kinome [24,25]. How-

ever, while providing transformative insight into how these targeted therapies interact with

and modify cellular systems, our understanding of kinome changes and the resulting down-

stream cellular changes is still lacking.
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Given the potential of targeted therapies and the potential to quantitatively assess their

effect on the protein kinome, in this work we sought to establish a predictive framework that

links the behavior of the kinome as defined by “kinase inhibition states” with a downstream

phenotype—in this instance, cell viability. Enabling this effort is recent work by Klaeger et al.,

who conducted a comprehensive investigation using a proteomic kinobead approach, estab-

lishing a target landscape for 229 kinase inhibitors across a wide range of compound concen-

trations [26]. This work was conducted using a lysate mixture derived from four cell lines

which provided a broad representation of the kinome. The results from Klaeger et al. show

that many kinase inhibitors have broad target promiscuity and that the kinases targeted by

each inhibitor also varies on the basis of the specific compound concentration. Throughout

the rest of this paper, we will use the phrase kinase inhibition state to indicate the specific set of

kinases targeted by a given compound and to what degree each kinase is inhibited at each con-

centration. In addition, we utilized the extensive data available via the Broad Institute’s Cancer

Cell Line Encyclopedia (CCLE) [27], including the PRISM (Profiling Relative Inhibition

Simultaneously in Mixtures) highly multiplexed cell viability assay, along with accompanying

multi-omics data (gene expression, copy number variation, proteomics and gene essentiality)

from the Cancer Dependency Map. These data consist of cell viability measurements for 499

cell lines across 1448 drugs, transcriptomic profiles for 1389 cell lines, whole proteomic pro-

files for 375 cell lines, whole genome copy number variation for 1750 cell lines and

CRISPR-KO genetic dependency scores for 1054 cell lines. While predictive models for drug-

induced cell viability have been built using various strategies [28–31], most have focused on

using baseline and drug-perturbed transcriptomic data to make predictions on the sensitivity

of cancer cell lines to drugs. Drug-target interaction data like kinome profiles are relatively

underutilized in these approaches, but have been shown to have predictive power in smaller

datasets [32].

Here, we describe a framework that integrates kinome profiling data with general multi-

omics, and build tree-based regression models to predict cell viability for 480 cancer cell lines

across 230 kinase inhibitors with high accuracy (R2 = 0.79). Integrating nearly half a million

data points, we find that kinome inhibition profiles have by far the greatest predictive power of

any single data set. While not highly predictive on its own, baseline transcriptomic data does

significantly enhance prediction accuracy, “tuning” the model to individual cell lines. Remark-

ably, adding in other multi-omics data does not significantly increase the quality of predic-

tions. As the model enables prediction of complete dose-response curves, we experimentally

validate predictions for over two dozen compounds on two breast cancer cell lines and find

strong agreement for most compounds tested. These results suggest that the link between

kinotype and phenotype is significant, with sufficient power to enable the prediction of cell

viability and likely other cellular phenotypes as well. Along with integration of transcriptional

data, these predictive models can greatly enhance our understanding of adaptive kinome

reprogramming and drug resistance while facilitating the development of future targeted ther-

apy regimes.

Results

This work is divided into three parts. We start by describing how we processed and organized

the data sets used to build predictive models of cell viability related to a set of kinase inhibitors.

Next, we describe the methods we used to select which features and data sets to include in

these models and apply a set of modeling methods to the organized data. Finally, we make a

set of cell viability predictions and then experimentally test these predictions in a panel of

breast cancer cell lines.
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Linking kinome inhibitor states with cancer cell viability

There are two primary data sources that we needed to process and combine in order to link

kinotype with phenotype and build a model to predict the cell viability effects of kinase inhibi-

tors. The first of these data sources is the large-scale PRISM cell viability screening effort. The

PRISM data collection consists of a set of cell line viability measurements following exposure

to a wide range of compounds [33] (Fig 1A). These compounds span multiple different target

classes, but in this work we have focused on a specific subset of kinase inhibitors that have

been independently assayed using the kinobead/MS-based method. This approach determines

Fig 1. Study Design Overview and Imputation of Cell Viability from PRISM. (A) Flow chart showing data source collection, integration and modeling

strategy. (B) Sample imputed cell viability curves for all assayed cell lines (gray underlying lines) and corresponding average imputed cell viability response

(blue line) for three compounds showing low changes (Motesanib), medium level changes (AZD-2014) and high changes (SB-1317) in cell viability. (C) Overall

distribution of cell viability values imputed at Klaeger et al compound concentrations. (D) Distribution of imputed cell viability across all concentrations for a

selection (60 out of 168) sampled evenly across the average imputed cell viability effect of the compounds present in both PRISM and the Klaeger et al set. The

blue and green color scheme does not indicate anything about the underlying data and is meant to act as a visual aid for differentiating between adjacent

curves. (Panel A was created with BioRender.com).

https://doi.org/10.1371/journal.pcbi.1010888.g001
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the precise kinase targets as well as the magnitude of their inhibition in response to different

concentrations of the inhibitors [26]. Given that the compounds used in Klaeger et al. are all

well known kinase inhibitors, most of the proteins that appear in the assay results are either

known kinases or closely associated proteins. As such, we’ll refer to the data originating from

the Klaeger et al. result as “kinase inhibition states.”

The primary challenge with combining these data sets is a lack of overlap between some of

the concentrations used in the PRISM assay and those used by Klaeger et al. To overcome this

problem, we used the viability curve fits provided by the PRISM database and imputed cell via-

bility values for all of the concentrations used by Klaeger et al (Fig 1B). These cell viability

results are represented as a value from 0–1, with 0 indicating complete cell death and 1 indicat-

ing no effect on cell viability. As expected, a majority of the treatments yielded little change in

cell viability (Fig 1C). The distribution of cell viability values within each individual compound

shows that while many of the compounds have minimal effects on cell viability, some com-

pounds show a much wider range of viability effects (Fig 1D).

After combining the PRISM and Klaeger et al. data sets, we have 168 compounds which

have been assayed across 480 cell lines. We imputed the cell viabilities at each of the 8 concen-

trations used in the Klaeger et al. work, yielding about half a million treatment combinations

across combinations of cell line, compound and concentration. With this data set, we also inte-

grated the gene expression data available through the Cancer Cell Line Encyclopedia [34].

These gene expression values (log2 TPM values with a pseudocount of 1) were available in all

but four of the 480 lines used in the PRISM compound screens. Following the integration of

gene expression, we next examined how well single kinase inhibition and gene expression val-

ues were correlated with cell viability.

Cell viability after treatment with kinase inhibitors shows mild correlation

with kinase inhibition state

We investigated the relationship between kinase inhibition states (~520 proteins) and gene

expression values with inhibitor-induced cell viability. To do this, we took each individual

kinase inhibition state and gene expression value (~21,000 TPM values) and calculated the

Pearson’s correlation coefficient with the imputed cell viabilities (Fig 2A and 2B). The kinase

inhibition states from Klaeger et al. are represented as a value lying mostly between zero and

one, where zero indicates a fully inhibited kinase and values of one or above indicate that a

kinase isn’t inhibited. These correlations were in general significantly lower for the gene

expression values, while the kinase inhibition state values showed both a higher average corre-

lation and greater variance (Fig 2C). This was not unexpected as the gene expression values are

all characterized in unperturbed cell lines. Thus, as cell viability changes the gene expression

values remain fixed, and any variation across gene expression must be correlated with broad

changes in drug response between the cell lines. The examination of single correlation values

gives a picture of how well single expression or inhibition states are related to the cell viability

phenotype.

While single features with correlation coefficient values in the ~0.3 range (the highest value

observed in the kinase inhibition state data) will not produce sufficiently predictive models,

the integration of multiple features may provide greater power. As such, we next sought to use

the correlation values for feature selection. The most obvious way to use the correlation values

is to put all the potential features (in this case, kinase inhibition state and gene expression) in

correlation rank order and then select the top-X number of features for model inclusion. This

produces differing sets of feature class counts and ratios depending on the number of features

selected (Fig 2D right). Interestingly, the top ~350 features all come from the kinase inhibition
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states, with gene expression then starting to be included into the list after the first 350 features.

As an alternative method to visualize the same selection process, we plotted what percent of a

given feature class is included in the top list for the top 2000 features (Fig 2D left). This alterna-

tive view of the feature selection process shows that ~80% of the inhibition states are included

in the model before gene expression starts to be included. This indicates that nearly all of the

inhibition states are more highly correlated than the gene inhibition states and will thus be the

sole factor utilized in lower feature count models. Extending the feature list visualization to

include lists greater than 2000 show that remaining inhibition states are slowly included as the

top feature list expands (S1A Fig). This analysis of the structure of the single feature correlation

results lays the groundwork for working with more sophisticated computational models to

predict cell viability.

Computational models can predict cell viability from a combination of

kinase inhibition state and gene expression

With our initial analysis of the predictive power of single features from the Klaeger and gene

expression data sets completed, we next moved to the development of models that integrated

more than one feature with the end goal of predicting cell viability. To do this, we tested four

types of models: linear regression, random forest, TabNet and XGBoost. For our initial tests with

these models, we used the default settings for all four model types and varied the number of fea-

tures (either kinase inhibition states or gene expression values) provided to the model. Our cross

validation strategy sought to balance our eventual goals of using the resulting models to make pre-

dictions about the cell viability effects in new cell lines and in untested compounds. As such, we

choose a 10-fold cross validation strategy that randomized fold exclusion across the cell line-com-

pound treatments (63767 total combinations) to improve the likelihood that our model testing

results would be similar to downstream experiments. After producing the cross validation splits,

we selected a specific number of features and built corresponding models (Fig 3A).

Fig 2. Single Feature Correlations Across Kinase inhibition and Gene Expression. (A) Sample kinase inhibition state versus imputed viability heatmap plots

showing inhibition states with high (STK10), medium (FGR) and low (TUFM) correlation values. (B) Sample gene expression versus imputed viability heatmap

plots showing genes with high (HAGH), medium (LRFN5) and low (DKC1) correlation values. (C) Overall distribution of correlations between kinase

inhibition states and gene expression levels. (D) Plots showing what order classes of features are selected from the inhibition and expression correlations. The

number of features from each class (left) selected at a given rank value and the percentage of the possible features (right) selected at a given feature selection

rank cutoff.

https://doi.org/10.1371/journal.pcbi.1010888.g002
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For benchmarking model performance, we built a naive model that simply used the average

cell viability at each of the tested concentrations as a baseline prediction that can be used for

comparison (gray dotted lines in Fig 3A), and also compared results to previously run models

on similar datasets [31]. Initially, we tested each model type with 100, 200, 300, 400, 500, 1000,

1500 and 2000 features. These preliminary tests showed that the random forest method per-

formed the best at all of these feature counts and that performance (R2 and RMSE) peaked at

500 features and out-performed our baseline dose-concentration-only model. To ensure that

we had indeed found the peak in feature performance, we then tested 600, 700, 800 and 900

feature models and found that the 500 feature model was the peak (although all of these models

performed very similarly). To better understand this model, we also looked more closely at the

predicted versus actual imputed viability of the 500 feature random forest model (Fig 3B). This

examination of the cross validation model results, showed that the average model performance

was best at higher imputed viability values, while the predictions at lower imputed viabilities

were not as accurate. In addition to examining the global model performance we also subsetted

the results along compound and cell line results and re-calculated R2 and RMSE (S2A Fig).

This result showed that the compound results showed greater variability in R2 as compared to

the cell line results, but the RMSE values were similarly distributed.

Fig 3. Development of a Regression Model to Predict Cell Viability and Assessment of Which Features Contribute to Model Predictions. (A) Comparison

of R2 and RMSE values from linear regression, random forest, XGBoost and TabNet models. The gray dotted line shows the performance level of a dose-only

model performance. (B) Actual imputed viability versus cross validated model predictions for the random forest model. The dashed line indicates where a

perfect set of predictions would appear, while the red line shows a loess fit through the actual results. (C) Variable importance plot for the top 25 features in the

final regression model. Each feature is prefixed with act or exp representing either kinase inhibition or gene expression respectively. (D) The top 25 most

important expression features in the final model. (E) The overall distributions of feature importance values for the inhibition and expression features.

https://doi.org/10.1371/journal.pcbi.1010888.g003
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With random forest using 500 features selected as our best modeling strategy, we moved on

to examining feature selection in the cross-validation models as well as parameter tuning. One

concern with doing feature selection in each cross validation set was that there would be a

large amount of volatility in feature selection between each cross validation model run. We

found that in each of the cross validation runs, at least 75% of the features are included in all of

the feature selection sets (S2B Fig). To ensure that the default random forest parameter models

were near the optimal tuning, we also tested cross-validated models with 1000, 1500 and 2000

trees (500 trees is the default value). Increasing the tree count had little effect on model quality

(S2C Fig), so we opted to use the default value of 500 trees. In addition, we also tested the effect

of modifying the minimal leaf node size and the number of predictors selected at each branch

(S2D Fig) and found minimal effects on R2 and RMSE, so we once again decided to keep the

default parameter values.

Our first step in building the final kinase inhibition and gene expression model, was to first

select the 500 features that would be included in the model. Using the same correlation rank-

ing scheme used in our cross validated models, 390 out of 520 kinase inhibition states and 110

out 19177 gene expression features were selected for model inclusion. We next built the final

random forest model with the full data set and collected variable importance metrics for each

of the included features. In order to understand the kinase and non-kinases included in the

selected inhibition states, we classified each protein as either a non-kinase or as a well-studied

(Light) or understudied (Dark) kinase (Fig 3C) [35]. Several of these genes have well-known

roles in cell viability and cancer, including MAP2K1 (MEK1), AURKB and CDK7. Interest-

ingly, the model also identifies several understudied kinases, CSNK2A2, PIP4K2C, CAMKK2

and DYRK1B, as being influential in the model’s cell viability predictions. To better contextu-

alize the expression values included in the model, we used the STRING database to see how

many of the selected genes interacted with the proteins included in the inhibition features (Fig

4D). Of the 110 genes included in the expression values, 40 interact with at least one protein in

the inhibition set and the average expression gene interacts with 1.7 inhibition state genes. In

comparison to 10,000 randomly drawn expression gene sets of size 110, 84% interact with

fewer than 40 inhibition states and 80% have a lower average inhibition gene interactor count

below 1.7. The global view of the variable importance metrics also shows that nearly all of the

expression features have similar importance values in the final random forest model (Fig 3E).

We next attempted to better understand how the interaction between inhibition states and

gene expression levels affected model performance.

Fig 4. Model Performance is Best with Access to All Inhibition States and Gene Expression Values. (A) Comparison of R2 and RMSE performance for

models using only expression, only inhibition or inhibition and expression features. (B) Comparison of R2 and RMSE performance for models using gene

expression and all inhibition data or only the kinase subset. (C) Plots showing the order of feature selection for the single dose model. (D) Single dose model

performance comparison across a range of feature count and with either kinase inhibition state and expression or expression alone.

https://doi.org/10.1371/journal.pcbi.1010888.g004
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The combination of kinase inhibition states and baseline gene expression

produces the best predictions

After thoroughly examining the results of the inhibition state and gene expression combined

model, we next wanted to investigate how the model would perform when we excluded certain

parts of the full data set. Using the same 10-fold feature selection cross validation strategy and the

same cross validation fold splits described above, we rebuilt the model using only inhibition state

or only gene expression (Fig 4A). The gene-expression-only models performed very poorly (R2 of

~0.01 and RMSE of 0.33), which was expected due to the fact that the gene expression values are

fixed and do not vary with the compound concentrations. These model performance differences

were also reflected in direct comparisons between individual cell lines and compounds, where

none of the expression-only models outperformed the inhibition state only models. When we

built models using the inhibition states alone, we observed identical performance for feature

counts 300 and below. This was also expected as the correlational feature selection methods always

select inhibition features for the first ~350 features. With feature counts of 400 and 500, we

observed that the additional information provided by the gene expression features began to

improve the model (0.05 improvement in R2 and a 0.02 decrease in RMSE). Thus, while the

expression features alone are not sufficient to predict cell viability, they do provide an appreciable

improvement in the model performance in combination with inhibition features.

Having established that both inhibition and expression data are needed for the best model

performance, we next investigated how the non-kinases in the inhibition data set affected

model performance. This question is an interesting avenue to explore as, while the Klaeger

et al. study was confined to kinase inhibitors, the presence of ~50% non-kinase proteins

inspired us to assess how the model would perform without the non-kinases. We rebuilt the

inhibition data set and ran the same modeling methodology including the gene expression val-

ues to allow us to compare to our previous models (Fig 4B). The optimum kinase-only inhibi-

tion data model had a maximum R2 of 0.76 and a RMSE of 0.17 (compared to R2 of 0.79 and

RMSE of 0.15 for the full set). These results indicate that the non-kinases are providing some

additional information that the model is able to use, which is in agreement with the presence

of non-kinases in the top 25 of the variable importance metrics (Fig 3C).

To further investigate whether the kinase inhibition states are more informative than gene

expression values alone, we subset our data to only include the dose for each compound with

the highest variation in viability. This is following from a previous publication [36] which built

a wide range of models covering chemical and genetic perturbations. By subsetting the data in

this fashion, we can more easily compare the relative contributions of kinase inhibition state

and gene expression without the variation induced by multiple doses. We used the same fea-

ture selection methodology as in the previous section and the shift to only a single dose for

each compound generally decreased the kinase inhibition correlations. This allowed more

expression values to be included in the model (Fig 4C). After conducting feature selection, we

built a set of random forest models with differing numbers of features and found that the

kinase inhibition state and expression models outperformed models built with expression data

alone. This result demonstrates that even in a more constrained modeling environment, the

availability of proteomic based inhibition profiles improves model quality for kinase inhibitors

and that the additional information provided by multiple doses can improve modeling results.

This is also a limitation though as data comparable to kinase inhibition state does not exist for

many classes of compounds, so we view this work as complementary to the broader modeling

efforts of Dempster et al. Having fully examined the kinase inhibition state and expression

model, we next investigated if any of the other multiomics data sets available could improve

upon these models.
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Models only show mild improvement from inclusion of a broad spectrum

of omics data

Gene expression is only one of several different types of comprehensive data that has been col-

lected for many of the cell lines used in the PRISM assay. These additional data sets include:

• DepMap CRISPR-KO screening: genome-wide gene knockout viability measurements (Dep-

Map Score)

• Copy-number-variation: gene level copy number variation (CNV)

• Whole Genome Proteomics: mass spectroscopy-based measurement of relative protein

abundance (proteomics)

Given the broad and complementary nature of these data sets, we investigated whether we

could integrate these data sets to improve upon the kinase inhibition and gene expression

models we described above. The DepMap, CNV and proteomics data sets all overlap with a dif-

ferent number of cell lines present in the PRISM data set (S3A Fig). All of the data sets are

available for 212 cell lines (gene expression is available for 476 cell lines represented in

PRISM). We focused our modeling efforts on these 212 cell lines to ensure that a complete col-

lection of data was available. We followed the same strategy as in the above modeling effort

where we first investigated the correlation between single features and cell viability. The 212

cell line subset showed very similar correlation distributions between kinase inhibition and

gene expression (S3B Fig). The newly added feature (CNV, DepMap scores and proteomics)

correlations, had correlation distributions very similar to gene expression (S3B Fig). Using the

correlation feature ranking, we also determined which features would be included in models

of various sizes (Figs 5A and S3C). With these data sets organized and our feature selection

techniques specified, we tested how inclusion of these data sets affected model quality.

Based on our previous experience with building the kinase inhibition and expression mod-

els, we decided to only test the best-performing random forest method. We also used the same

10-fold cross validation across the cell line/compound combinations. This resulted in higher

instability in feature inclusion across the cross validation folds (S3D Fig). As shown in Fig 5B,

integration of these other data sets led to performance that was nearly identical to the model

with only kinase inhibition and gene expression. The peak performance was achieved at 500

features in both model variants with R2 values of 0.794 (0.153 RMSE) and 0.793 (0.154 RMSE)

for the all data and inhibition/expression models respectively. This indicates that gene expres-

sion values alone contain substantially similar information as the remaining set of multiomics

Fig 5. Regression Models using Additional Data Sets Don’t Dramatically Outperform inhibition and Expression Models. (A) Plot showing the order

features are selected for model inclusion (left) and the percentile rank within each feature class as features are selected for inclusion in the model (right). (B)

Comparison between models built with inhibition data and expression or all available data sets by R2 (left) and by RMSE (right).

https://doi.org/10.1371/journal.pcbi.1010888.g005
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data. Given our desire to build a model which uses the most easily reproducible data sets and

only minor improvements were observed with the full data collection, we decided to move for-

ward with the integrated model combining kinase inhibition states and gene expression values.

Validating the models was successful within our ability to replicate

previous PRISM results

With the model production decisions finalized, we then applied this model to the untested cell

line and compound combinations. The final model was produced using the 63189 cell line and

compound combinations with interpolated viability values (Fig 6A). Of the data that went into

model production, 476 cell lines and 168 compounds were represented. This left 903 cell lines

in the CCLE gene expression data set and 61 Kleager kinase inhibitors that have not been

tested in the PRISM viability assays (in addition to a few other untested combinations) where

we were able to apply our model to predict cell viability at each of the compound concentra-

tions used in the Klaeger assay. Ultimately, this resulted in us producing predictions for about

250,000 cell line and compound combinations (Sup Data 1). We hope that providing these pre-

diction results will enable other researchers to find interesting or unexpected compounds that

target specific cancer types. For the work presented here, we focused our validation efforts on

a subset of breast cancer cell lines.

Our first goal when beginning to validate a subset of model predictions was to see how well

we could replicate the results from the PRISM assay. We selected the well characterized triple

negative breast cancer (TNBC) cell line HCC1806 and a set of compounds that displayed a

range of viability effects from the 134 Kleager kinase inhibitors that had been used in the

PRISM assay with the HCC1806 cell line (Fig 6B). Several of these compounds performed very

similarly in our assay as compared with the imputed viability PRISM values, notably Cobimeti-

nib, UCN-01, AT-9283, Lestauritinib and Dinaciclib. However, several of the compounds that

showed high viability effects at high concentrations were not reflected in the imputed viability

results, which lowered the replication R2 to 0.492 and the RMSE to 0.299 (Fig 6C). To put

these replication efforts in context, we looked for experimental cell viability results from the

NCI-60 [37] and PRISM results where the same compound and cell line were assayed. In

order to gain a broader understanding of cell line viability replicability, we included every

compound match we could find between the two data sets. We found 172 compounds and 32

cell line matches between these data sets and found an overall R2 of 0.444 and an RMSE of

0.296 (S4 Fig). These results were in agreement with our much smaller PRISM replication

effort, indicating that the variance between model predictions and experiments is no worse

than the variance observed between experiments replicated by different groups. With the

inherent limitations identified by the replication effort acknowledged, we next moved into

testing new cell line and compound combinations.

We started testing new cell line and compound combinations by continuing with the

HCC1806 line and adding in the HER2 positive breast cancer cell line BT-474. We selected a

set of compounds predicted to have a range of effects on the two cell lines and then conducted

a viability screen with each of these compounds (Fig 6D). Much like the replication attempt,

we observed several compounds where the predicted viabilities were close to the measured via-

bility (K-252a, UCN-01, PF-3758309 and Lesauritinib). Overall, the R2 (0.518) and RMSE

(0.239) values were comparable with replication effort, indicating that the model was perform-

ing well on new compounds (Fig 6E). As our most challenging final test, we decided to test

two cell lines that are not present in the PRISM data set (HER2+ line SKBR3 and TNBC line

SUM159PT) against a set of compounds that weren’t included in the PRISM compound set.

Once again, with this “double-untested” experiment, we selected a set of compounds predicted
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to have varying effects across concentrations and observed a combination of compounds with

strong and weak correlation between predictions and results (Fig 6F). Notable among the bet-

ter results were JANEX-1, Losmapimod and K-252a, while the model struggled with CC-401

and parts of the RGB-286638, ACTB-1003 and Ceritinib curves. The overall performance of

the model (R2 of 0.588 and RMSE of 0.246) were comparable to the other model validation

results (Fig 6G). These independent validation efforts demonstrate that the model predictions

are able to generalize into previously untested cell lines and compounds.

Fig 6. Validating a Subset of Compound Predictions in Breast Cancer Cell Lines. (A) Visualization of the space of compound (Y-axis) and cell line (X-axis)

combinations that have been tested (white) and non tested (black) with a blue box surrounding the entire visualization. (B) Cell viability results from testing a

set of compounds (labeled above each curve) and a cell line (HCC1806) already tested in the PRISM collection. (C) Scatterplot summarizing all the results from

part B into a single plot with a linear best fit line showing in blue. (D) Cell viability results and corresponding predictions or PRISM results from a set of cell

lines included in PRISM (BT-474 and HCC1806) and a selection of compounds which were mostly not included in PRISM. (E) Scatterplot summarizing all the

prediction results from part D into a single plot. (F) Cell viability results and corresponding predictions for a set of cell lines and compounds not included in

PRISM. (G) Scatterplot summarizing all the results from part F into a single plot.

https://doi.org/10.1371/journal.pcbi.1010888.g006
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Discussion

Given the potential of targeted kinase inhibitor therapies, the ability to predict how a given

treatment may alter kinome state and lead to a given phenotype is fundamentally enabling. In

this work, we developed a set of computational models that predict cell viability after treatment

with a set of small molecule kinase inhibitors. To accomplish this, we used several publicly

available data sets that provided information concerning the untreated gene expression of the

cell lines used in the viability screen and another that gave detailed information about the pro-

teins targeted by small molecule kinase inhibitors. We examined how single gene expression

and kinome state values were related to cell viability and how models with various numbers of

gene expression and kinome state values varied in quality. In addition to gene expression, we

also tested a set of models which included a broader range of baseline measurements (CNV,

proteomics and gene essentiality) and concluded that these additional data sets were not able

to significantly improve model performance. Finally, we tested some of the model predictions

in several triple negative and HER2 positive breast cancer lines and found acceptable agree-

ment between the model predictions and experimental results.

This work demonstrates how knowledge of the inhibition state of the kinome, derived from

a proteomic assay based on a four cell lysate mixture, can predict a cellular process as funda-

mental as viability. Importantly, the models achieved these surprising results by using a

"generic" or "general" kinase inhibition profile measured with proteomic kinobead profiling of

a four cell line lysate exposed to an extensive library of kinase inhibitors at multiple doses [26].

Thus, the models learned by linking non-cell line specific kinome inhibition state information

with that of specific drug-cell line relationships.

We acknowledge several limitations of this work. First, all of the results in this paper rest on

the availability of kinome profiling data specific to a given kinase inhibitor, so the methods

here are not applicable to prediction of cell viability effects in any other class of compound.

We believe that a similar strategy could be used to build models in compound classes where

the spectrum of targets were as comprehensively identified. The universe of small molecule

kinase inhibitors is substantially larger than those that were surveyed by Klaeger et al., but

since our modeling methodology depends on the comprehensive nature of their work, we’re

limited in the number of compounds where we can make predictions. One of our next goals is

to attempt to broaden the scope of compounds through integration of other high-content

kinome profiling techniques such as KinomeScan and Nano-BRET. In addition, while the

models described in this paper do make somewhat accurate predictions, these results point to

a degree of missing predictability in cell viability for which new methods and data will need to

be developed and collected. Also, since this work has targeted building a single comprehensive

model, it is likely that subtle cancer type specific relationships are not captured such as the rela-

tionship between RXRG expression and melanoma [36]. This can be addressed by subsetting

the model to make predictions about specific cancer types/subtypes. There is also an extensive

set of alternative hyperparameter settings and potential modeling methodologies that we did

not explore in this work. We also hope that by providing a full set of viability predictions for

the broad range of cancer cell lines covered by the CCLE that this work can act as a resource

for other researchers to find unexpected or interesting kinase inhibitors that affect their most

used cell line model systems.

This work also suggests several extensions that would broaden or improve the model.

Given recent interest in finding new compound combinations computationally, we are begin-

ning to examine how best to combine the information from multiple compound kinome inhi-

bition states to predict the resulting cell viability effects. This would allow us to run

computational drug combination screens. In addition, the methods outlined here will also

PLOS COMPUTATIONAL BIOLOGY Usage of kinome inhibition states and multiomics data to predict of cell viability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010888 February 21, 2023 13 / 19

https://doi.org/10.1371/journal.pcbi.1010888


likely work for any phenotype that can be measured after treatment with small molecule inhib-

itors and with sufficient throughput to gather a large enough data set. Finally, while we have

made all of the code and data necessary to reuse our models available to the public on github,

we also acknowledge that this is not the most user-friendly method for allowing non-computa-

tionally minded users to access the model. Thus, we also plan on developing a web-based sys-

tem for allowing non-computationally minded users to submit a gene expression profile and

receive a set of predictions concerning how their cellular system is expected to respond to the

Klaeger set of kinase inhibitors.

Overall, we hope that this paper makes a contribution to our understanding of how the

overall state of kinome in response to small molecule inhibitors contributes to cell viability

phenotypes. Our findings demonstrate that while individual kinase inhibition states and other

single gene or protein readings are not very predictive of cell viability, machine learning

approaches are able to combine sets of measurements related to the small molecule kinase

inhibitors and gene expression data to make cell viability predictions. The results presented

here show how a thorough understanding of kinase activity levels in conjunction with baseline

omics data can be used to gain a better understanding of phenotypes such as cell viability.

Methods

Our methods can be divided into two parts describing the computational aspects of this work

and the experimental methods used to test the output of the computational components.

Data sources

We used two primary data sources for this paper: the supplemental data section from Klaeger

et al.[26] and the cell viability screening results from the PRISM lab. Specifically, we collected

and organized the kinase inhibition states from supplemental Table 2 of Klaeger et al, focusing

on the Kinobeads subsheet. As for the PRISM data, we used the data from 2019 Q4 (labeled

19Q4 in the depmap portal), specifically the secondary screening data. In addition to these two

data sets, we used supplemental data sets from the CCLE [34] and DepMap [38]. These data

included results from baseline RNAseq (CCLE_expression.csv), copy number variation (CNV,

CCLE_gene_cn.csv) and CRISPR-KO viability screening (CRISPR_gene_effect.csv). The

2021Q3 versions of these files were used. The proteomics data was downloaded from the Gygi

lab website (https://gygi.hms.harvard.edu/publications/ccle.html), specifically Table S2 [39].

We also used version 11.5 of the STRING [40] protein network database (9606.protein.links.

v11.5.txt.gz).

Data preprocessing

The scripts implementing these descriptions are all available through github.

Klaeger et al. kinase inhibition profiles

We read the values from the supplemental data table into R and produced a list of all proteins

observed in any of the kinase inhibitor treatments. Since this table only contains the proteins

affected by each compound, we filled in the relative intensity values for genes not associated

with a given inhibitor with the default value of 1. There was a small (1.8%) number of single

concentration values missing from the listed affected proteins, so we filled these values as the

average of two nearest concentrations. Finally, a smaller set (0.01%) of likely outlier relative

intensity readings were truncated to the 99.99 percentile (3.43).
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PRISM cell viability

Since relatively few of the concentrations used in the PRISM assay match those used by Klae-

ger et al., we opted to use the response curve parameters provided through the depmap portal

to interpolate the cell viability values. We interpolated these values at 30 μM, 3 μM, 1 μM, 300

nM, 100 nM, 30 nM, 10 nM and 3 nM to match those used by Klaeger et al. We applied a filter

to remove any response curve parameter set that indicated that a given cell line and compound

combination produced enhanced cell growth with increasing compound concentration. To

perform the viability extrapolation, we used the four-parameter log-logistic formula described

in the drc R package [41].

Gene expression, CNV, CRISPR-KO and proteomics

The files provided by the depmap portal for gene expression, CNV and CRISPR-KO values

required very little modification to work in our machine learning pipelines. The primary mod-

ification was to add identifiers to each gene label, to ensure that omics data related to the same

gene weren’t accidentally combined. The CRISPR-KO data also required an additional filter to

remove 10 cell lines with missing data. The proteomics data processing was slightly more com-

plicated, as there were substantially more protein readings missing from many more lines. In

the cases of missing protein readings, we imputed these values to the minimum value for the

overall distribution of that protein minus one standard deviation.

String

The STRING database [40] also required only mild preprocessing to extract the proteins that

interacted with the components of our models. We filtered the interaction list to the high con-

fidence (above 0.7) set and used bioMart [42] to convert the Ensembl protein identifiers to

HGNC identifiers for matching with the other data sets.

Modeling techniques and types

To assess our models we used a 10-fold cross validation strategy which randomized training

and test set inclusion across the cell line and compound combinations. Thus, for any given via-

bility curve resulting from treatment of a cell line with a compound, all of the results from the

assay were considered as one unit for cross validation purposes. All steps of feature selection

were also conducted under this cross validation framework as well. For every fold of our data,

we recalculated the correlation coefficient between cell viability and the features available to

the model (kinase inhibition state, gene expression, etc) using only the data in the training set.

The number of features was varied as specified in the results section. We used the entire data

set to build the final model used to make the predictions in S1 Table and the results displayed

in Fig 6.

We used random forest, XGBoost, TabNet and linear regression for all of our modeling

efforts. All of our models are implemented using the tidymodels framework in R. We used the

ranger random forest engine [43], the default XGBoost engine [44] and the default ordinary

least squares linear regression engine. For all of our initial testing of these models we used the

default single set of hyperparameter settings to narrow our search for an acceptable model.

This search indicated that the random forest model performed the best, so we attempted to

further tune three additional parameters, the number of trees, the number of selected predic-

tors and the minimal node size across the following ranges:

• Number of Trees: 500 (default), 1000, 1500 and 2000
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• Number of Predictors: 11, 22 (default for 500 tree model), 33 and 44

• Minimal Node Size: 3, 5 (default) and 10

Compound testing

BT-474, HCC1806, SUM-159 and SKBR-3 cells were grown in ATCC recommended media

and seeded at 4000, 2000, 4000 and 500 cells per well respectively, in white flat-bottom 96-well

plates (Corning). 24 hours after seeding, cells were treated with the respective drugs prepared

in DMSO. All drugs were dosed at the same eight concentrations used in the Klaeger study:

30 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM and 3 nM. Seventy-two hours post-treat-

ment, cells were lysed with CellTiter-Glo (Promega) per the manufacturer’s protocol. Lumi-

nescence was read using the PHERAstar FS microplate reader (BMG Labtech) and gain

adjustments were conducted for each cell line. Data were normalized row-wise to the DMSO-

only (0.5% on cells) control samples on each plate to calculate relative viability. Quality checks

were performed to look at the data distribution and the presence of spatial bias on a plate. A

quality control metric of<120% of DMSO was applied to all rows analyzed. Across all>150

rows analyzed, only one row of XL-228 treated SKBR-3 cells failed to meet this criteria and

was removed from analysis.

Supporting information

S1 Fig. Expanded Correlation Rankings (Associated with Fig 2). Extended version of Fig 2D

covering all correlation ranks.

(TIFF)

S2 Fig. Feature Selection with Cross Validation and Assessment of Increasing Random

Forest Trees (Associated with Fig 3). (A) The effect of cross validation data division on which

features are selected for model inclusion. (B) The effect on R2 and RMSE of increasing the

number of trees used in the random forest algorithm. (C) The effect on R2 and RMSE of modi-

fying the selected predictor count and the minimal node size used in the random forest algo-

rithm. (D) The distribution of R2 and RMSE for single compound or cell line cross validation

results.

(TIFF)

S3 Fig. Expanded Correlation Rankings and Effect of Cross Validation Subsetting on Fea-

ture Selection (Associated with Fig 5). (A) Upset plot showing the overlap between data sets

across cell lines in the PRISM assay. (B) Small multiples plot showing the correlation of indi-

vidual features to imputed cell viability for each of the feature types considered in this model.

(C) Full feature correlation rankings for all data set types considered for Fig 5. (D) Effect of

random 10-fold cross validation subsetting on which features are included in what percentage

of the cross validation data sets.

(TIFF)

S4 Fig. Comparison of Cell Line and Compound Matched PRISM and NCI-60 Viability

Results. The red line shows a Loess fit through the data set.
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S1 Table. Full Viability Curve Predictions for CCLE Cell Lines.
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