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Universality in axisymmetric vacuum collapse
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Evidence of universality is observed in the critical behavior of axisymmetric vacuum gravitational
collapse. The threshold of black hole formation in the future development of time-antisymmetric
initial data is found numerically and compared to previous results based on ingoing pulses of gravi-
tational waves. The power-law behavior of the black hole mass is again found near the critical point
and the critical exponent value P 0.36 is consistent with our previous determination despite stark
difFerences in the two sets of initial data. Similar evidence of universality is exhibited by the scaling
factor 4 of the echoes in the gravitational 6eld produced in the central region of collapse.
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I. INTRODUCTION

Critical phenomena have recently been shown to occur
near the threshold of black hole formation in several types
of gravitational collapse. This behavior was first observed
in the collapse of scalar waves in spherical symmetry [1]
and subsequently in the collapse of gravitational waves in
axisymxnetry (Ref. [2], hereafter paper 1). Critical phe-
nomena have now also been observed in radiation fluid
collapse [3]. The vacuum case is significant because it
implies these phenomena are generic features of general
relativity.

A process for Ending the threshold of black hole forma-
tion and associated critical phenomena is to compute the
future development Si, [p] of elements of single-parameter
families of Cauchy data, with p labeling the data sets
within a family and k labeling difFerent families. So-
lutions are computed numerically and the critical point
p* of onset of black hole formation in any family is nar-
rowed down by bisection. In this way, p* separates super-
critical from subcritical solutions and one can view p as
characterizing the strength of the ensuing gravitational
self-interaction.

Not all parametrizations of Cauchy data will sufBce.
In the vacuum gravity case studied here and in paper 1,
we know from the work of Christodoulou and Klainer-
man [4] that Cauchy data comprised of sufficiently weak
gravitational waves avoid the future formation of singu-
larities. In contrast, Beig and O'Murchadha [5] have
given suKcient conditions that configurations of gravi-
tational waves produce apparent horizons, and presum-
ably black holes. As we showed in paper 1 and show

here, the constructive process of locating the black hole
threshold works in vacuum collapse because at least some
parametrizations of the initial data can be found to
smoothly interpolate between weak and strong Geld lim-
its.

Critical behavior is observed as p m p*. In near-
critical solutions with p ) p*, the black hole mass is
found to have a power-law dependence on critical sepa-
ration: MsH oc (p —p*)~. Choptuik [1] found the critical
exponent in scalar field collapse to be near P 0.37
and universal in the sense of being independent of the
details of the initial data. In paper 1, we investigated
a sequence of initial data representing ingoing gravita-
tional wave pulses. We also found that near the critical
point the black hole mass follows a power law and that it
has a critical exponent that is numerically indistinguish-
able from the scalar-Geld case. This power-law behavior
implies that in classical general relativity processes ex-
ist whereby, in principle, infinitesimal black holes can be
formed, possibly representing a violation of cosmic cen-
sorship [6]. The power-law behavior also allows an anal-

ogy to be drawn to static critical phenomena, suggesting
a natural association of black hole mass with an order
parameter [2].

Another connection with standard critical phenomena
is the observation of self-similarity, or scaling [7], in near-
critical solutions. In both scalar-Geld collapse and gravi-
tational wave collapse, the nonlinearities induce the fields
to oscillate in a scale-free, self-similar fashion that be-
comes evident in Dear critical solutions with p p*. For
example, in the scalar field case [1] the scalar field P
asymptotically approaches a scaling relation (or discrete
self-similarity) of the form
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where p and r are logarithms of proper (areal) radius
R and central proper time T: p = lnR+ ~ and ~ =
ln(T* —T) + v. The time T* can only be determined
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g(p —Ap, t„) = g(p, t„+i), (2)

after the search locates p* and it represents the finite ac-
cumulation time of the infinite number of echoes implied

by Eq. (1). The constant tc is a family-specific length
scale. Choptuik [1] found 6 3.4 and evidence that it
too is universal. As reported in paper 1, we also observed
oscillations in the vacuum gravitational field in the cen-
tral region of collapse. Using oscillations of the central
value of the lapse function to time the echoes, we found
evidence of scaling in the radial dependence of the met-
ric. For example, the metric variable i1 (defined below)
was found to scale like

In this paper, we present results obtained from a new

sequence of spacetimes generated by initial data that is

starkly diferent &om that considered in paper 1. The
properties of near-critical spacetimes in this new se-

quence, when compared to those of paper 1, provide ev-
idence of the universality of both P and A~. These new

calculations also allow us to probe closer to the critical
point and to estimate the time-scaling constant 6 . In
Sec. II we brieQy describe the gravitational Geld variables
and give the form of the new Cauchy data. In Sec. III
our numerical results are discussed and compared with
our earlier calculations.

where p = lnr is the logarithm of the quasi-isotropic ra-
dial coordinate and t„ label the coordinate times of max-
ima in the central value of the lapse function. We dis-
tinguish between radial and temporal scaling constants,
though E~ = 6 is anticipated based upon results in
scalar-field collapse [1]. In paper 1 we were only able to
determine a radial scaling constant and found it to be
b, ~ 0.59, quite difFerent from the scalar-field case. The
value of b, , expressing the difFerences in the logarithm
of central proper times associated with times t„, could
not be determined sufficiently well.

II. TIME-ANTISYMMETRIC CAUCHV DATA

We compute axisymmetric, asymptotically Hat vac-
uum spacetimes using the 3+1 formalism [8], with the
maximal time-slicing condition and quasi-isotropic spa-
tial gauge. Details of the equations we solve can be found
elsewhere [2,9]. Here we mention the gravitational field
variables in order to describe the Cauchy data. The line
element in these coordinates is

ds = ndt +P—[e "~ (dr+P"dt) +r e "~ (d8+P dt) +e "~ r sin Hdy ],

where n is the lapse function, P" and P are shift vec-
tor components, P is the conformal factor, and g is an
even-parity, "dynamical" metric function. The symme-
tries and the time-slicing condition reduce the number of
linearly independent extrinsic curvature components to
three, and for these we use the projection of K'~ on the
spatial coordinate basis: A = K"„+2K~~, K~~, and
K"e. The momentum constraints further restrict these,
so that only one component is &eely specifiable. Simi-
larly, the conformal factor P must satisfy the Hamilto-
nian constraint, making g the only freely specifiable part
of the three-metric. The shift components P" and Ps
and lapse function a are determined by the kinematical
conditions.

Previously we investigated imploding pulses of grav-
itational waves and found critical phenomena [2,10].

Here we compute the future development of time-
antisymmetric initial data (the same solution results if
X'~ ~ —X'~ and t ~ t), which ar—e constructed so
as to concentrate mass energy in a compact region &om
the outset. Primarily because of its simpler structure
and initial concentration, the time-antisymmetric initial
data have enabled us to probe closer to the critical point.
In order to be able to extend our parametrized Cauchy
data to the weak-field limit and there have analytic ex-
pressions, we use the form of a general linear solution as
a basis for construction all of the data sets. The gen-
eral solution to the equations of linearized gravity [11]
for a quadrupole E = 2 wave, when transformed to quasi-
isotropic coordinates and maximal slices, gives the follow-

ing time-antisymmetric form for g and K 8 after adding
outgoing and ingoing parts:

(4)

(I~'l (u) + I~'& (u) I&'l (u) —I&'l (u) I(u) + I(v) f~-'l (u) —y~ 'l (u) )+3 , +6 , +6 sin 28.
r r r r
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The solution involves derivatives of an arbitrary function
I( ) [where dI(")(z)/dz = I&"+ ) and where I itself is
the quadrupole moment] of retarded u = t —r —ro or
advanced v = t + r —ro time, with ro an initial radius.
We choose ro ——0 so the mass energy is concentrated
near the origin. We set b2(t = 0) = —2I(i)(0), which is
necessary to ensure the regularity of the initial data at the
origin. Equations (4) and (5) are taken as the forms of
the &eely specifiable data regardless of the proximity to
the weak-field limit. To compute derivatives conveniently
and to concentrate the mass-energy initially, the function
I 2)(z) is taken to have the form

I( )(z) = ac„A H„(z/A)e * ~, (6)

where a is an amplitude parameter, c„= ((225/Svr)2/
[(2n+ 1)!!])I is a normalization constant, A is a width
parameter, and II„are Hermite polynomials. [Note that
these functions I(")(z) are not Hermite functions. ] We
consider only the n = 0 case. On substitution of (6) in

(4) and (5), we find that i1 = 0 initially, while K's g 0.
The choice of sign of a is physically significant and we
examined models with a ) 0 only. Values of the param-
eter a which lead to near-critical future developments
give initial data that are far Rom the weak-field limit.
Consequently, specification of the initial data is com-
pleted by solving the momentum and Hamiltonian con-
straint equations to determine A, KI'~, and P. The time-
antisymmetric initial data are pictured in Fig. 1 and com-
pared to the data for ingoing pulses that were used in our
original study (paper 1).

III. EVIDENCE OF UNIVERSALITY

All of the results displayed in this paper were com-
puted at a resolution of 340 radial and 26 angular zones
(over one quadrant). A comparison was made with mod-
els computed with 380 by 38 zones, representing a fac-
tor of 1.5 decrease in discretization scale (the radial grid
is geoinetrically spaced). A moving-mesh algorithm [S]
was employed to maintain resolution of the collapsing,
self-similar region and, for supercritical models, of the
black holes which form. Gravitational waveforms are ex-
tracted at several radii between A and 4A and the outer
boundary of the calculation is set to r „t, 40M„17A,
where M~ is the initial total mass [2,12] which is used to
parametrize all dimensional quantities. Our initial data
sequence is generated by varying the amplitude parame-
ter a. The critical value was found to be a* 6.387495.
The number of significant figures given should be taken
as an indication of the precision of our numerical bisec-
tion not of absolute accuracy. The actual value of a*
we determine is dependent on the details of our mesh
and numerical scheme. For convenience, we have sum-
marized in Table I the critical parameters determined
for both the new time-antisymmetric initial data and the
ingoing-pulse initial data.

In Fig. 2 we show the central value of the lapse function
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FIG. 1. Comparison of time-antisymmetric and ingo-
ing-pulse gravitational wave initial data. The initial radial
profiles of the freely specifiable parts of the gravitational
field, rI (lower frame) and K"s (upper frame), are shown for
near-critical parameter values. The two data sets have been
scaled to a common mass or length scale. Time-antisymmetric
fields are plotted as solid curves while the ingoing-pulse fields
are shown as dotted curves.
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FIG. 2. Evolution of the central value of the lapse func-
tion for near-critical evolutions of time-antisymmetric Cauchy
data. The logarithm (to the base 10) of the central value of
the lapse is shown for supercritical (solid curve) and subcriti-
cal (dotted curve) models as a function of coordinate time in

units of the packet mass M„. The first 12 extrema, approx-
imately, can be associated with the structure of the initial
data. The subsequent oscillations re6ect echoes generated by
the nonlinear self-interaction. In the subcritical case the lapse
approaches unity at late times as the mass energy disperses.
In the supercritical case the lapse finally begins to vanish ex-

ponentially as a black hole forms. The period of echoing is
indicated by the horizontal bar.
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TABLE I. Parameters of initial data sequences with error estimates.

Initial data
Ingoing pulse
Time antisymmetric

0.928 + 0.002
6.3875 + 0.0001

0.37 + 0.02
0.36 + 0.03

b,p

0.60 + 0.05
0.54 + 0.05 0.51 6 0.03

Max. MsH/M„
0.95 + 0.02
0.45 + 0.01

Min. MsH/Mp
0.19 + 0.02
0.058 + 0.01

ao = a(r = O, t) for two near-critical evolutions. Each
of these cases has I(a —a*)/a*I ( 2 x 10 . Roughly,
the first 12 extrema in the oscillations of ao(t) appear to
be primarily caused by the particular shape of the initial
data. The subsequent oscillations are a manifestation
of the echoing of the field seen in near-critical solutions.
This determination has been made both experimentally
by attempting to fit the early lapse oscillations to scal-
ing laws, and by finding close correspondence between
the structure of the initial data and that of the initial
oscillations of the lapse.

As before, when a black hole forms, its mass is de-
termined redundantly by calculating the area of the ap-
parent horizon and by analyzing the E = 4 waveform
and fitting it with a superposition of E = 4 quasinormal
modes [2,9,10]. In Fig. 3, we plot mass as a function
of critical separation for both the time-antisymmetric
and ingoing pulse (paper 1) families. The smallest black
hole we form in the new calculations has a mass MnH =
0.05M~. We find that for these time-antisymmetric con-
figurations trapping more than about one-half of the orig-
inal wave packet requires a » a*. This may depend

strongly on the sign choice of a & 0 and reBect a strong
divergence of radial null rays in the initial data. The up-
per frame of Fig. 3 shows that, close to the critical point,
the black hole mass obeys a power law with an exponent
P 0.36 —0.37 that is numerically consistent with that
found in the ingoing-pulse sequence of paper 1. This co-
incidence of values of the critical exponent, despite stark
differences in the initial data, suggests that the value of
P is universal.

In Fig. 4 we show two radial pro61es of the met-
ric function ri, one obtained from the ingoing-pulse se-
quence of paper 1 and the other obtained from the tirne-
antisymmetric sequence. Both are Rom very near-critical
evolutions. Each family of solutions can be renormalized
by a change in the mass scale associated with the ini-
tial data. A change in the mass scale does not affect the
amplitude of q but will alter the radial coordinate, or in-
troduce a constant offset r. in p = lnr. This single num-
ber is all the information about the initial data that the
solution retains in the asymptotic region (r ~ 0) and it
refiects only a trivial change of scale. In Fig. 4, we rescale
(shift by some ~) one profile to match the other at small
radii. The apparent convergence and considerable agree-
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FIG. 3. Critical behavior of black hole mass. The bot-
tom kame compares, on a linear scale, the black hole
mass as a function of the critical separation a —a* for the
time-antisymmetric (solid triangles) and ingoing-pulse (open
circles) sequences. The masses in the time-antisymmetric
cases have been scaled by the factor Mo ——3.3. The top
kame shows, on a log-log scale, the best-St power law for
black hole mass obtained &om six of the nearest-critical,
time-antisymmetric evolutions. The slope of the St yields
a critical exponent value of P = 0.36.
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FIG. 4. Universality of the echoes in the gravitational Geld.
Equatorial slices of the metric function g are compared for
two very near critical, but subcritical, solutions. One of these
(solid curve) is a time-antisy~vnetric model while the other
(dotted curve) is an ingoing-pulse model. Bold parts of the
curves highlight the self-sim~&ar portions of the oscillations.
A rescaling of the mass scale, implying log@ —+ loge + ~, is
chosen to demonstrate the agreement between the solutions
at small radii.
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ment between these separate computations of the echoes
in the gravitational field lend support to the contention
that there exists a unique, discretely self-similar solution
which all precisely critical models approach in the central
region of collapse and which very near critical solutions
approach on intermediate length scales.

The time-antisymmetric data, by enabling us to com-
pute models nearer the critical point, allow an estimate
of the time-scaling constant 6 to be made. The time of
a given central lapse extremum labeled by N is given by
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r~ —~p + ) h~p exp[ —6 (n —1)j,

where 7p is the central proper time corresponding to the
beginning of the strong-field oscillations and b7p is the
duration of the first echo. Thus, the central proper-time
duration of each echo obeys a power law of the form
d7 /dN = lt exp( —6 X). Each near-critical echo corre-
sponds to two central lapse oscillations or four extrema.
In Fig. 5 we show data points and the results of a power-
law fit for our deepest supercritical model, a = 6.8375.
Data points are shown for each lapse extremum; each
near-critical echo corresponds to two central lapse oscilla-
tions or four such extrema. We obtain a scaling constant
in the range 6 = 0.49 —0.54.

The upper panel of Fig. 6 shows overlapped radial pro-
files of g from the same supercritical model. These were
overlapped after obtaining a best-fit radial scaling con-
stant of A~ = 0.50, which is in agreement with the fit
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FIG. 6. Comparison of radial scaling in supercritical and
subcritical models. Radial profiles of the metric function g, re-
stricted to the symmetry plane e = s'/2, are plotted. The up-

per frame shows profiles from a subcritical solution obtained
at three epoches corresponding to alternate minima of the os-
cillations in ao. The lower frame shows four profiles from a
supercritical solution, which were also obtained at times of
alternate central lapse minima. The radial profiles are shifted
by p ~ p+ nA~ with A~ = 0.58 in the subcritical case and

A~ = 0.50 in the supercritical case.
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for 6 . The second panel shows the radial profiles &om
a subcritical model. From these data, we obtain an esti-
mated radial scaling constant of A~ 0.58, which is con-
sistent with that obtained in paper 1 &om ingoing-pulse
models. We ascribe no significance to this difference but
rather view it as a measure of the uncertainty in the
determination of A~. We believe it reflects the present
limitation in computing in closer proximity of the critical
point and an associated limitation on the range of length
scales between which the solution approaches self-similar
form.
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