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We describe the formation of a black hole via the implosion of an axisymmetric gravitational wave.
Finite difference simulations of the vacuum Einstein equations are used to obtain these results. The ini-

tial data consist of nearly linear solutions to the vacuum constraint equations that represent even-parity,
ingoing wave packets with quadrupole angular dependence. A black hole is demonstrated to form
as a result of imploding a wave packet with a sufficiently large value of a strength parameter,
8=2aM~/A, =1.06) 8„;,=0.80, where 2A, is the radial width of the wave packet and M~ denotes its
mass. Black hole formation is verified by observing (i) the exponential collapse of the central value of the
lapse function a, (ii) the formation of a trapped region and marginally outer-trapped surfaces, and (iii)
the emission of quasi-normal-mode radiation. For the 8= 1.06 case, just over 2% of the mass emerges in
normal-mode radiation.

PACS number(s): 04.30.+x, 04.20.Jb, 97.60.Lf

Recently, Beig and 0 Murchadha [l] have proven that
it is possible to construct (nonsingular) sequences of
time-symmetric, vacuum, asymptotically flat initial data
that contain outer-trapped surfaces as they approach the
strong-field limit of general relativity. Although a
theorem of Penrose [2] can be invoked to show that the
evolution of this initial data will lead to a singularity, it
has not yet been shown that this singularity will be con-
tained within the region of trapped surfaces. In a related
effort [3],one-parameter sequences of time-symmetric ini-
tial data have been numerically constructed. Some of
these sequences become singular inside a region of
trapped surfaces, while others represent highly prolate
wave packets that can be made arbitrarily singular
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without the appearance of outer-trapped surfaces.
In this paper, we use a dynamical calculation to follow

the formation of a black hole as a gravitational wave im-
plodes, gravitationally traps itself (forming a "geon" [4]),
and collapses. Simulations of this type have also been
performed by Miyama [5] and Stark [6]. The gravitation-
al wave is initialized as ingoing, quadrupole radiation
confined to a wave packet that has a narrow radial extent
and a spherical wave front. It is important to note that
although the wave front is initially spherical, the quadru-
pole angular dependence ensures that the gravitational
field is nonspherical. Such wave packets undoubtedly
lack the generality required to test the validity of cosmic
censorship. These calculations do, however, add to the
very small set of spacetimes known to form horizons fol-
lowing the evolution of highly asymmetrical fields and
matter [6,7]. They also demonstrate the ability to detect
the presence of trapped regions and locate marginally
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outer-trapped surfaces (MOTS's), to calculate gravita-
tional radiation, and to read off wave forms at finite ra-
dius. All of these are techniques required to further in-
vestigate cosmic censorship. Extremely prolate wave
packets [3] may be interesting vacuum analogues of the
prolate collisionless-matter spheroids studied in Ref. [7].

Simulations were computed using an axisyrnmetric nu-
merical relativity code [8] specialized to T"'=0. This
finite-difference code has been extensively tested and used
to compute nonrotating gravitational collapse [9,10], os-
cillations of relativistic stars [11],and head-on collisions
of compact stars [12]. More details about this code can
be found in Ref. [9].

The code employs the quasi-isotropic spatial gauge, the
analytic properties of which have been explored in Refs.
[8,9,13,14]. In this gauge, assuming axisymmetry and no
rotation, the 3+1 form of the line element in spherical-
polar coordinates is

then solve the constraint equations.
The quadrupole solution requires specification [16] of

the quadrupole moment I(u), its derivatives
I"'(v):—dI(v)du and I' '(v), and the integrals
I ' "(u )—:I 'du 'I ( u

'
) and I' '( u ). (Asymptotically,

It + ~I( 'sin 8/r. ) Here the advanced time is
v = t + r ro a—nd the wave is centered at r =ra (chosen
so that the gravitational field is initially weak, i.e.,
ro ))M, where M is the packet mass) at t =0.
We adopt a wave packet defined by I' '( v)
=AaA, [1—(u/A, ) ], where 3 is the amplitude para-
meter, A, is the width parameter, and ~ is a constant,
x= »2(«v'143/n Th.e second derivative of the quadru-

pole moment is

I' '(u) =360AaA, [1—20(u/)(, ) +70(v/A, )4

—84(v/A. ) +33(u/A)'], lvl (&, (2)

ds = adt +P—[e " (dr+P"dt)

+ r 2e 2g/3(d g+ pedt )2

+e " r singdp],

where a is the lapse function, p" and p are shift vector
components, P is the conformal factor, and i) is the even-

parity "radiative" variable. The extrinsic curvature E'
and other tensors are projected on coordinate bases.

The maximal slicing condition E;=0 results in an el-

liptic equation for a. Components p" and p are related
by a first-order elliptic system, which arises to maintain
the quasi-isotropic form of the line element. For these
vacuum models a partially constrained evolution scheme
is used, in which the elliptic Hamiltonian constraint
equation is solved on each time step to find (t while rt,
E'„,E+, and E "& are evolved.

A multigrid algorithm [15] is used to solve the quasilin-
ear Hamiltonian constraint and linear maximal slicing
equations. Fourier decomposition is used to solve the
shift equations. Most results shown here were computed
with a resolution of 290 radial and 18 angular zones. One
quadrant (90') in 8 is modeled since equatorial plane sym-
metry is assumed. A rough parameter survey used a
resolution of 180X18. Test calculations with higher an-

gular resolutions show that quadrupole waves are ade-
quately modeled with 18 angular zones (evenly spaced in
angle).

Teukolsky [16] has described a quadrupole (1=2) or-
der solution to the vacuum wave equation of linearized
gravity in transverse-traceless gauge that can represent
an arbitrary wave form. Abrahams and Evans [14] have
expressed the l =2 solution in quasi-isotropic gauge and
found solutions for other multipole orders. These solu-
tions have been used as code tests [9,17], in investigations
of wave-wave interactions [18],and as the basis for radia-
tion extraction techniques [14,19,11]. To establish initial
data for the present application where the fields are not
arbitrarily weak, we first use an analytic expression for a
linear ingoing quadrupolar wave to fix the freely
specifiable parts of the metric and extrinsic curvature and

which determines the profile of the asymptotic wave
form. We take as the freely specifiable parts of the initial
data the metric function g and the extrinsic curvature
component E"z and fix them to have the form governed

by the linear solution

I (2)(v) I(1)(v)
7l

—2 sin 8,
r 2

(3)

and

+ () I' '(u) I'"(u) I(u)
r r2 r3 r4

I( —1)(v)—6 sin0 cos0 .r' (4)

The constraint equations then determine (t, , E"„,and K+ .
The wave form, shown in the inset of Fig. 1, has a

characteristic wavelength =X. In the linear limit, the
mass of the wave packet is

M linear g 2g1

2~

For nearly linear initial data, the wave packet's
Arnowitt-Deser-Misner (ADM) mass M is typically
M (M""""by a fraction of 0 (Mz/ro).

A one-parameter sequence of gravitational wave implo-
sions has been explored by varying the dimensionless am-
plitude 3 or, equivalently, the strength parameter
0=2vrM&/A, = A . Imploding waves with O«1 pass
through themselves, only weakly self-interacting, and ex-
plode outward virtually unaffected. Stronger waves hold
themselves together briefiy as a geon [4), interacting non-

linearly, before exploding outward. For strength parame-
ters sufficiently high (8)8„;,=0.80) the geon collapses
and forms a black hole. Some portion of the wave-packet
mass is trapped by the collapse while part of the wave es-
capes before the hole forms. Because the collapsing geon
is asymmetrical, it initially forms a distorted black hole
and some of the mass-energy emerges as quasi-norrnal-
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mode (QNM) radiation as the black hole rings down.
When a black hole forms, the maximal time slices

penetrate the horizon so that the hole's interior ends up
being modeled in addition to the exterior. This leads to
well-known problems in resolving the interior of the hole.
Maximal time slices have been demonstrated to approach
a limiting slice inside the horizon, with the obvious ad-
vantage that the domain of development avoids curvature
singularities. A disadvantage is that a spatial coordinate
singularity is asymptotically approached on the limiting
time slice, which manifests itself as a throat inside the
horizon of ever-increasing proper length [20]. Present
schemes require that this throat region be resolved. The
rapid lengthening of the throat produces sharp radial gra-
dients in the fields and, without compensation, the simu-
lations lose resolution and all accuracy within a time
At —10M&H of forming the hole. Compensation can be
afforded by allowing radial mesh points. to have time-
dependent coordinate locations [8]. We use such a mov-
ing mesh algorithm to maintain resolution of the throat
after a black hole forms. Radial mesh points are redistri-
buted within a radius r 6.5M, preserving the original
resolution of much of the exterior where gravitational ra-
diation emerges.

The wave form is extracted by two separate means.
The first computes and analyzes the Weyl scalar %2 while
the second analyzes gauge-invariant variables constructed
from the spatial metric (see Refs. [11,14] for details).
Part of the process in each method involves removing the
near-zone field to reveal the approximate asymptotic
wave form. This process is essential, as wave forms must
be read off close to the hole given the brief duration a
simulation remains reliable once a hole forms. To check
consistency, the two wave forms are compared to each
other and to those extracted at other radii. While for

t t +&MBH we expect both methods to approximate
well the asymptotic wave amplitude h+, it appears feasi-
ble to obtain useful results at radii as small as
r,„„„,—8MaH (used with the %2 method to obtain the
wave form plotted in Fig. 3).

We have computed a spacetime that forms a black hole
starting from an initial wave with 8=1.06=1.38„;,.
Using the moving radial mesh faithful results were main-
tained for a time =40MBH after black hole formation.

Figure 1 shows the central value of the lapse function,
a, as a function of time as the wave implodes. Interest-
ingly, the imploding wave causes a, to oscillate several
times before collapsing exponentially as the black hole
forms. The exponential collapse proceeds with an e-
folding time of about t, =2.3MBH, distinct from the
value t, =1.80M~H previously found for spherical dust
collapse on maximal slices [21]. For comparison, Fig. 1

also displays a, versus time for a spacetime containing a
weaker wave, 0=0.578, that fails to form a hole. Similar
oscillations occur, reaching a, '"=0.4 before the wave
emerges.

We searched for MOTS's in the spacetime using a
shooting method [22]. As anticipated by previous studies
(e.g. , Ref. [20]) we locate both the outermost MOTS (the
apparent horizon) and another inner one. In Fig. 2 the
coordinate positions of these surfaces are superimposed

.00. I
I

~ ~ ~ «C
~ ~ ~ ~ ~

~ ~~ ~ ~
~ ~ ~ V
~ ~ ~~ ~ ~ ~

-1.0
0.10

0.05

0.00

I 1 I I
I

I I I I
I

I

H -2.0

0

-0.05

-0.10
0 10 20 30

-3.0

-4.0 I I I I I I I I I

20 40

t Mp

60 80 100

0.5

0.0

—0.5

0.5

0.0

—0.5

-0.5 0.0 0.5 —0.5 0.0 0.5 —0.5 0.0 0.5

FIG. 2. Locations and evolution of marginally outer-trapped
surfaces that arise as the imploding wave forms a black hole.
Marginally outer-trapped surfaces are depicted by dashed
curves. Contours of the radiative variable g are shown, linearly
spaced between values of —0.9 and 0.9. Coordinate radii are in
units of the final black hole mass MBH. Coordinate times for
the frames (read left to right, then top to bottom) are

0 42M~H ~ 0 02MgH ~ 1 55MBH ~ 2 82MgH ~ 4 18MgH ~

and 5.63MBH.

FIG. 1. Central value of the lapse function a, for two
imploding-wave spacetimes versus coordinate time (scaled to
respective values of M~). Cases shown are for strength parame-
ters 8=1.06 (solid curve) and 8=0.578 (dashed curve). The
latter wave, being weaker, implodes and then reemerges, taking
the central lapse down to a, '"=0.4. The solid curve depicts the
strong oscillations in and subsequent exponential collapse of the
lapse (with maximal time slicing) as the black hole forms. The
inset shows the initial radial profile in g, and hence the shape of
the wave packet, for this case. The radial scale of the wave
form in the inset matches the temporal scale of the lapse plot,
making evident the effect of the radial structure of the wave
packet on a, .
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on contours of the radiative variable g. When the black
hole first forms (at t =37.1M ), these two surfaces coin-
cide. As the black hole evolves, the inner surface shrinks
as the region of trapped surfaces engulfs the interior
while the apparent horizon grows until it coincides with
the event horizon. In Oppenheimer-Snyder dust collapse
the inner MOTS reaches zero radius at the singularity.
With maximal slicing, the time slices limit well away
from the singularity causing the proper location of the
inner MOTS to freeze. We observe a similar e6ect in this
new spacetime, with the area of the inner MOTS freezing
at a value corresponding to a mass of 0.76MBH (within a
time b, t = 10M&). Note in Fig. 2 that this surface appears
to shrink to r =0. This is evidence of quasi-isotropic spa-
tial gauge giving rise to an impending spatial coordinate
singularity as the limit slice is approached, causing the
coordinate radii of the inner edge of the throat and all
points interior to vanish exponentially.

The mass of the apparent horizon (computed from
its area as QA ~H /16'), when it first appears, is

M~H =0.9MaH, but climbs to within 4% of its ultimate
mass in a time of about 3M and within 1% after 10M .
Ultimately, in the case reported here, the mass of the ap-
parent horizon reaches MBH =0.90M . A recent study of
massless scalar field collapse in spherical symmetry [23]
has shown that a black hole with an arbitrarily small
mass, compared to the mass of the wave packet, may be
formed from a wave packet whose amplitude, or other
parameter p, is suSciently close to a critical value. A
power-law relation has been discovered between the black
hole mass and the critical parameter separation of the
form MBH —C~p —p„;,~~, an apparent example of critical
phenomena. In another paper [24] we address the issue of
critical behavior in axisymmetric gravitational radiation
collapse.

In Fig. 2 we also observe how coordinate radius distor-
tions of the apparent horizon evolve as the black hole
rings down. The apparent horizon is prolate when it first
forms but by a time of about 4MBH later is spherical and

by the final frame of Fig. 2 is oblate. The time scale of
this oscillation is consistent with the period of the lowest
i =2 QNM. A similar oscillation occurs in the ratio of
polar-to-equatorial apparent horizon circumferences.

The outgoing quadrupole radiation emerging from the
black hole is extracted using the methods previously de-
scribed. Shortly after the apparent horizon first appears
the wave form is dominated by QNM radiation (see Fig.
3). A least-squares fit is made of the wave form
with the two most slowly damped quadrupole Schwarzs-
child QNM's (co& = (0.373 67+0.088 96i) XMBH and
co2=(0.34844+0.27469i) XMsH [25]). The fit is made
between the times u =3MBH and u =45M~H. The time
u =0 corresponds roughly to when the black hole's for-
mation is causally apparent at the wave extraction radius.
Prior to u =0 a remnant of the original wave packet es-
capes ahead of the forming black hole. Near u =0 the
black hole's mass is still increasing and the wave form is
not yet accurately given by the QNM fit. After
u = 3MBH the QNM fit represents the wave form to about
1% (with an I.2 norm of 2.9X10 computed over the
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following two oscillations). Despite having been formed
entirely from a quadrupole wave, the black hole's initial
distortion is small; the total energy in outgoing QNM ra-
diation is just over 2% of the black hole mass.

Using the 42 radiation extraction procedure mentioned
above, we can also compute the l =4 outgoing radiation
wave form. A least-squares fit analogous to that per-
formed for I =2 again finds excellent agreement between
this radiation and a superposition of Schwarzschild
QNM's —in this case the three most slowly damped i =4
QNM's. By varying the mass and searching for the fit to
the wave form that minimizes the L2 norm, we have an
independent estimate of the black hole mass. The mass
we obtain from this method is consistent with the mass
computed from the area of the apparent horizon at a lev-
el of l%%uo.
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u =(t—t» —r.)/Mb„

FIG. 3. Gravitational radiation (1=2) wave form emitted
following black hole formation and normal mode fit. The ex-
tracted radiation signal (crosses) is shown plotted along with a
fit (solid curve) of the signal using the two lowest-order
Schwarzschild 1=2 normal modes. The wave form is plotted
versus retarded time relative to the epoch of black hole forma-
tion. Dotted and dashed curves show the two normal modes
that comprise the fit of the wave form.
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