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We report development of a code to calculate the scalar self-force on a scalar-charged particle moving on
generic bound orbits in the Kerr spacetime. The scalar self-force model allows rapid development of
computational techniques relevant to generic gravitational extreme-mass-ratio inspirals (EMRIs). Our
frequency-domain calculations are made with arbitrary numerical precision code written in Mathematica.
We extend spectral source integration techniques to the Kerr spacetime, increasing computational
efficiency. We model orbits with nearly arbitrary inclinations 0 ≤ ι < π=2 and eccentricities up to
e ≲ 0.8. This effort extends earlier work by Warburton and Barack where motion was restricted to the
equatorial plane or to inclined spherical orbits. Consistent with a recent discovery by Thornburg and
Wardell in time-domain calculations, we observe self-force oscillations during the radially outbound
portion of highly eccentric orbits around a rapidly rotating black hole. As noted previously, these
oscillations reflect coupling into the self-force by quasinormal modes excited during pericenter passage.
Our results confirm the effect with a frequency-domain code. More importantly, we find that quasinormal
bursts (QNBs) appear directly in the waveform following each periastron passage. These faint bursts are
shown to be a superposition of the least-damped overtone (i.e., fundamental) of at least four (l ¼ m ≤ 4)
quasinormal modes. Our results suggest that QNBs should appear in gravitational waveforms, and thus
provide a gauge-invariant signal. Potentially observable in high signal-to-noise ratio EMRIs, QNBs would
provide high-frequency components to the parameter estimation problem that would complement low-
frequency elements of the waveform.
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I. INTRODUCTION

Recent direct detections of gravitational waves have
inaugurated a new branch of multimessenger astronomy.
These observations of compact binary mergers by advanced
LIGO and advanced Virgo [1–6] have led to discovery of a
new class of heavy stellar mass black holes, confirmed the
primary site of the r-process for creation of heavy elements,
provided strong-field tests of general relativity [7], placed
limits on the astrophysical environments of compact
binaries [8], and made connection with other parts of
astronomy [9,10]. Detection rates are poised to increase
following recent sensitivity enhancements in LIGO and
Virgo, eventual completion of KAGRA [11], and develop-
ment of LIGO-India [12]. Ground-based detectors will be
complemented by the LISA mission [13–16] recently
approved by the European Space Agency, which will be
sensitive to gravitational waves in a lower frequency
band (10−4–10−1 Hz).
A prime target for LISA will be extreme-mass-ratio

inspirals (EMRIs) consisting of a small compact object of

mass μ ≃ 1–60 M⊙ (neutron star or black hole) in orbit
about a supermassive black hole (M ∼ 105–107 M⊙) [17].
With a small mass ratio ϵ ¼ μ=M ≃ 10−7–10−4, a gradual,
adiabatic inspiral occurs, which provides a natural appli-
cation of black hole perturbation theory (BHPT) and
attendant gravitational self-force (GSF) calculations.
Once an EMRI crosses into the detector passband, its
orbital motion will accumulate a total change in phase of
order ϵ−1 ∼ 104–107 radians prior to merger, with the
implication that the small black hole will skim close to
the event horizon hundreds of thousands of times and
provide an unprecedented test of general relativity [18–22].
LISA will also serve as a cosmological probe, detecting
EMRIs out to redshifts of z ∼ 1–3 [21–24].
Waveform templates produced from self-force calcula-

tions will be useful in aiding signal detection of EMRIs
and be essential for parameter estimation, supplanting
kludge waveforms derived from adiabatic inspiral calcu-
lations [22]. Long term self-force inspiral calculations of
Schwarzschild EMRIs are well advanced [25–28], tracking
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the accumulated orbital or gravitational wave phase to
accuracies better than ϕ ≃ 0.1 due to all first-order-in-the-
mass-ratio effects at post-1-adiabatic order [29], lacking
only the orbit-averaged dissipative part of the second-order
self-force. Progress is also beingmade on understanding and
calculating the second-order GSF [30–36]. In the case of
Kerr EMRIs, steady developments have been made in
GSF calculations for circular and bound equatorial orbits
[37–43]. Progress has now been reported [44] in calculating
the GSF on generic Kerr orbits. In principle this latest self-
force result could serve as the basis for long-term inspiral
models of astrophysically relevant EMRIs, but prospects are
dimmed at present by high computational costs of theseGSF
calculations.
In the past, the scalar field self-force analogue [45], where

a scalar point charge orbiting a black hole sources a scalar
wave that acts back on the charge, has frequently beenused as
a simplified model to provide understanding and to develop
tools for use in the gravitational case. The scalar self-force
(SSF) has been computed in Schwarzschild spacetime
[46–61] and in Kerr spacetime using frequency domain (FD)
[62–64] and time domain (TD) calculations [65].
The present work generalizes the previous FD SSF

calculations of Warburton and Barack to arbitrary eccentric
inclined orbits in Kerr spacetime. Part of our procedure
involves calculating modes with the Mano-Suzuki-
Takasugi (MST) analytic function expansion approach
[66–68] using Mathematica. The code serves as a test
bed for developing more advanced physical and numerical
techniques to aid downstream work in making generic Kerr
GSF calculations more practical. For example, in this paper
we adapted spectral source integration (SSI) [69] to the
Kerr generic-orbit source problem, significantly optimizing
computational efficiency. Physically, we are able to explore
rapidly the SSF in interesting high eccentricity and high
black hole spin systems and follow-up work will examine
the behavior of resonant-orbit configurations.
A primary physical result in this paper is confirming with

our FD calculations the existence of quasinormal mode
excitations in the self-force, which was discovered by
Thornburg in TD SSF simulations of highly eccentric
Kerr orbits. This finding was discussed in a series of
talks [70–72] by Thornburg and reported in a paper by
Thornburg and Wardell [65]. Oscillations are observed in
the self-force during the outbound portion of certain highly
eccentric orbits following periastron passage near a rapidly
rotating black hole. These oscillations were confirmed to fit
the least-damped overtone of the l ¼ m ¼ 1 quasinormal
mode. We see precisely the same behavior in the self-force
in our FD calculations (see V B) of a similar highly
eccentric (e ¼ 0.8) equatorial orbit about a rapidly rotating
(a=M ¼ 0.99) primary.
More interestingly, we decided to take a look at the

waveform in this same model to see if the excitation is
imprinted in an asymptotically accessible signal. Confirming

our expectation, it is indeed possible to discern repeated
(albeit faint) quasinormal bursts (QNBs) in the waveform
following each periastron passage. Figure 1 shows the
asymptotic waveform over a period of two radial librations
at several observer angles. Without further processing, no
quasinormal oscillations are directly apparent. However, by
high-pass filtering or otherwise enhancing high frequencies
in the signal, we can make the low-level QNBs evident. One
particular way of enhancing high frequencies is shown in
Fig. 2 where the log (base 10) of the absolute value of the
second time derivative of the waveform is plotted.

FIG. 1. The asymptotic waveform rΦ=q visible to observers at
several polar angles: θobs ¼ π=2 (blue solid line), θobs ¼ π=4 (red
dashed line), θobs ¼ 0 (black dot dashed line). The plot window
covers two radial librations. Computed from an eccentric equa-
torial orbit (with associated apsidal advance), the waveform is
biperiodic. Sharp transitions roughly correspond to the retarded
time of successive periastron passages.

FIG. 2. Log (base 10) of the absolute value of the second
time derivative of the waveform in Fig. 1 (for the observer at
θobs ¼ π=2). The second time derivative enhances higher
frequencies, making the faint QNBs visible in the aftermath of
each periastron passage.
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(Computing the second derivative is reminiscent of some
numerical relativity codes where, to extract gravitational
radiation, ψ4 is first obtained, fromwhich the waveforms are
derived by integrating twice or by Fourier processing.)
Now the QNBs are revealed, superimposed on the lower
frequency waveform components. Use of a high-pass filter
has similar effect (see V B 1). We show in that later section
that the QNBs are in fact a superposition of (at least)
four least-damped quasinormal modes, with l ¼ m ¼ 1
through l ¼ m ¼ 4.
Our scalar self-force results suggest that comparable

QNBs may appear in the gravitational waveform, which
would provide a gauge-invariant signal of the effect. These
bursts are faint and might be fainter still in the gravitational
case where l ¼ m ¼ 2will be the first mode excited. On the
other hand, we have not yet conducted a thorough param-
eter survey to find where the excitation is maximized.
Furthermore, it is entirely possible that even faint QNBs
might be detected and measured using template matching.
QNBs in EMRIs provide the exciting possibility of
measuring black hole properties by repeatedly “tickling
the dragon’s tail,” as opposed to settling for the single final
excitation of quasinormal modes seen in LIGO/Virgo
mergers. Finally, QNBs might reveal the presence of
EMRIs in systems with heavy M ≳ 107 M⊙ primaries,
where the usual, low-frequency parts of the signal are
difficult to detect but the periodic, higher-frequency QNBs
lie in LISA’s area of best sensitivity.1

The layout of this paper is as follows. Section II covers
the formalism, with Sec. II A discussing the general nature
of the scalar self-force, Sec. II B reviewing the generic
geodesic motion problem and setting our notation, and
Sec. II C outlining the Fourier-harmonic decomposition of
the scalar Teukolsky equation. Section III gives key details
about the techniques we developed and adapted to effi-
ciently handle each phase of the generic Kerr SSF problem
including spectral solution of the orbital motion
(Sec. III A), optimizations of the MST method for solving
the homogeneous wave equation (Sec. III B), and efficient
spectral source integration for solutions to the inhomo-
geneous wave equation (Sec. III C). Section IV discusses
the regularization procedures and computation of all four
components of the scalar self-force. We also discuss there
the split between conservative and dissipative parts of the
self-force on generic, nonresonant Kerr orbits. In Sec. V we
present our results, including the QNB-in-waveform dis-
covery highlighted above, and discuss various implications.
For this paper we use units such that c ¼ G ¼ 1, use metric
signature ð−þþþÞ, and the sign conventions of Misner,
Thorne, and Wheeler [73].

II. REVIEW OF THE FORMALISM FOR THE
SCALAR SELF-FORCE PROBLEM

A. The scalar self-force

The SSF model we consider assumes a point particle of
mass μ and scalar-charge q in bound motion about a Kerr
black hole of massM and spin parameter a. Perturbations in
the gravitational field and the associated GSF are neglected.
Instead the particle motion generates a scalar field Φ,
whose local behavior acts back on the scalar charge to
produce the SSF. Absent the SSF, the motion of the particle
is a geodesic in the Kerr spacetime. The scalar field satisfies
the curved-space Klein-Gordon equation (i.e., the spin-0
Teukolsky equation [74])

gαβ∇α∇βΦ ¼ −4πρ; ð2:1Þ

where ρ is the scalar (point) charge density and gαβ is the
(inverse) Kerr metric. Causal boundary conditions are
selected, making the resulting solution the retarded field
Φret. The particle’s timelike worldline is xαpðτÞ and its four-
velocity is uα ¼ dxαp=dτ, where τ is proper time. Formally,
the SSF will make the motion nongeodesic and the SSF will
in principle depend upon the entire past inspiral. However,
if q is sufficiently small and the SSF weak, the inspiral will
be adiabatic, mimicking the GSF case with EMRIs. Making
this assumption here, we take the past worldline as some
(arbitrary) bound geodesic and calculate the SSF along that
fixed motion, the result being the (approximate) geodesic
self-force. While not a topic of this paper, once the geodesic
SSF is obtained in this way, it might be used in an
osculating elements calculation to determine the inspiral
as is done with the GSF [25–27,75,76]. The multiple
periodicity of the background geodesic makes it possible
to solve the field equation in the FD, which we do in
this paper.
The retarded field diverges at the point charge, neces-

sitating a regularization procedure [45] to compute the SSF.
Detweiler and Whiting [77] gave one particular separation
of the retarded field into regular and singular pieces
Φret ¼ ΦR þΦS, where ΦS satisfies the same inhomo-
geneous wave equation (2.1) as Φret but with (different)
boundary conditions such that ΦR not only satisfies the
source-free wave equation but is the part of the field solely
responsible for the SSF

uβ∇βðμuαÞ ¼ Fα ¼ lim
x→xp

q∇αΦR: ð2:2Þ

Because the SSF is not orthogonal to the four-velocity [45],
all four components of Fα must be determined. Substitution
of Φret or ΦS in (2.2) in place of ΦR produces correspond-
ing forces, Fret

α and FS
α, both of which are divergent on the

particle worldline. Thus even though one might write

1During discussion at a recent (May 2019) LISA Waveform
Working Group meeting we were made aware that this signal has
been observed in a gravitational self-force code; M. van de
Meent, private communication.
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Fα ¼ Fret
α − FS

α; ð2:3Þ

the expression is not immediately useful given the diver-
gences. Instead, one practical procedure is mode-sum
regularization [78,79], wherein the retarded, singular,
and regular fields (as well as their associated forces) are
decomposed into angular harmonics (typically using scalar
spherical harmonics Ylm for everything including compo-
nents of vectors). The individual mode amplitudes are finite
and if the subtraction in (2.3) is taken before summing
(over l), the finite SSF is recovered

Fα ¼
Xþ∞

l¼0

ðFret;l
α − FS;l

α Þ: ð2:4Þ

The singular part, FS;l
α , can be obtained by local analytic

expansion in an l-dependent series with l-independent
regularization parameters. The lower-order parameters
are known [79]. The structure of higher-order terms is
also understood [50] and analytic expressions have been
given for certain restricted motions on Schwarzschild
[80,81] and Kerr [82] backgrounds. We fit numerically
[50] for higher-order parameters in our more general
application (Sec. IV).
With an assumed fixed background geodesic, the SSF

can be decomposed [63] into dissipative (Fdiss
α ) and

conservative (Fcons
α ) pieces

Fα ¼ Fdiss
α þ Fcons

α ; ð2:5Þ

though assembling these pieces of the SSF from sym-
metries of the retarded field is more subtle for generic,
nonresonant orbits on Kerr. The dissipative part Fdiss

α is
responsible for the secular orbital decay producing the
inspiral, while Fcons

α serves to perturb the orbital parame-
ters. The dissipative self-force does not require regulari-
zation, as it is derived from the difference between retarded
and advanced fields, Φdiss ¼ 1

2
ðΦret −ΦadvÞ. The regulari-

zation procedure is necessary to determine Fcons
α . This

decomposition is further discussed in Sec. IV B.

B. Bound geodesic motion in Kerr spacetime

We briefly review the generic geodesic motion problem
in Kerr spacetime to set our notation for use later in the
paper. In Boyer-Lindquist coordinates ðt; r; θ;φÞ a Kerr
black hole of mass M and spin a has the line element

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 −

4Marsin2θ
Σ

dtdφ

þ Σdθ2 þ sin2θ
Σ

ðϖ4 − a2Δsin2θÞdφ2; ð2:6Þ

where

Σ ¼ r2 þ a2cos2θ; ð2:7Þ

Δ ¼ r2 − 2Mrþ a2; ð2:8Þ

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: ð2:9Þ

We define the conserved specific energy and z-component
of the specific angular momentum

E ¼ −ξμðtÞuμ ¼ −ut; ð2:10Þ

Lz ¼ ξμðφÞuμ ¼ uφ; ð2:11Þ

using the Killing vectors ξμðtÞ and ξμðφÞ, and define the

(scaled) Carter constant

Q ¼ Kμνuμuν − ðLz − aEÞ2; ð2:12Þ

associated with the Killing tensor Kμν [83].
The geodesic equations are then [73,84,85]�
Σp

drp
dτ

�
2

¼ ½Eϖ2
p − aLz�2 − Δp½r2p þ ðLz − aEÞ2 þQ�

≡ VrðrpÞ; ð2:13Þ
�
Σp

dθp
dτ

�
2

¼ Q − L2
zcot2θp − a2ð1 − E2Þcos2θp

≡ VθðθpÞ; ð2:14Þ

Σp
dφp

dτ
¼ ΨðrÞðrpÞ þΨðθÞðθpÞ; ð2:15Þ

Σp
dtp
dτ

¼ TðrÞðrpÞ þ TðθÞðθpÞ; ð2:16Þ

where the separate r-dependent and θ-dependent functions
appearing in the last two equations are

ΨðrÞðrÞ ¼ aE
�
ϖ2

Δ
− 1

�
−
a2Lz

Δ
; ð2:17Þ

ΨðθÞðθÞ ¼ Lzcsc2θ; ð2:18Þ

TðrÞðrÞ ¼ E
ϖ4

Δ
þ aLz

�
1 −

ϖ2

Δ

�
; ð2:19Þ

TðθÞðθÞ ¼ −a2Esin2θ: ð2:20Þ

Instead of parametrizing the orbit by E, Lz, and Q,
alternative constants of the motion can directly characterize
the size, shape, and orientation of the orbit. The potential in
(2.13) is a quartic polynomial in r and has four roots, which
we denote by the following ordering: r1 ≥ r2 ≥ r3 ≥ r4.
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For a bound, stable orbit the two largest roots are finite and
give the limits of radial motion. Analogous to Keplerian
orbits, these extrema serve to define an eccentricity e and a
semi-latus rectum p

rmax ¼ r1 ≡ pM
1 − e

; rmin ¼ r2 ≡ pM
1þ e

: ð2:21Þ

Having fixed e in this way, it is useful to follow [85] in
defining the dimensionless quantities p3 and p4 from the
final two roots for use in later expressions

p3 ≡ r3ð1 − eÞ=M; p4 ≡ r4ð1þ eÞ=M: ð2:22Þ

An inclination angle ι is then defined from Lz and Q [86]

cos ι≡ Lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

p : ð2:23Þ

It is straightforward to choose e, p, and ι as orbital
parameters and then solve for E, Lz, and Q [87,88].
A key additional reparameterization is to switch from τ

to Mino time λ [89]

dλ ¼ Σ−1
p dτ; ð2:24Þ

which allows the r and θ motions to separate

�
drp
dλ

�
2

¼ VrðrpÞ;
�
dθp
dλ

�
2

¼ VθðθpÞ: ð2:25Þ

These equations yield solutions that are functions of
the new curve parameter λ, e.g., rpðλÞ, with confusion
over the slight abuse of notation avoided by explicit
reference to the new curve parameter. The subscript p
continues to mean “on the worldline.” With this in mind,
further reparameterizations are made by introducing
Darwin-like [90] angular coordinates ψ and χ [87,88]

rpðψÞ¼
pM

1þecosψ
; cosθpðχÞ¼ ffiffiffiffiffi

z−
p

cosχ; ð2:26Þ

z� ≡ L2
z þQþ β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

z þQþ βÞ2 − 4Qβ
p

2β
; ð2:27Þ

where β≡ a2ð1 − E2Þ. In the last equation, z� are roots of
Vθ, with ordering of roots taken to be 0 ≤ z− ≤ 1 ≤ zþ and
z− associated with the turning points.
Equations (2.25) and (2.26) may be combined to find

differential equations relating ψ and χ to λ, or vice versa
with functions λ ¼ λðrÞðψÞ and λ ¼ λðθÞðχÞ satisfying

dλðrÞ

dψ
¼ að1 − e2Þ½ðp − p4Þ þ eðp − p4 cosψÞ�−1=2

Mβ1=2½ðp − p3Þ − eðpþ p3 cosψÞ�1=2
≡ PðrÞðψÞ; ð2:28Þ

dλðθÞ

dχ
¼ ½βðzþ − z−cos2χÞ�−1=2 ≡ PðθÞðχÞ: ð2:29Þ

The definitions of ψ and χ in (2.26) are made to improve the
behavior of the differential equations at what would
otherwise be turning points for r and θ. The solutions
for λðrÞ and λðθÞ can be expressed as integrals

λ ¼ λðrÞðψÞ ¼
Z

ψ

0

PðrÞðψ 0Þdψ 0 þ λðrÞ0 ; ð2:30Þ

λ ¼ λðθÞðχÞ ¼
Z

χ

0

PðθÞðχ0Þdχ0 þ λðθÞ0 ; ð2:31Þ

where λðrÞ0 and λðθÞ0 are integration constants, with λðrÞ0 −
λðθÞ0 ≠ 0 providing initial conditions for orbits that do not
simultaneously pass through r ¼ rmin and θ ¼ θmax. The

effect of choosing a nonzero value for λðθÞ0 , for example, is
demonstrated in Fig. 4. The integrals in Eqs. (2.30) and
(2.31) may be reexpressed in terms of elliptic integrals
[88,91] and thereby regarded as solved. We adopt an
alternate approach in this paper, based on results in [69]
and the observation that the integrands in Eqs. (2.30) and
(2.31) are smooth and periodic functions. This allows
functions like PðrÞðψÞ in Eq. (2.28) to be represented by
exponentially convergent Fourier series that can be accu-
rately truncated at some n ¼ N − 1

PðrÞðψÞ ≃
XN−1

n¼0

P̃ðrÞ
n cosðnψÞ: ð2:32Þ

Term-by-term integration of (2.30) then gives

λðrÞðψÞ ≃ P̃ðrÞ
0 ψ þ

XN−1

n¼1

P̃ðrÞ
n

n
sinðnψÞ þ λðrÞ0 ; ð2:33Þ

with a similar expression for (2.31). The Fourier series

coefficients (P̃ðrÞ
n ) are ostensibly derived themselves from

integrals, but it proves possible in a numerical calculation to
replace the Fourier series representation with the discrete
Fourier transform (DFT). The coefficients in the DFT
are then rapidly and accurately obtained using the fast
Fourier transform (FFT) algorithm. Section III A details
this new application of spectral integration to Kerr orbits;
reference [69] demonstrates the application to integrating
Schwarzschild geodesics.
The periods of motion in r and θ measured in Mino

time are
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Λr ¼ λðrÞð2πÞ − λðrÞ0 ; Λθ ¼ λðθÞð2πÞ − λðθÞ0 ; ð2:34Þ

and the corresponding frequencies with respect to Mino
time are

ϒr ¼
2π

Λr
; ϒθ ¼

2π

Λθ
: ð2:35Þ

Eqs. (2.16) and (2.15) can be reexpressed in terms of
Mino time derivatives and the evolution of t and φ in terms
of λ have the following formal dependence

tpðλÞ ¼ Γλþ ΔtðrÞðλÞ þ ΔtðθÞðλÞ þ t0; ð2:36Þ

φpðλÞ ¼ ϒφλþ ΔφðrÞðλÞ þ ΔφðθÞðλÞ þ φ0; ð2:37Þ

with t0 and φ0 constants. In these expressions the average
rates of accumulation of t and φ in λ are, respectively

Γ ¼ 1

Λr

Z
Λr

0

TðrÞdλþ 1

Λθ

Z
Λθ

0

TðθÞdλ; ð2:38Þ

ϒφ ¼ 1

Λr

Z
Λr

0

ΨðrÞdλþ 1

Λθ

Z
Λθ

0

ΨðθÞdλ; ð2:39Þ

while ΔtðrÞ and ΔφðrÞ are oscillatory functions with period
Λr andΔtðθÞ andΔφðθÞ are oscillatory functions with period
Λθ. These oscillatory functions are described by similar
integrals, and we obtain their numerical solution via
spectral integration in like fashion to Eq. (2.33) (see
Sec. III A). The average motion of t and φ, along with
the Mino time frequencies, then provide the fundamental
(coordinate time) frequencies

Ωr ¼
ϒr

Γ
; Ωθ ¼

ϒθ

Γ
; Ωφ ¼ ϒφ

Γ
: ð2:40Þ

The motion of the particle can then be described by a
discrete frequency spectrum

ωmkn ¼ mΩφ þ kΩθ þ nΩr; ð2:41Þ

with m, k, and n being integers.

C. Scalar wave equation

The charge density ρ, which acts as the source of the
wave equation (2.1), is that of a point charge following the
timelike orbital motion

ρðt;r;θ;φÞ¼ q
Z

δð4Þðxα−xαpðτÞÞð−gÞ−1=2dτ;

¼ q
δðr− rpÞδðcosθ− cosθpÞδðφ−φpÞ

TðrÞðrpÞþTðθÞðθpÞ
;

ð2:42Þ

where
ffiffiffiffiffiffi−gp ¼ Σ sin θ and TðrÞ and TðθÞ are given by

Eqs. (2.19) and (2.20), respectively. The wave equation
is equivalent to the TD spin-0 Teukolsky equation [74]

�ðr2 þ a2Þ2
Δ

− a2sin2θ

� ∂2Φ
∂t2 þ 4Mar

Δ
∂2Φ
∂t∂φ

þ
�
a2

Δ
−

1

sin2θ

� ∂2Φ
∂φ2

−
∂
∂r

�
Δ
∂Φ
∂r

�

−
1

sin θ
∂
∂θ

�
sin θ

∂Φ
∂θ

�
¼ 4πΣρ: ð2:43Þ

1. Separation of variables

Equation (2.43) is amenable to solution via separation of
variables [74,92]

Φ ¼
X
l̂mkn

Rl̂mknðrÞSl̂mknðθÞeimφe−iωmknt: ð2:44Þ

Here Rl̂mknðrÞ is the Teukolsky radial function, Sl̂mknðθÞ is
the spheroidal Legendre function with l̂ and m multipole
indices and spheroidicity σ2 ¼ −a2ω2

mkn (hence the l̂mkn
subscripts). In the above equation and henceforth, the
following condensed notion is introduced to represent
the sum over modes

X
l̂mkn

≡Xþ∞

l̂¼0

Xl̂

m¼−l̂

Xþ∞

k¼−∞

Xþ∞

n¼−∞
: ð2:45Þ

Following Warburton and Barack [63], we use l̂ for
the spheroidal harmonic index and reserve l for the
spherical harmonic index used in the mode-sum regulari-
zation. The FD decomposition in (2.44) assumes bound
motion, with a resulting discrete frequency spectrum
that allows the field to be represented by a multiple
Fourier series.
We follow [92–94] in connecting the Teukolsky func-

tion, Rl̂mknðrÞ, to a new radial function, Xl̂mknðrÞ

Xl̂mknðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
Rl̂mknðrÞ: ð2:46Þ

(Warburton and Barack [62–64] make a different trans-
formation.) Both Rl̂mkn and Xl̂mkn are used in what follows
(see especially Sec. III). Inserting Eqs. (2.44) and (2.46)
into Eq. (2.43), we arrive at two ordinary differential
equations for Xl̂mknðrÞ and Sl̂mknðθÞ�

1

sin θ
d
dθ

�
sin θ

d
dθ

�
−

m2

sin2θ
− a2ω2

mknsin
2θ

− 2amωmkn − λl̂mkn

�
Sl̂mknðθÞ ¼ 0; ð2:47Þ
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�
d2

dr2�
−Ul̂mknðrÞ

�
Xl̂mknðrÞ ¼ Zl̂mknðrÞ; ð2:48Þ

where λl̂mkn is the angular eigenvalue, or separation con-
stant, and r� is the tortoise coordinate

r� ¼ rþ 2Mrþ
rþ − r−

ln
r − rþ
2M

−
2Mr−
rþ − r−

ln
r − r−
2M

; ð2:49Þ

which follows from integrating

dr�
dr

¼ ϖ2

Δ
: ð2:50Þ

Here r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are the outer and inner horizon

radii (roots of ΔðrÞ ¼ 0). Our definition of r� agrees with
e.g., [68,85] but differs from [62–64]. The radial potential
Ul̂mknðrÞ is

Ul̂mknðrÞ ¼ ϖ−8½2amωmknϖ
6 − 6Ma4r − 4Ma2r3

þ a2ϖ4ð1 −m2Þ þ 8M2a2r2 − ω2
mknϖ

8

þ λl̂mknΔϖ4 − 4M2r4 þ 2Mr5�; ð2:51Þ

and Zl̂mknðrÞ gives the radial behavior of the source in
the FD

ρ ¼ −
ϖ3

4πΣΔ

X
l̂mkn

Zl̂mknðrÞSl̂mknðθÞeimφe−iωmknt: ð2:52Þ

2. Radial solutions and time domain reconstruction

General solution of Eq. (2.48) requires two independent
homogeneous solutions, X̂þ

l̂mkn
ðrÞ and X̂−

l̂mkn
ðrÞ, that hold

throughout the region rþ ≤ r ≤ ∞ and have respective
asymptotic dependence

X̂þ
l̂mkn

ðrÞ ≃ eþiωmknr� ; r → ∞; ð2:53Þ

X̂−
l̂mkn

ðrÞ ≃ e−iγmknr� ; r → rþ: ð2:54Þ

Here γmkn ¼ ωmkn −mωþ is the wave number at the
horizon, with ωþ ¼ a=2Mrþ denoting the angular velocity
of the event horizon. The solution X̂þ

l̂mkn
is “outgoing,”

while the solution X̂−
l̂mkn

is “downgoing.” These two can be
combined to construct the causal Green function for the
radial equation (2.48), associated ultimately with the
retarded solution in the TD. The solution of the inhomo-
geneous Eq. (2.48) is then found to be

Xinh
l̂mkn

¼ cþ
l̂mkn

ðrÞX̂þ
l̂mkn

ðrÞ þ c−
l̂mkn

ðrÞX̂−
l̂mkn

ðrÞ; ð2:55Þ

cþ
l̂mkn

ðrÞ ¼
Z

r

rmin

ϖðr0Þ2X̂−
l̂mkn

ðr0ÞZl̂mknðr0Þ
Wl̂mknΔðr0Þ

dr0; ð2:56Þ

c−
l̂mkn

ðrÞ ¼
Z

rmax

r

ϖðr0Þ2X̂þ
l̂mkn

ðr0ÞZl̂mknðr0Þ
Wl̂mknΔðr0Þ

dr0; ð2:57Þ

where

Wl̂mkn ¼ X̂−
l̂mkn

dX̂þ
l̂mkn

dr�
− X̂þ

l̂mkn

dX̂−
l̂mkn

dr�
; ð2:58Þ

is the (constant) Wronskian.
An attempt to use Xinh

l̂mkn
ðrÞ from (2.55) with (2.46) in

(2.44) to make a (time domain) Fourier reconstruction of
the field at points within the libration region rmin < r <
rrmax is fraught with difficulty due to Gibbs oscillations
caused by the delta function source. In this region, at points
away from the worldline, the convergence in k and n is
slow, while derivatives (needed for the SSF) may not even
converge at the particle. The usual path around this
problem, at least in a background spacetime with spherical
symmetry, is the method of extended homogeneous sol-
utions (EHS) [95]. In that case the four-dimensional wave
equation separates into two-dimensional wave equations in
t and r for each spherical harmonic order l, m. Extended
homogeneous solutions are found mode by mode, which
are finite at the particle as needed for mode-sum regulari-
zation. Unfortunately, in Kerr spacetime the angular
decomposition in spheroidal harmonics is inseparably
linked to the transformation into the FD. As Warburton
and Barack [63] have shown however, it is still possible to
define functions on the spherical harmonic basis that can be
extended to the particle location and are finite there.
This procedure begins with determining normalization

coefficients, C�
l̂mkn

, which are found by evaluating c�
l̂mkn

ðrÞ
at the limits of the radial libration region

C�
l̂mkn

¼
Z

rmax

rmin

ϖ2X̂∓
l̂mkn

ðrÞZl̂mknðrÞ
Wl̂mknΔ

dr; ð2:59Þ

and which are used to define the properly normalized
extended homogeneous radial modes in the FD

X�
l̂mkn

ðrÞ ¼ C�
l̂mkn

X̂�
l̂mkn

ðrÞ: ð2:60Þ

These solutions in turn may be used in (2.44) to define
extended solutions in the full time and space domain

Φ� ≡ 1

ϖ

X
l̂mkn

X�
l̂mkn

ðrÞSl̂mknðθÞeimφe−iωmknt; ð2:61Þ

from which the retarded solution to (2.43), at least off the
worldline, can be given as

Φretðt; r; θ;φÞ ¼ Φ−ðt; r; θ;φÞΘðrpðtÞ − rÞ
þΦþðt; r; θ;φÞΘðr − rpðtÞÞ: ð2:62Þ
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While the functions Φ� (2.61) converge exponentially in k
and n and their use eliminates the Gibbs behavior near the
particle in the libration region, the full reconstruction (2.62)
is not of immediate use in calculating the SSF. The
approach taken by Warburton and Barack relies upon using
the representation [96] of spheroidal angular harmonics in
terms of spherical harmonics Ylmðθ;φÞ

Sl̂mknðθÞeimφ ¼
Xþ∞

l¼jmj
bl̂knlm Ylmðθ;φÞ: ð2:63Þ

While the spheroidal harmonics of order l̂ couple to an
infinite number of spherical harmonics, the coupling
coefficients bl̂knlm decay in size rapidly as the difference
in orders jl̂ − lj grows [62], the rate dependent upon the
spheroidicity a2ω2

mkn. In a numerical calculation, the
number of spherical harmonics needed for a given accuracy
can be determined. The coupling coefficients are deter-
mined by a three-term recurrence relation that results from
inserting (2.63) into (2.47).
Substituting (2.63) into (2.61), the five-fold summation

may be reordered to leave l and m for last. This allows the
extended functions ϕ�

lmðt; rÞ to be defined,

ϕ�
lmðt; rÞ ¼

1

ϖ

X
l̂kn

bl̂knlm X�
l̂mkn

ðrÞe−iωmknt; ð2:64Þ

where in a practical numerical calculation the sum over l̂
will be finite in number, as will the sums over k and n given
their exponential convergence. The remaining sums allow
Φ� to be recovered

Φ�ðt; r; θ;φÞ ¼
Xþ∞

l¼0

Xl

m¼−l
ϕ�
lmðt; rÞYlmðθ;φÞ: ð2:65Þ

The functions ϕ�
lmðt; rÞ are not modes in the fullest sense,

since there are no wave equations in t and r that they satisfy.
However, they do derive from linear combinations of
extended (homogeneous) radial modes in the FD, they
provide a decomposition of Φ�, and they are finite at the
location of the particle. These properties are all that is
essential for employing mode-sum regularization, as shown
by [62–64] and as outlined in Sec. IV. Our generalization
here to eccentric inclined orbits introduces no qualitatively
new element in the Kerr SSF regularization, only a further
dimension in the mode calculations.
The homogeneous solutions X̂�

l̂mkn
ðrÞ are often obtained

by numerical integration [62–64] of (2.48). In this work,
however, we use a Mathematica code employing the MST
method (Sec. III B) to derive the mode functions. The
resulting code is very accurate but slow. We are concur-
rently developing and testing a faster, complementary
C-code based on numerical integration of (2.48).

III. ANALYTIC AND NUMERICAL SOLUTION
TECHNIQUES

This section describes some of the analytic and numeri-
cal techniques we use to solve the SSF problem in the
generic Kerr case. It provides some details on spectral
solution of the orbit equations, on efficient use of the MST
method to obtain certain mode functions, and especially on
spectral integration of source terms in the scalar case. The
computational roadmap is as follows:

(i) After specifying the parameters p, e, ι, and a, we
solve for the geodesic motion on Kerr using spectral
integration techniques (Sec. III A). From the geo-
desic, we determine the fundamental frequencies of
the orbit, Ωr, Ωθ, and Ωφ.

(ii) We calculate the radial and polar mode functions for
each frequency and multipole. The polar mode
functions (spheroidal harmonics) are constructed
using Eq. (2.63). We calculate the homogeneous
radial mode functions, X̂�

l̂mkn
, using the MST func-

tion expansion formalism, with Sec. III B serving
primarily to discuss an efficient approach to finding
the near-horizon modes.

(iii) Finally, we discuss in Sec. III C means to evaluate
the normalization constants C�

l̂mkn
, which determine

the scalar field via the EHS method, using spectral
source integration techniques. In the scalar case, it
proves possible to decompose the source integration
(2.59) into products of one-dimensional integrals.

A. Spectral integration of the geodesic equations

As an alternative to using initial value integration, or to
using special functions [88,91], we employ a spectral
(Fourier) integration technique to find the Kerr geodesics
numerically. Spectral integration of the orbital motion
problem in Schwarzschild spacetime was previously care-
fully laid out in [69]. In this subsection we generalize that
approach to generic bound geodesics in Kerr spacetime.
We first consider the dependence of λ on Darwin angles

ψ and χ. The integration for λðrÞðψÞ is given as an example,
but the same approach applies to λðθÞðχÞ. As discussed in
Sec. II B, the function PðrÞðψÞ can be written as a cosine
series because it is smooth, even, and periodic

PðrÞðψÞ ¼
X∞
n¼0

P̃ðrÞ
n cosðnψÞ: ð3:1Þ

Because PðrÞ is C∞, (3.1) converges exponentially with the
number of harmonics, and for a given accuracy may be
truncated at some n ¼ Nr − 1 as in (2.32).
Fourier series coefficients like P̃ðrÞ

n are derived from
integrals, so computing many of these by, for example,
adaptive stepsize integration is no improvement over
simply integrating (2.28) itself. Instead, an efficient alter-
native is to use the discrete Fourier transform (DFT). To do
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so, we use (2.32) to sample PðrÞðψÞ at Nr evenly spaced
points ψ j. The Nr sampled values PðrÞðψ jÞ are the DFT of

Nr Fourier coefficients, P
ðrÞ
n . Up to a normalization factor,

the DFT coefficients (with no tilde) converge exponentially
to the Fourier series coefficients (with tilde) as the sample
number Nr increases. Since PðrÞ is even, we discretely
sample the arc of half the radial motion and represent the
function with the type-I discrete cosine transform (DCT-I)

ψ j ≡ jπ
Nr − 1

; j ∈ 0; 1;…; Nr − 1; ð3:2Þ

PðrÞ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Nr − 1

s �
1

2
PðrÞð0Þ þ 1

2
ð−1ÞnPðrÞðπÞ

þ
XNr−2

j¼1

PðrÞðψ jÞ cos ðnψ jÞ
�
; ð3:3Þ

PðrÞðψÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Nr − 1

s �
1

2
PðrÞ

0 þ 1

2
PðrÞ

Nr−1 cos ½ðNr − 1Þψ �

þ
XNr−2

n¼1

PðrÞ
n cos ðnψÞ

�
: ð3:4Þ

The DFT (or in this case DCT) may be computed numeri-
cally using a fast Fourier transform (FFT) algorithm,

efficiently finding all of the Fourier coefficients PðrÞ
n .

The angular sampling of PðθÞðχÞ is made over Nθ equally
spaced points. The required radial and angular sample
numbers are independent and subject only to desired
numerical accuracy goals.
Returning to the radial motion example, once PðrÞðψÞ is

adequately represented, then λðrÞ is found by substituting
(3.4) into (2.30) and integrating term-by-term

λðrÞðψÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Nr − 1

s �
1

2
ψPðrÞ

0 þ 1

2
PðrÞ

Nr−1
sin ½ðNr − 1Þψ �

ðNr − 1Þ

þ
XNr−2

n¼1

PðrÞ
n

sin ðnψÞ
n

�
; ð3:5Þ

an expression that can be evaluated at any ψ. The same is
done for λðθÞðχÞ. The Mino time periods, Λr and Λθ, are
related to the leading Fourier coefficients

Λr ¼ πPðrÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Nr − 1

s
; Λθ ¼ πPðθÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Nθ − 1

s
: ð3:6Þ

Taken all together, these solutions for λðrÞðψÞ and λðθÞðχÞ
end up accurately relating motion in r and θ with λ. This
approach models that found in Sec. II of [69].

We proceed next to find the motion in t and φ. With
(2.15) and (2.16) reexpressed in terms of Mino time, the
periodicity of (2.17)–(2.20), and the ability to express those
functions in terms of λ, suggests a Mino-time Fourier
decomposition of TðrÞ, TðθÞ, ΨðrÞ, and ΨðθÞ [88]

ΨðrÞðrpðλÞÞ ¼
Xþ∞

n¼−∞
℘ðrÞ
n e−inϒrλ; ð3:7Þ

ΨðθÞðθpðλÞÞ ¼
Xþ∞

k¼−∞
℘ðθÞ
k e−ikϒθλ; ð3:8Þ

TðrÞðrpðλÞÞ ¼
Xþ∞

n¼−∞
T ðrÞ

n e−inϒrλ; ð3:9Þ

TðθÞðθpðλÞÞ ¼
Xþ∞

k¼−∞
T ðθÞ

k e−ikϒθλ; ð3:10Þ

where in keeping with the left-hand sides being real
functions the coefficients will satisfy crossing relations

(e.g., T ðrÞ
−n ¼ T ðrÞ�

n ). As before, the series might be trun-
cated (here with some upper and lower bounds on n and k).
The Fourier coefficients are found from integrals over λ; for
example

T ðrÞ
n ¼ 1

Λr

Z
Λr

0

TðrÞeinϒrλdλ; ð3:11Þ

with similar integrals for T ðθÞ
k , ℘ðrÞ

n , and ℘ðθÞ
k .

If we introduced sufficiently fine, evenly spaced divi-
sions of the respective periods in λ, each of the Fourier
coefficient integrals, like (3.11), could be accurately
replaced with a finite sum. Unfortunately, the functions
being integrated depend on rp or θp (e.g., TðrÞðrÞ above),
which are known from the previous analysis as functions
sampled on evenly spaced grids in ψ or χ. Rather than
resample them to an evenly spaced grid in λ, we instead
convert the integrals and integrate over ψ or χ. For example

T ðrÞ
n ¼ 1

Λr

Z
2π

0

TðrÞPðrÞeinϒrλ
ðrÞðψÞdψ ; ð3:12Þ

T ðθÞ
k ¼ 1

Λθ

Z
2π

0

TðθÞPðθÞeikϒθλ
ðθÞðχÞdχ; ð3:13Þ

with similar expressions for ℘ðrÞ
n and ℘ðθÞ

k . Despite the
transformations, all of these integrands are still C∞ periodic
functions of (now) ψ or χ. As was shown in [69]
(Sec. III.B.3), smooth reparameterizations of this sort still
allow exponentially convergent approximations to be made
by replacing an integral with a finite sum on an evenly
spaced grid in the new coordinate (either ψ or χ)
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ψ j ≡ 2jπ
Nr

; j ∈ 0; 1;…; Nr − 1; ð3:14Þ

T ðrÞ
n ≃

ϒr

Nr

XNr−1

j¼0

TðrÞðψ jÞPðrÞðψ jÞeinϒrλ
ðrÞðψjÞ; ð3:15Þ

χs ≡ 2sπ
Nθ

; s ∈ 0; 1;…; Nθ − 1; ð3:16Þ

T ðθÞ
k ≃

ϒθ

Nθ

XNθ−1

s¼0

TðθÞðχsÞPðθÞðχsÞeikϒθλ
ðθÞðχsÞ: ð3:17Þ

Similar expressions again hold for ℘ðrÞ
n and ℘ðθÞ

k . Because
(3.15) and (3.17) are not evaluated on an evenly spaced,
periodic grid in λ, they do not represent DFT sums (the
argument of the exponential is nonlinear in ψ or χ).
Accordingly, the coefficients cannot be computed with
the OðN logNÞ FFT algorithm, but instead are evaluated
directly, which is an OðN2Þ process.
Once the Fourier coefficients are known, the average λ

accumulation rates, Γ and ϒφ, are found from the leading
coefficients

Γ ¼ T ðrÞ
0 þ T ðθÞ

0 ; ϒφ ¼ ℘ðrÞ
0 þ ℘ðθÞ

0 : ð3:18Þ

The remaining parts that determine the advance of t and φ
in (2.36) and (2.37), the periodic functions Δtp and Δφp,
may be expressed as functions of λ by integrating (3.7)–
(3.10) term-by-term

ΔtðrÞðλÞ ¼ 2Re

�XNr=2

n¼1

iT ðrÞ
n

nϒr
e−inϒrλ

�
; ð3:19Þ

ΔtðθÞðλÞ ¼ 2Re

�XNθ=2

k¼1

iT ðθÞ
k

kϒθ
e−ikϒθλ

�
; ð3:20Þ

ΔφðrÞðλÞ ¼ 2Re

"XNr=2

n¼1

i℘ðrÞ
n

nΥr
e−inΥrλ

#
; ð3:21Þ

ΔφðθÞðλÞ ¼ 2Re

�XNθ=2

k¼1

i℘ðθÞ
k

kϒθ
e−ikϒθλ

�
: ð3:22Þ

Here Nr and Nθ are assumed to be even and the restricted
range of the sums reflects use of the crossing relations.

B. Analytic mode functions from MST formalism

The MST formalism [66,67] ultimately provides radial
mode function solutions X̂�

l̂mkn
to (2.48) subject to the

boundary conditions (2.53) and (2.54). The formalism
more traditionally yields the radial Teukolsky functions
Rl̂mω (in our case spin weight equal zero), from which

follow X̂�
l̂mkn

. A comprehensive review of the MST for-
malism is given in [68]. Our presentation here primarily
focuses on efficient calculation of one set of these sol-
utions. The calculation first starts by determining the
separation constant λl̂mkn. We make use of the Black
Hole Perturbation Toolkit’s [97] Mathematica package
SPINWEIGHTEDSPHEROIDALHARMONICS to evaluate λl̂mkn.
The Teukolsky functions Rin

l̂mω
and Rup

l̂mω
are the solutions

to the radial Teukolsky equation with boundary conditions

Rin
l̂mω

ðr → rþÞ ≃ Btranse−iγr� ; ð3:23Þ

Rup
l̂mω

ðr → ∞Þ ≃ Ctransr−1eiωr� ; ð3:24Þ

that correspond to the conditions (2.54) and (2.53),
respectively, on X̂�

l̂mkn
. Here Btrans and Ctrans are asymptotic

amplitudes. By introducing the renormalized angular
momentum ν and rescaling the radial coordinate in two
convenient ways

x ¼ rþ − r
2Mκ

; z ¼ ωðr − r−Þ; ð3:25Þ

the functions Rin
l̂mω

and Rup
l̂mω

are expressed as series of
hypergeometric functions,

Rin
l̂mω

¼eiϵκxð−xÞ−iϵþð1−xÞiϵ−

×
Xþ∞

n¼−∞
aνnFðLþ1− iτ;−L− iτ;1−2iϵþ;xÞ ð3:26Þ

Rup
l̂mω

¼eizzνþiϵþðz−ϵκÞ−iϵþ

×
Xþ∞

n¼−∞
bνnð2izÞnΨðLþ1− iϵ;2Lþ2;−2izÞ; ð3:27Þ

where here we have adopted s ¼ 0 (spin weight of the
scalar case), which we maintain henceforth in this paper.
Other parameters are

L ¼ nþ ν; ϵ ¼ 2Mω; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

M2

r
;

τ ¼ 1

κ

�
ϵ −

ma
M

�
; ϵ� ¼ 1

2
ðϵ� τÞ: ð3:28Þ

In the expressions above, Fðc1; c2; c3; xÞ is the Gauss
hypergeometric function 2F1ðc1; c2; c3; xÞ and Ψðc1; c2; zÞ
is the irregular confluent hypergeometric function.
The series coefficients aνn are the minimal solution to a

three-term recurrence relation that allows the series to
converge once ν is determined. The second set of coef-
ficients bνn are completely determined by aνn via
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bνn ¼ e−iπðνþ1−iϵÞ2ν
ðνþ 1 − iϵÞn
ðνþ 1þ iϵÞn

aνn; ð3:29Þ

making the “up” series convergent also. Here ðμÞn ≔
Γðμþ nÞ=ΓðμÞ is the Pochhammer symbol. For n ¼ −1,
0, 1, we calculate Fðc1; c2; c3; xÞ and Ψðc1; c2; zÞ using
Mathematica’s built-in functions Hypergeometric2F1
and HypergeometricU, respectively. For jnj > 1, we
construct both types of hypergeometric functions using
their respective three-term recursion relations (provided
in [68]).
The eigenvalue ν is often determined by solving for the

root of a complex equation with coefficients that are built
from continued fractions [68]. An alternative method,
employed in this paper, relates ν to the eigenvalue of the
monodromy matrix defined for the irregular singular point
of the Teukolsky equation at r → ∞ [98,99]. Then ν is
determined numerically by calculating Stokes multi-
pliers [99,100].
An accuracy goal in determining the radial functions is

met in part by terminating the hypergeometric series at a
sufficiently large value of jnj ¼ nmax (where nmax is not
necessarily the same for both series). The MST technique
provides precise, semianalytic solutions, but it can be
computationally expensive, especially when programmed
in Mathematica. As the frequency increases, the hyper-
geometric series expansions must range over an increasing
number of terms to meet a pre-defined accuracy goal.
Computational costs are exacerbated by roundoff errors
from near cancellations in the sums. Roundoff errors are
circumvented by making internalMathematica calculations
at working precisions significantly higher than desired
accuracy in final results.
We found empirically that, for the radial positions

considered in this work, the series of confluent hyper-
geometric functions Ψðc1; c2; zÞ converges more rapidly
than the series of Gauss hypergeometric functions
Fðc1; c2; c3; xÞ (used in the “in” solution). Further study
showed that computational costs can be mitigated on the
horizon side in calculating Rin by using an alternative
expression given in theMST literature (see Eq. (166) in [68])

Rin ¼ KνRν
C þ K−ν−1R−ν−1

C ; ð3:30Þ
where Rν

C is expressed as a series of regular confluent
hypergeometric functions Mðc1; c2; zÞ,
Rν
C ¼ e−izzνþiϵþðz−ϵκÞ−iϵþ

×
Xþ∞

n¼−∞
fνnð−2izÞnMðLþ1þ iϵ;2Lþ2;2izÞ: ð3:31Þ

Here fνn is a new set of series coefficients (given below) and
Kν is a (phase) factor that involves summing over the prior
series coefficients aνn and bνn. The exact form of Kν in our
case is given by

Kν ¼ eiϵκðϵκÞ−νΓð1 − 2iϵþÞΓð2νþ 1Þ

×

�Xþ∞

n¼0

ð−1Þn
n!

gνn

�� X0
n¼−∞

ð−1Þn
ð−nÞ! h

ν
n

�−1

: ð3:32Þ

The new series coefficients fνn, gνn, and hνn can be expressed
in terms of the prior coefficients aνn and bνn by

fνn ¼ eiπðνþ1−iϵÞ ΓðLþ 1þ iϵÞ
Γð2Lþ 2Þ bνn; ð3:33Þ

gνn ¼ ð2νþ 1Þn
ðνþ 1þ iτÞn
ΓðLþ 1 − iτÞ

ðνþ 1þ iϵÞn
ΓðLþ 1 − iϵÞ a

ν
n ð3:34Þ

hνn ¼ eiπðνþ1−iϵÞ ΓðLþ 1þ iϵ − nÞ
Γð2Lþ 2 − nÞ bνn: ð3:35Þ

The review by Sasaki and Tagoshi [68] discusses (3.30)
as a complement of (3.26) that provides convergent cover-
age of the entire domain ½rþ;þ∞�, but does not mention its
computational efficiency. Rapid convergence was our focus
in comparing these expressions and settling on use of
(3.30). While writing this paper, we sought other MST
users’ experiences with the potential practical virtues of
(3.30) and (3.31). Casals [101] and Wardell (private
communication) were aware of the benefits of (3.30) and
make use of it in their work, though have not previously
discussed this particular issue in detail. Use of both (3.30)
and (3.26) are described by Throwe [102], with his
observation that both formulae have their own regions in
which they are numerically more suitable. Elsewhere [97]
Eq. (3.26) is exclusively used.
A side benefit in our approach is that the series of regular

confluent hypergeometric functions Mðc1; c2; zÞ given in
(3.31) converges with similar rapidness as the series of
irregular confluent hypergeometric functions Ψðc1; c2; zÞ
given in (3.27). Thus the same value of nmax can be used to
truncate both series.
While use of RC has benefits, it is not straightforward to

construct the underlying functionsMðc1; c2; zÞ numerically.
The functions Mðc1; c2; zÞ satisfy a three-term recurrence
relation [68] but evaluating the functions by stepping
through the recurrence formula is numerically unstable in
the increasing-n direction. There are several ways to circum-
vent this problem: increase the code’s internal precision,
calculateMðc1; c2; zÞ directly usingMathematica’s built-in
function Hypergeometric1F1, or translate the three-
term recurrence relation into a continued fraction, which
does not suffer from the same cancellation errors in the
increasing-n direction. Alternatively, since the recurrence
relation does not suffer the same instability when moving
down in n, one can begin the summation of (3.31) at n ¼
nmax and evaluate the terms as n decreases down to
n ¼ −nmax. The value of nmax is conveniently determined
by evaluating Rup first. A mixture of these strategies is
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employed tomaximize computational efficiency. Ultimately
the improved convergence of (3.30) and (3.31), compared to
(3.26), offsets the computational cost of summing two series
instead of one.
Using these expressions for Rin and Rup, we can

construct the unit-normalized functions X̂� by comparing
(3.23) and (3.24) with (2.46), (2.53), and (2.54)

X̂− ¼ ϖ

ϖþ

�
Rin

Btrans

�
; X̂þ ¼ ϖ

�
Rup

Ctrans

�
; ð3:36Þ

where ϖþ ¼ ðr2þ þ a2Þ1=2. The asymptotic amplitudes can
be found by expanding both solutions near the horizon and
at large r

Btrans ¼ eiκϵþð1þ
2 ln κ
1þκ Þ

Xþ∞

n¼−∞
aνn; ð3:37Þ

Ctrans ¼ ω−1eiðϵ ln ϵ−1−κ
2
ϵÞAν

−; ð3:38Þ

with

Aν
− ¼ 2−ðνþ1−iϵÞeiπðνþ1−iϵÞ=2 Xþ∞

n¼−∞
ð−1Þnbνn: ð3:39Þ

C. Optimized source integration

We consider next the optimized calculation of the
normalization coefficients C�

l̂mkn
defined in (2.59). That

reduction begins with a review of the derivation of the FD
source function Zl̂mknðrÞ, exploiting the orthogonality of
the harmonics in t and φ, and the spheroidal Legendre
functions found in (2.52). Integrating the product of (2.52)
and e−imφ over azimuth angle and using the delta function
in φ, we findX
l̂kn

Zl̂mknðrÞSl̂mknðθÞe−iωmknt

¼ −
2qΣΔδðr − rpÞδðcos θ − cos θpÞ

ϖ3ðTðrÞ þ TðθÞÞ e−imφp : ð3:40Þ

We next remove the linear phase factor e−imΩφt, which
makes the remaining expressionX

l̂kn

Zl̂mknðrÞSl̂mknðθÞe−iðkΩθþnΩrÞt

¼ −2q
e−imðΔφðrÞþΔφðθÞ−ΩφðΔtðrÞþΔtðθÞÞÞ

ϖ3
pðTðrÞ þ TðθÞÞ

× ΣpΔpδðr − rpÞδðcos θ − cos θpÞ; ð3:41Þ

biperiodic with fundamental frequencies Ωθ and Ωr, since
φp −Ωφt ¼ ΔφðrÞ þ ΔφðθÞ − ΩφðΔtðrÞ þ ΔtðθÞÞ up to an
irrelevant constant.

We next reduce (3.41) to a single sum over l̂ by using
orthogonality of the factor e−iðkΩθþnΩrÞt. To do so, we
convert to Mino time Fourier series, with e−iðkϒθþnϒrÞλ,
using results in [88]

X
l̂

Zl̂mknðrÞSl̂mknðθÞ

¼ 1

ΛθΛr

Z
Λθ

0

dλðθÞ
Z

Λr

0

dλðrÞeiðkϒθλ
ðθÞþnϒrλ

ðrÞÞ

× Bmknðrp; θpÞδðr − rpÞδðcos θ − cos θpÞ; ð3:42Þ

where the function Bmknðrp; θpÞ is

Bmknðrp;θpÞ≡−
4πqΣpΔp

Γϖ3
p

eiωmknðΔtðrÞþΔtðθÞÞe−imðΔφðrÞþΔφðθÞÞ;

ð3:43Þ

which can be thought of as a function of λðrÞ and λðθÞ. The
final step in deriving Zl̂mknðrÞ is multiplying the above
expression by Sl̂mknðθÞ and integrating over θ

Zl̂mknðrÞ ¼
1

ΛθΛr

Z
Λθ

0

dλðθÞ
Z

Λr

0

dλðrÞeiðkϒθλ
ðθÞþnϒrλ

ðrÞÞ

× Bmknðrp; θpÞSlmknðθpÞδðr − rpÞ: ð3:44Þ

With the FD source function in hand, we may calculate
the normalization constants C�

l̂mkn
by substituting (3.44)

into (2.59)

C�
l̂mkn

¼ 1

Wl̂mkn

Z
rmax

rmin

dr
ϖ2X̂∓

l̂mkn
ðrÞ

Δ
1

ΛθΛr

Z
Λθ

0

dλðθÞ

×
Z

Λr

0

dλðrÞeiðkϒθλ
ðθÞþnϒrλ

ðrÞÞBmknðrp; θpÞ

× SlmknðθpÞδðr − rpÞ: ð3:45Þ

The order of integration is exchanged, allowing the r
integral to be evaluated first

C�
l̂mkn

¼ 1

ΛθΛr

Z
Λθ

0

dλðθÞ

×
Z

Λr

0

dλðrÞeiðkϒθλ
ðθÞþnϒrλ

ðrÞÞD�
l̂mkn

ðrp;θpÞ; ð3:46Þ

whereD�
l̂mkn

ðrp; θpÞ, implicitly a function of λðrÞ and λðθÞ, is
given by
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D�
l̂mkn

ðrp; θpÞ ¼ −
4πqΣpX̂

∓
l̂mkn

ðrpÞSlmknðθpÞ
ΓWl̂mknϖ

× eiωmknðΔtðrÞþΔtðθÞÞe−imðΔφðrÞþΔφðθÞÞ: ð3:47Þ

The double integral in (3.46) may be computed directly
using adaptive-step-size integration [103]. We refer to this
method henceforth as the “2D-integral” approach, which
can be shown to deliver numerical results that converge
algebraically (i.e., as a power law). Given the number of
modes in the Kerr generic-orbit problem, this is a computa-
tionally expensive method that compelled us to search for
more efficient alternatives in evaluating (3.46).
A first alternative is to exploit the integrand’s smooth-

ness and bi-periodicity to make a discrete, evenly spaced
sampling in two dimensions that is analogous to the
approach we took with the orbit equations. Just as in that
case, where an equally spaced sum over samples of a
smooth periodic integrand converged exponentially, we
find “spectral” convergence in the two-dimensional integral
as well. Using the discrete sampling locations of (3.14) and
(3.16), we calculate

C�
l̂mkn

≃
ϒrϒθ

NrNθ

XNr−1

j¼0

XNθ−1

s¼0

einϒrλ
ðrÞðψ jÞeikϒθλ

ðθÞðχsÞPðrÞðψ jÞ

× PðθÞðχsÞD�
l̂mkn

ðrp;j; θp;sÞ; ð3:48Þ

where we have changed the integration variables
from λðrÞ and λðθÞ to ψ and χ, adopted rp;j ≡ rpðψ jÞ and
θp;s ≡ θpðχsÞ, and let the arguments of D reflect the
discrete sampling. The integration approach in (3.48) is
referred to here as the “2D-SSI” method (i.e., the two-
dimensional generalization of the SSI technique [69]).
Figure 3 demonstrates the increased efficiency of the
2D-SSI method compared to the 2D-integral scheme.
The 2D-SSI method has been independently adopted by
van de Meent [44] in his GSF FD calculations on inclined
eccentric orbits in Kerr spacetime. We also understand that
the code used in [103] has been upgraded to use the 2D-SSI
method (Hughes, private communication).
The explicit dependence on rp and θp found in (3.47)

allows for further optimization. Because D�
l̂mkn

ðrp; θpÞ can
be written in the following form

D�
l̂mkn

¼ ðr2p þ a2cos2θpÞJl̂mknðθpÞK�
l̂mkn

ðrpÞ; ð3:49Þ

Jl̂mknðθpÞ≡ 4πq
Γ

SlmknðθpÞeiωmknΔtðθÞe−imΔφðθÞ
; ð3:50Þ

K�
l̂mkn

ðrpÞ≡ −
X̂∓
l̂mkn

ðrpÞ
Wl̂mknϖ

eiωmknΔtðrÞe−imΔφðrÞ
; ð3:51Þ

the double integral in (3.46) can be calculated from
products of one-dimensional integrals

C�
l̂mkn

¼ Ið1Þ�
l̂mkn

Ið2Þ
l̂mkn

þ Ið3Þ�
l̂mkn

Ið4Þ
l̂mkn

; ð3:52Þ

Ið1Þ�
l̂mkn

≡ 1

Λr

Z
Λr

0

dλðrÞeinϒrλ
ðrÞ
r2pK�

l̂mkn
ðrpÞ; ð3:53Þ

Ið2Þ
l̂mkn

≡ 1

Λθ

Z
Λθ

0

dλðθÞeikϒθλ
ðθÞ
Jl̂mknðθpÞ; ð3:54Þ

Ið3Þ�
l̂mkn

≡ 1

Λr

Z
Λr

0

dλðrÞeinϒrλ
ðrÞ
K�

l̂mkn
ðrpÞ; ð3:55Þ

Ið4Þ
l̂mkn

≡ a2

Λθ

Z
Λθ

0

dλðθÞeikϒθλ
ðθÞ
cos2θpJl̂mknðθpÞ: ð3:56Þ

If we use these equations and just compute the integrals
(3.53)–(3.56) with a straightforward adaptive integrator, we
get an algebraically convergent method that we refer to as
the “1D-integral” approach. Despite its algebraic conver-
gence, it is much faster at any required level of accuracy
than the 2D-integral approach, by as much as two orders of
magnitude at conventional double precision (as seen in
Fig. 3). At that accuracy level it is also faster than 2D-SSI,
though the faster convergence rate of 2D-SSI would
ultimately win at higher accuracies.
Finally, the 1D integrals are just as amenable to the SSI

method as the double integral and it is possible to make an
exponentially convergent discrete representation for
(3.53)–(3.56)

FIG. 3. Computational efficiency in calculating normalization
coefficients. An assessment of computational efficiency is
made by measuring the number of integrand evaluations
needed to calculate Cþ

2222 and C−
2222 for orbital parameters

ðp; e; ι; a=MÞ ¼ ð15; 0.5; π=3; 0.5Þ. The lowest efficiency and
slowest convergence rate is that of the 2D-integral approach
(red dotted curve). The effect of switching to products of 1D
integrals is seen in the 1D-integral method (blue dashed curve).
The effect of switching from adaptive-step integration to SSI is
seen in the 2D-SSI (purple dot-dashed) and 1D-SSI (black solid)
scalings. The adaptive step-size integrations (both 2D-integral
and 1D-integral) converge algebraically at 8th order.
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ψ j≡ 2jπ
N1;3

; j∈ 0;1;…;N1;3−1;

χs≡ 2sπ
N2;4

; s∈ 0;1;…;N2;4−1;

Ið1Þ�
l̂mkn

≃
Υr

N1

XN1−1

j¼0

einϒrλ
ðrÞðψjÞPðrÞðψ jÞr2p;jK�

l̂mkn
ðrp;jÞ; ð3:57Þ

Ið2Þ
l̂mkn

≃
ϒθ

N2

XN2−1

s¼0

eikϒθλ
ðθÞðχsÞPðθÞðχsÞJl̂mknðθp;sÞ; ð3:58Þ

Ið3Þ�
l̂mkn

≃
ϒr

N3

XN3−1

j¼0

einϒrλ
ðrÞðψ jÞPðrÞðψ jÞK�

l̂mkn
ðrp;jÞ; ð3:59Þ

Ið4Þ
l̂mkn

≃
ϒθ

N4

XN4−1

s¼0

eikϒθλ
ðθÞðχsÞPðθÞðχsÞa2cos2θp;sJl̂mknðθp;sÞ:

ð3:60Þ

When (3.57)–(3.60) are used to evaluate (3.52), we refer to
it as the “1D-SSI” method. Figure 3 shows that the 1D-SSI
method is the most efficient and most rapidly convergent
technique. Switching to 2D-SSI from 2D adaptive-
step integration is nearly two orders of magnitude faster at
double precision accuracies. Switching from 2D-SSI to
1D-SSI yields another factor of 30.
The 1D-SSI method is possible because the two-

dimensional source integrations decompose as shown in
(3.52) into products of 1D integrals. Unfortunately a similar
decomposition does not occur in any obvious way for
gravitational perturbations in Kerr spacetime due to leading
factors of 1=Σ. For small spins or large radial separations, the
1=Σ factor might be expanded using a binomial series with a
modest amount of terms, providing an approximately
separable source. It is also conceivable that a transformation
might exist that would bring the source into a separable
form. The benefits of the 1D-SSI method seen in the scalar
case are compelling enough to justify a more thorough
investigation of the gravitational Teukolsky source integra-
tion problem.

IV. GENERIC ORBIT SSF REGULARIZATION

A. Mode-sum regularization review

Section II C provides a roadmap for calculating the
retarded field, Φret, including its decomposition in a
spherical harmonic basis, and Sec. II A discusses using
the gradient of that field and the singular field (with the
vector components also expanded in the same basis) to
yield the mode-sum regularized self-force

Fα ¼
Xþ∞

l¼0

ðFret;l
α� − FS;l

α�Þ: ð4:1Þ

This equation differs from (2.4) in making clear that
individual l-mode self-force components may differ in
value in the limit as r → rp depending upon the direction
of approach in r. This � notation aligns with that used in
the EHS discussion [i.e., Eq. (2.62)] of mode functions.
Using the spherical harmonic decomposition (2.65) of the
retarded field, the l-modes of three of the force compo-
nents are

Fret;l
t� ¼ q lim

x→xp

Xl

m¼−l
∂tϕ

�
lmðt; rÞYlmðθ;φÞ; ð4:2Þ

Fret;l
r� ¼ q lim

x→xp

Xl

m¼−l
∂rϕ

�
lmðt; rÞYlmðθ;φÞ; ð4:3Þ

Fret;l
φ� ¼ q lim

x→xp

Xl

m¼−l
imϕ�

lmðt; rÞYlmðθ;φÞ: ð4:4Þ

The θ component2 of the self-force is broken down into l-
modes, Fret;l

θ� , only after the derivative ∂θYlm is reprojected
onto the Ylm basis.
To effect this change, we use the clever window function

fðθÞ devised by Warburton [64] [his Eq. (50)]. When
multiplied with the field, fðθÞ affects neither the value of the
field as θ → θp nor its first derivative, yet produces a finite
coupling between fðθÞ∂θYlm and (up to) four spherical
harmonics Ylm. This allows the l-modes of the θ-component
to be reexpressed as

Fret;l
θ� ¼ q lim

x→xp

Xl

m¼−l
ψ�
lmðt; rÞYlmðθ;φÞ; ð4:5Þ

where theψ�
lmðt; rÞ are defined in terms ofϕ�

lmðt; rÞ using the
following condensed notation

ψ�
lm ¼ βð−3Þlþ3;mϕ

�
lþ3;m þ βð−1Þlþ1;mϕ

�
lþ1;m

þ βðþ1Þ
l−1;mϕ

�
l−1;m þ βðþ3Þ

l−3;mϕ
�
l−3;m: ð4:6Þ

The coefficients βð�iÞ
lm , and a more detailed discussion of

deriving Eqs. (4.5) and (4.6), are provided in the Appendix.
Our expressions (4.5) and (4.6) are similar to ones found in
[64] with the exception of minor corrections.
To calculate Fα from Eq. (2.3) we require an expansion

of FS;l
α� in terms of regularization parameters [50,78,79]

2In the GSF case it is sufficient to regularize just three of the
four force components because the final component is fixed by
uαFα ¼ 0. In the SSF case the force has a tangential component
along uα, leading to variation in mass [45,85,104–106] and
requiring calculation and regularization of Fθ.
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FS;l
α� ¼Aα�LþBαþ

Xþ∞

n¼1

Dα;2nQ
n
k¼1ð2L−2kÞð2Lþ2kÞ ; ð4:7Þ

where L≡ lþ 1=2 and the parameters Aα�, Bα, and Dα;2n

are all independent of l. For each n, the higher-order
regularization terms (with coefficients Dα;2n) have the
property that the l-dependent terms sum to zero [50]:

Xþ∞

l¼0

�Yn
k¼1

ð2L − 2kÞð2Lþ 2kÞ
�−1

¼ 0: ð4:8Þ

As a consequence only the first two regularization param-
eters, Aα� and Bα, are necessary to assure a convergent
result and the regularized self-force can be calculated
from just

Fα ¼
Xþ∞

l¼0

ðFret;l
α� − Aα�L − BαÞ≡

Xþ∞

l¼0

Falg;l
α� ; ð4:9Þ

where we have defined Falg;l
α� for later convenience. While

the sum in (4.9) gives a finite result, the higher-order terms
drop off at a rate of l−2. When the sum is approximated by
being truncated at l ¼ lmax, there is a residual error that
scales as l−1max. Due to computational costs, it is typically
beneficial to truncate the SSF calculation at lmax ∼ 20,
which means that relying only upon the regularization
parameters Aα� and Bα will determine Fα to just one or two
digits of accuracy.
Including the higher-order parametersDα;2n can improve

the rate of convergence of the partial sums of Eq. (4.1),
which are now written as

Fα ¼
Xlmax

l¼0

�
Falg;l
α� −

Xnmax

n¼1

Dα;2nQ
n
k¼1ð2L−2kÞð2Lþ2kÞ

�
: ð4:10Þ

Here there is a two-fold truncation, with lmax determining
the number of modes we calculate in the retarded field, Φ,
and nmax setting the limit in the number of available higher-
order regularization parameters. Equation (4.10) converges
at a rate of l−2ðnmaxþ1Þ and therefore the SSF has an error that
scales as l−2nmax−1

max . Unfortunately, only Aα� and Bα are
known analytically for generic orbits in Kerr [79]
(although, terms up to nmax ¼ 2 are known for equatorial
orbits in Kerr [82]).
We overcome the lack of analytically known higher-

order regularization parameters by fitting [50] the high-l
contributions to the SSF to the assumed form in (4.7),
similar to the means discussed in Sec. IV C of Warburton
and Barack [62]. At high l, the self-force contributions
are primarily determined by the missing regularization
parameters

Falg;l
α� ≃

XN
n¼1

Dα;2nQ
n
k¼1ð2L − 2kÞð2Lþ 2kÞ : ð4:11Þ

The number of regularization parameters N that can be
determined is limited by the precision of Falg;l

α� and lmax. We
take the last n̄ self-force l-mode contributions, Falg;l

α� , and fit
these values to N regularization parameters by applying a
least squares algorithm to Eq. (4.11). The value of n̄ is
varied and a weighted average is taken as described in [62].
We also vary N and use the standard deviation of the results
to estimate the error produced by this fitting scheme.
However, we do not use Eq. (47) in [62], but instead
reapply the fitted regularization parameters using Eq. (4.10)
to improve the convergence of our SSF results. The
estimated errors are also propagated to determine the
accuracy of the SSF results. Errors due to fitting typically
dominate over the error from terminating the l-mode
summation. The validity of these fits and their errors is
further discussed in Sec. VA, where we compare fitted
conservative self-force data (for an inclined Schwarzschild
orbit) to conservative self-force data that has been regu-
larized with known higher-order parameters (for an equa-
torial Schwarzschild orbit).

B. Conservative and dissipative self-force
for generic orbits

As mentioned in Sec. II A, the self-force can be
decomposed into dissipative and conservative components,
Fdiss
α and Fcons

α , which have different physical effects on the
orbital evolution [24,51,89]. Just as we defined the retarded
force Fret

α , we similarly define the advanced force Fadv
α from

the advanced scalar field solution, along with its l-mode
contributions Fadv;l

α . Using the mode-sum scheme, the
dissipative and conservative components to the self-force
are constructed from symmetric and antisymmetric combi-
nations of Fret=adv;l

α

Fdiss
α ¼

Xþ∞

l¼0

1

2
ðFret;l

α − Fadv;l
α Þ; ð4:12Þ

Fcons
α ¼

Xþ∞

l¼0

�
1

2
ðFret;l

α þ Fadv;l
α Þ − FS;l

α

�
: ð4:13Þ

This decomposition is also beneficial for testing the
numerical convergence of the self-force results: the dis-
sipative component does not need to be regularized and will
converge exponentially, while the conservative component
requires regularization and will converge algebraically as
discussed in Sec. IVA.
As is well known [29,89], the advanced and retarded

forces may both be obtained from the retarded solution,
being related at reflection point pairs in the orbital motion–
points where the particle passes through the same radial and
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polar positions (rp, θp) but with opposite radial and polar
velocities, ur, uθ → −ur;−uθ. Explicit calculations of the
conservative and dissipative components of the self-force
have been made by identifying these reflection points along
restricted orbits (circular equatorial; eccentric equatorial; or
inclined spherical) [24,63–65].
For eccentric inclined orbits, these reflection points

can be conveniently identified by mapping the particle’s
motion to a two-torus, as shown in Fig. 4. In this figure
we cover the torus using the coordinates ψ and χ, related
to the position in the polar (r, θ) plane by Eq. (2.26).
(Alternatively, some authors use the two angle variables
qr;θ ¼ ϒr;θλ [29,40,44] to cover the torus.) The polar
motion winds and wraps in this region, either a finite
number of times for a resonant orbit or an infinite number
of times for a nonresonant orbit. In the later case, the
motion is ergodic and the motion will eventually pass all
points arbitrarily closely. All of the field and self-force
information can be projected onto the domain spanned
by ψ ; χ ∈ ½0; 2πÞ.
As an example, consider an orbit with geometric

parameters ðp; e; ι; a=MÞ ¼ ð5; 0.6; 1.04954; 0.95Þ and ini-
tial position ðrp; θpÞ ¼ ðrmin; 1.7409Þ set by taking λðrÞ0 ¼ 0

and λðθÞ0 ¼ 0.587813, where λ is measured in units of M−1.
The path of this orbit on the two-torus from λ ¼ 0 to λ ¼ 6
is traced out by the blue (solid) line in Fig. 4. For any point
on this curve, its reflection point is identified by reflecting
through the center of the plane at ψ ¼ π and χ ¼ π
(reflections can be made across any corner of the region
equally well). The result of reflecting the entire blue (solid)
curve is the red (dot-dashed) curve. This can be verified
using Eqs. (2.26)–(2.29). Note that the red (dot-dashed)
curve can also be described by an orbit moving backwards
in time from λ ¼ 0 to λ ¼ −6 with the same geometric
parameters as the blue (solid) line, but with opposite offset:

λðrÞ0 ¼ 0 but λðθÞ0 ¼ −0.587813. This is in line with
Eq. (2.46) in [89].
Therefore (up to a factor of �1) the advanced force can

be calculated by reflecting the retarded force data on the
torus. Explicitly, the retarded and advanced forces are
related by

Fadv;l
α ðψ ; χÞ ¼ ϵðαÞF

ret;l
α ð2π − ψ ; 2π − χÞ; ð4:14Þ

where ϵðαÞ ¼ ð−1; 1; 1;−1Þ and where there is no summa-
tion over α. Equation (4.14) can be extended to inclined
spherical, eccentric equatorial, and resonant orbits as well,
though the motions within the torus are severely restricted
for these special orbits.

V. RESULTS

Our results are broken down into three categories:
(a) Eccentric inclined orbits in Schwarzschild spacetime;
(b) Highly eccentric equatorial orbits about a rapidly

rotating Kerr black hole, displaying quasinormal bursts;
(c) Eccentric inclined (generic) orbits in Kerr spacetime.

A. Schwarzschild eccentric inclined orbits

We first examine eccentric inclined orbits in the
Schwarzschild limit (a ¼ 0). These models serve as a
strong validation of the SSF code, since all elements of
the field and self-force calculation are required, yet they can
be compared to much simpler-to-compute eccentric equa-
torial models (i.e., ones with vastly fewer computed
modes). The one-to-one correspondence results from
spherical-symmetry of Schwarzschild spacetime, where
two geodesics with the same eccentricities but different
inclinations are related merely by a rotation.
In spherically symmetric spacetimes, the self-force for an

eccentric inclined orbit Fα can be compared to the force
Frot
α that is obtained through rotational transformation of the

equatorial plane self-force Feq
α . The transformation is

Frot
t ¼ Feq

t ; ð5:1Þ

Frot
r ¼ Feq

r ; ð5:2Þ

FIG. 4. Two orbits with the same orbital parameters
ðp; e; ι; a=MÞ ¼ ð5; 0.6; 1.04954; 0.95Þ but different initial posi-
tions mapped to the two-torus defined by the rotational coor-
dinates ψ and χ. The blue (solid) line traces an orbit that begins at
Mino time λ ¼ 0 with initial position ðrp; θpÞ ¼ ðrmin; 1.7409Þ
and is terminated at λ ¼ 6. This orbit follows from choosing

λðrÞ0 ¼ 0 and λðθÞ0 ¼ 0.587813 in Eqs. (2.30) and (2.31). The red
(dot-dashed) line follows an orbit with the reversed parameters,

λðrÞ0 ¼ 0 and λðθÞ0 ¼ −0.587813, backward in time from λ ¼ 0 to
λ ¼ −6. The points λ ¼ −6 and λ ¼ 6 are example reflection
points at which we can relate the advanced force Fadv

α to the
retarded force Fret

α using Eq. (4.14).
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Frot
θ ¼ �Feq

φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ι csc2θp

q
; ð5:3Þ

Frot
φ ¼ Feq

φ cos ι; ð5:4Þ

where � depends on the sign of uθ (þ when uθ > 0).
The four SSF components for an orbit characterized by

ðp; e; ι; a=MÞ ¼ ð10; 0.5; π=5; 0Þ are plotted in Fig. 5. For
equatorial orbits, the self-force is a periodic function of ψ .
This periodicity continues to be seen in Fig. 5 for the Ft,
Fr, and Fφ components in the inclined model as these self-
force components “loop” back onto themselves as the
particle librates from rmin to rmax and then back to rmin. This
periodicity is evident in examining Eqs. (5.1), (5.2),
and (5.4).
The behavior of Fθ is different. When the orbit is rotated

out of the equatorial plane, the Feq
φ contribution is split

between the rotated self-force components Frot
φ and Frot

θ .
While Frot

φ differs from Feq
φ by a trigonometric factor, the

projection of Feq
φ onto the new inclined basis depends on

the longitudinal position of the particle. This causes Frot
θ to

also depend upon θp [see Eq. (5.3)]. The small body
librates at different frequencies in r and θ, which demon-
strates why the inclined force component Fθ does not form
a closed loop when plotted versus r.
These inclined SSF results can be compared in quanti-

tative detail, again via Eqs. (5.1)–(5.4), to results computed
from an equivalent equatorial orbit ðp; e; ι; a=MÞ ¼
ð10; 0.5; 0; 0Þ. We refer to the self-force calculated directly
using an inclined orbit as Finc

α , while the force computed by
rotating the equatorial orbit self-force remains being denoted
by Frot

α . The absolute residuals from comparing these orbits
are plotted in Fig. 6. We also plot the errors σincα and σrotα for
both self-force calculations. The primary source of error
comes from fitting the conservative component of the self-
force. In Fig. 6we see that the residual errors between the two
calculations consistently fall below the errors that are
estimated by our fitting procedure. This provides additional
confidence in the validity of our error estimation, which is
outlined in Sec. IVA, and makes a strong case for having
summed over all the required modes and correctly computed
the regularization in the inclined model.

FIG. 5. Components of the (dimensionless) scalar self-force for an inclined eccentric orbit in Schwarzschild spacetime. Note that we
present our self-force results using the dimensionless quantities F̃t;r ≡ ðM2=q2ÞFt;r, and F̃θ;φ ≡ ðM=q2ÞFθ;φ. The orbital parameters are
given by ðp; e; ι; a=MÞ ¼ ð10; 0.5; π=5; 0Þ. The red (dashed) lines refer to the dissipative pieces of the self-force components, while the
blue (dot-dashed) lines refer to the conservative pieces. The black (solid) lines represent the total values for each self-force component.
F̃t F̃r, F̃φ share the same periodicity as the particle’s radial motion. Therefore, plotted as functions of r, these components form closed
self-force “loops.” However F̃θ does not close on itself in this eccentric inclined case, because F̃θ also depends on the longitudinal
position of the particle θp, which librates at a different frequency from the particle’s radial position rp (Ωr ≠ Ωθ).
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Additionally, we can compare specific numerical values
of Finc

α to previously and independently computed equa-
torial results published in [63], by again using Eqs. (5.1)–
(5.4) to transform the equatorial plane SSF. We compare

both the conservative and dissipative parts of the self-force
in Table I. The fractional errors between the independently
computed conservative parts typically fall below the
estimated errors in the conservative parts themselves that

FIG. 6. Comparison of the scalar self-force calculated from an inclined orbit and a rotated equatorial orbit in Schwarzschild spacetime.
The equatorial orbit is described by the orbital parameters ðp; e; ι; a=MÞ ¼ ð10; 0.5; 0; 0Þ, while the inclined orbit is described by
ðp; e; ι; a=MÞ ¼ ð10; 0.5; π=5; 0Þ. Red (solid) lines refer to the absolute residuals between the self-force calculated by rotating the results
from an equatorial orbit F̃rot

α and the scalar self-force directly calculated from the inclined orbit F̃inc
α . The black (dot-dashed) and blue

(dotted) lines refer, respectively, to the errors from calculating the self-force along an inclined orbit and an equatorial orbit. The error for
both the rotated equatorial orbit σrotα and the error for the inclined orbit σincα are based on the estimated error from fitting the conservative
component of the self-force, as outlined in Sec. IVA.

TABLE I. A comparison between the scalar self-force data produced by our code for an eccentric inclined orbit ðp; e; ι; a=MÞ ¼
ð10; 0.5; π=5; 0Þ and equatorial scalar self-force results from Ref. [63]. We rotate the results of [63] using Eqs. (5.1)–(5.4) to directly
compare with our inclined values. Conservative values include error estimates due to fitting the large-l contribution as discussed in
Sec. IVA. Note that our fitting procedure, outlined in Sec. IVA, is partially motivated by but not equivalent to the fitting procedure in
[63]. Numbers in parentheses describe the estimated error in the last reported digit, i.e., 1.44626ð5Þ ¼ 1.446ð2Þ � 0.002. Dissipative
values are truncated based on the value of the last computed self-force l-mode lmax.

Conservative Dissipative

ψ 0 π=2 0 π=2

F̃t × 104 This paper 0 0.568 263 3(2) 1.551 695 9 0.657 753 715 363
Rotated [63] 0 0.568 25(3) 1.551 696 2 0.657 754 26

F̃r × 104 This paper 1.446 26(5) −0.030 666 1ð7Þ 0 0.176 664 399 73
Rotated [63] 1.446(2) −0.030 671 7ð7Þ 0 0.176 664 37

F̃θ × 104 This paper 0 −1.912 00ð1Þ 0 −3.726 015 695
Rotated [63] 0 −1.9119ð2Þ 0 −3.726 015 6

F̃φ × 103 This paper 0 −0.539 248 9ð1Þ −3.377 102 3 −1.050 859 941 917
Rotated [63] 0 −0.539 23ð6Þ −3.377 101 9 −1.050 859 9
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owe to the high-l fitting procedure. The dissipative part of
our inclined SSF typically agrees with the transformed
dissipative part from [63] to 6 or more decimal places.

B. Highly eccentric orbit about a rapidly rotating Kerr
black hole and quasinormal bursts in the waveform

Thornburg and Wardell [65,70–72] were the first to
demonstrate that, for highly eccentric orbits (e≳ 0.7)
about rapidly rotating black holes (a=M ≳ 0.8), interesting
“wiggles” arise in the scalar self-force. They further showed
that these high frequency oscillations were attributable to
excitation of a quasinormal mode (QNM), the least-damped
l ¼ m ¼ 1 mode, produced by periastron passage of the
scalar-charged small body. Thornburg andWardell observed
these excitations for a number of orbital configurations. The
most pronounced excitations were present in orbits with
e ≥ 0.9, though weak oscillations arise for the orbit
ðp; e; ι; a=MÞ ¼ ð8; 0.8; 0; 0.8Þ (see Fig. 16 in [65]).
Thornburg and Wardell utilize a TD code, which can be

well-suited for computing highly eccentric orbits. However,
TD codes involve solving partial differential equations
and have potential numerical issues with initial value
transients, boundary conditions, and source modeling.
Our code works in the frequency domain, where the
numerical problem involves solving ordinary differential
equations for large numbers of Fourier-harmonic modes. In
general it is easier to attain higher accuracy with a FD code.
However, a countering factor is that the required number of
modes and computational demand in a FD code grows
exponentially at high eccentricities. Accordingly, we have
so far restricted ourselves to orbits with e ≤ 0.8. On the
positive side, a FD code only captures periodic behavior
and is not subject to initial value transients. Given the many
differences between the two approaches, a comparison
between results seemed desirable.
Having said that, we have not made an exact comparison.

We have so far not tried to make a very time consuming
calculation with e ¼ 0.9 to duplicate one of the results
in [65]. At the same time, rather than replicating the
e ¼ 0.8 results of Thornburg and Wardell, with
a=M ¼ 0.8, we decided to calculate the SSF and fluxes
for the same orbital parameters but with a higher black hole
spin: ðp; e; ι; a=MÞ ¼ ð8; 0.8; 0; 0.99Þ. The expectation
was that we might see more pronounced ringing in the e ¼
0.8 orbit if the QNM damping is lessened with a
higher a=M.
We also chose to model an orbit in the equatorial

plane, which substantially offsets the computational cost
of high eccentricity by restricting the mode spectrum
ωm0n ¼ mΩφ þ nΩr to be bi-periodic and not tri-periodic.
Additionally, higher-order regularization parameters are
known for equatorial orbits [82] and we were able to
circumvent the fitting schemes discussed in Sec. IVA in
this case, improving the convergence and reducing the
estimated error.

Our FD SSF results for this model are plotted in Fig. 7.
The closed loops in the force components are split out into
conservative part, dissipative part, and total. We see the
same oscillatory features in our self-force results as
Thornburg and Wardell found, with the oscillations most

FIG. 7. The three nonzero components of the (dimensionless)
scalar self-force for a particle orbiting in a Kerr background with
orbital parameters ðp; e; ι; a=MÞ ¼ ð8; 0.8; 0; 0.99Þ. The red
(dashed) lines refer to the dissipative pieces of the self-force
components, while the blue (dot-dashed) lines refer to the
conservative pieces. The black (solid) lines represent the total
values for each respective self-force component.
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prominent in the t and r self-force components. After the
point charge’s periastron approach (r ≃ 4.4M), the ringing
in the scalar field sweeps past the small body driving
oscillations in the self-force, with the oscillations then
decaying as the system approaches apastron. As expected,
by increasing the black hole spin, we observe a more
persistent ringing compared to that seen in the Thornburg
and Wardell e ¼ 0.8 model.

1. Quasinormal bursts in the waveform and extracting
multiple quasinormal modes

As we mentioned in the Introduction, we decided to look
at the waveform in this model to see if the excitations were
present in the asymptotic field. While faint, there are indeed
quasinormal bursts (QNBs) visible to most observers of the
waveform. The waveform itself, highlighted in the
Introduction with Fig. 1, appears devoid of ringing at
any of three observer angles: ðθobs;φobsÞ¼ðπ=2;0Þ,
ðθobs;φobsÞ¼ ðπ=4;0Þ, and ðθobs;φobsÞ ¼ ð0; 0Þ. However,
high-pass filtering or emphasizing high frequencies, by
taking two time derivatives of the waveform as shown in
Fig. 2, makes the bursts visible. Figure 2 shows the second
derivative measured by the observer at ðθobs;φobsÞ ¼
ðπ=2; 0Þ. Similar excitation is visible to an observer at
ðθobs;φobsÞ ¼ ðπ=4; 0Þ, but the QNBs are not present for an
observer at position ðθobs;φobsÞ ¼ ð0; 0Þ (i.e., along the
polar axis). As we show below, this is consistent with the
ringing being due to (prograde) axial l ¼ m perturbations
of the field in the Kerr geometry.
Rather than emphasizing high frequencies by

taking time derivatives of the signal, one can instead
apply a high-pass filter to attenuate the lower frequency
“background.” We construct a high-pass Butterworth filter
using Mathematica’s ButterworthFilterModel,

ToDiscreteTimeModel, and RecurrenceFilter.
We choose the filter’s parameters by inspecting the power
spectrum of the waveform.
After applying the high-pass filter and observing the

presence of QNBs, we attempted to extract a complex
frequency ω ¼ ω0 þ iω00 for the excitation by (1) selecting
a time window during which the excitation dominates the
filtered signal and (2) then performing a least-squares fit of
a burst template to the filtered data, as demonstrated in
Fig. 8. The data was fitted to a real function of the form
Aeþω00t sinω0ðtþ t0Þ using Mathematica’s FindFit.
Fitted complex frequencies have negative imaginary parts,
consistent with damped bursts. The data in Fig. 8 was found
to be best fit by the complex frequency ωfit ¼ 0.4937 −
0.0367i (in units with M ¼ 1; henceforth assumed in this
section).
We can compare this value to the spectrum of known

QNM frequencies ωplm due to scalar perturbations of Kerr
spacetimes published by Berti [107]. The QNMs depend on
a and are indexed by the spheroidal harmonic mode
numbers ðl; mÞ and the overtone p, where p ¼ 0 refers
to the least-damped or “fundamental” overtone. Assuming
M ¼ 1 but without assuming a value for a, we find that the
extracted complex frequency ωfit above most closely
matches the QNM frequency ω011 ¼ 0.4933 − 0.0368i
for a spin of a ¼ 0.9899. In other words, by assuming
that this complex frequency should be represented by a
QNM, the extracted frequency accurately recovers the spin
of the primary black hole to three digits. This result is
consistent with those presented by Thornburg [70–72], who
found that, across several orbital configurations and spin
parameters, the QNM frequencies in his self-force data
were best fit by the least-damped (smallest jω00j) l ¼ m ¼
1 QNMs.
Surprisingly perhaps, our FD numerical results actually

allow us to extract additional QNMs. To do so, we obtain
the residuals between the high-frequency signal and its fit
in Fig. 8 and apply the high-pass filter a second time to
remove a remaining background (i.e., “flat-fielding” the
signal). We fit and obtain the complex frequency of a
second damped oscillation. By iterating this process, we
managed to extract three additional QNM excitations in the
filteredwaveform. These are shown in Fig. 9. The numerical
values of the frequencies of all extracted QNMs are
presented in Table II and compared to the closest published
QNMs for scalar perturbations of a Kerr spacetime
with a ¼ 0.99.
However, we can instead try to remain agnostic to the

black hole spin and mode numbers and compare the
extracted frequencies to all known QNM frequencies across
Berti’s densely sampled set of Kerr spacetimes. Consulting
Table II, our second extracted frequency best fits a QNM in
Berti’s table with frequency ω022 ¼ 0.9269 − 0.0314i for
a ¼ 0.9897. Our third extracted frequency best fits one
with ω033 ¼ 1.3680 − 0.0304i for a ¼ 0.9899 and the

FIG. 8. Plot of a segment of the scalar field signal presented in
Fig. 1 after applying a high-pass filter (blue squares), along with a
least-squares fit of the filtered signal (red line) to a model
template. The high-pass filter and fit were constructed as outlined
in Sec. V B 1. The data are best fit by a decaying sinusoid with a
complex frequency of Mω ¼ 0.4933 − 0.0368i.
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fourth best fits Berti’s mode ω044 ¼ 1.8084 − 0.0304i for
a ¼ 0.9897. By simply looking for the best fit to known
QNMs, we obtain multiple estimates of the black hole spin
parameter. Multiple parameter estimates all yield values for
the black hole spin that are surprisingly close to a ¼ 0.99
(with approximately three digits of agreement). If QNBs
can be observed in highly eccentric EMRIs, it may well be
possible to get repeated snapshot determinations of the
mass and spin of the primary black hole. Furthermore,
while the “orbital parts” of the EMRI waveform will evolve
and move through the LISA passband, the frequencies of
the QNB component of the waveform will remain invariant,
as these depend upon the (essentially unchanging) primary
mass and spin.
By reproducing Thornburg and Wardell’s “wiggles,” we

affirm that these are integral components of the SSF. The
finding of related QNBs in the scalar waveform suggests
the strong likelihood that QNBs exist in the gravitational
waveforms of (some) EMRIs. A gauge invariant signal of
this type, from repeatedly “tickling” the primary black hole,
might have important observational consequences in suffi-
ciently high signal-to-noise ratio EMRIs.

C. Kerr inclined orbits

1. Spherical inclined orbits

We first examine inclined orbits in the Kerr background
by calculating the SSF along spherical inclined
orbits. Similar to other restricted orbits, spherical inclined
orbits are biperiodic in their frequency spectrum,
ωmk0 ¼ mΩφ þ kΩθ, rather than tri-periodic like eccentric
inclined orbits. Additionally, while the number of summed
radial-frequency modes in Eq. (2.64) rapidly grows with
increasing eccentricities, the number of summed polar-
frequency modes is not as dramatically affected by increas-
ing the inclination. Calculating the radial mode functions is
also one of the primary computational bottlenecks of our
code. Altogether these factors significantly reduce compu-
tational costs, allowing us to compute the SSF along
spherical orbits at large inclinations with high precision.
These orbits serve as a code test for us, since the SSF

along spherical orbits was previously investigated by

(c)

(a)

(b)

FIG. 9. Short window on the waveform showing successive sets
of residuals (blue squares) after subtracting successively deter-
mined modes via fitting. Also shown are the least-squares
determined fits of the residual signal data (red lines) at each
stage in the subtraction. The top plot (a) depicts the residual
signal from subtracting the fit in Fig. 8 from the waveform and
high-pass filtering a second time. The residuals in the top panel
are then fit by a damped sinusoid with Mω ¼ 0.9277 − 0.0314i.
The middle panel (b) depicts the residuals after subtracting
the first two QNMs and high-pass filtering. The result is fit by
a mode with Mω ¼ 1.3682 − 0.0304i. The bottom panel
(c) shows residuals after subtracting the first three determined
QNMs and filtering, yielding a final mode with Mω ¼
1.8115 − 0.0304i. We found it necessary to slightly shift forward
the time window after each fit.

TABLE II. A comparison of the QNM frequencies extracted
from filtering and fitting the waveform, as shown in Figs. 8 and 9,
and the QNM frequencies calculated by Berti for scalar pertur-
bations of Kerr spacetime with spin parameter a=M ¼ 0.99
[107]. The value of a is based on the spin parameter chosen
for this highly eccentric SSF investigation.

Figure p l m Extracted QNM Known QNM

Fig. 8 0 1 1 0.4933 − 0.0368i 0.4934 − 0.0367i
Fig. 9(a) 0 2 2 0.9277 − 0.0314i 0.9280 − 0.0311i
Fig. 9(b) 0 3 3 1.3682 − 0.0304i 1.3686 − 0.0302i
Fig. 9(c) 0 4 4 1.8115 − 0.0304i 1.8111 − 0.0300i
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Warburton [64]. We reproduced the results from [64] for the
orbit with parameters ðp;e;Lz=M;a=MÞ¼ ð4;0;1;0.998Þ.
To match the conventions of [64], the orbit is parametrized
by the z component of angular momentum Lz instead of the
inclination ι. The self-force data produced by our code are
in good agreement with those of [64]. The conservative
components agree to ∼4 digits and dissipative components
to 7 or more digits. Comparative SSF values are provided in
Table III.

2. Eccentric inclined orbits

The truly unique capability of our code is in being able to
model the SSF on generic (bound) eccentric inclined orbits.
We investigate in this paper the SSF on four different orbits
of this type, with their characteristic parameters specified in
Table IV. We refer to these orbits by their reference names:
“base,” “large e,” “large ι,” and “large a.” We use the orbit
ðp; e; ι; a=MÞ ¼ ð10; 0.1; π=5; 0.5Þ as our fiducial case and
then vary either the orbital eccentricity, the orbital incli-
nation, or the black hole spin to get a sense of how the self-
force depends on these orbital and spin parameters. This
also provides tests of our code’s ability to probe more

challenging regions of parameter space. The large e orbit is
also used in Fig. 10 to demonstrate improved convergence
of the mode-sum through incorporating additional numeri-
cally extracted regularization parameters.

TABLE III. A comparison between the scalar self-force data produced by our code for a spherical inclined orbit ðp; e;Lz=M; a=MÞ ¼
ð4; 0; 1; 0.998Þ and the SSF results for the same orbit reported in Tables II and III of [64]. Conservative values include error estimates due
to fitting the large-l contribution as discussed in Sec. IVA. Numbers in parentheses describe the estimated error in the last reported digit,
i.e., −2.9793ð5Þ ¼ −2.9793� 0.0005. Dissipative values are truncated based on the value of the last computed dissipative self-force
l-mode lmax.

ψ 0 π=3 π=2

F̃cons
t × 104 This paper 0 1.077 533(4) 0

[64] 0 1.07740(5) 0
F̃diss
t × 103 This paper 1.683 771 018 273 96 1.623 585 013 78 1.668 641 421 01

[64] 1.683 771 1.623 585 1.668 641 4
F̃cons
r × 104 This paper 4.050 372 7(9) −3.901 868ð4Þ −7.719 77ð2Þ

[64] 4.050 36(4) −3.901 90ð8Þ −7.720 01ð4Þ
F̃diss
r × 104 This paper 0 −1.280 407 14 0

[64] 0 −1.280 407 1 0
F̃cons
θ × 103 This paper 3.552 535 1(2) 2.254 85(3) 0

[64] 3.552 43(9) 2.254 95(4) 0
F̃diss
θ × 102 This paper 0 −1.185 212 479 −1.146 202 895 87

[64] 0 −1.185 212 5 −1.146 202 9
F̃cons
φ × 104 This paper 0 −2.979 84ð2Þ 0

[64] 0 −2.9793ð5Þ 0
F̃diss
φ × 103 This paper −4.960 869 925 391 37 −7.246 295 971 2 −8.304 515 578 0

[64] −4.960 869 9 −7.246 296 0 −8.304 515 6

TABLE IV. Orbital parameters for generic orbits presented in
Fig. 11.

Model p e ι a=M

base 10 0.1 π=5 0.5
large e 10 0.3 π=5 0.5
large ι 10 0.1 π=3 0.5
large a 10 0.1 π=5 0.9

FIG. 10. Convergence of the (dimensionless) scalar self-force
l-modes for an eccentric inclined orbit in Kerr spacetime. Orbital
parameters are taken to be ðp; e; ι; a=MÞ ¼ ð10; 0.3; π=5; 0.5Þ.
The dashed and dotted lines depict the increasing rate of con-
vergence for F̃θðψ ¼ π=8; χ ¼ 3π=4Þ as additional regularization
parameters are incorporated. The black squares represent individ-
ual l-modes of the SSF prior to regularization, which diverge as
expected. The red triangles show the effect of subtracting the
known analytic regularization parameters Aθ and Bθ. The blue
diamonds include the next regularization parameterDθ;2, estimated
numerically (Sec. IVA). The purple circles and the orange inverted
triangles represent including additional numerically fitted regu-
larization parameters. Mode-sum convergence improves through
inclusion of successively more regularization parameters.
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While in restricted cases the self-force can be periodic,
for generic orbits the self-force is instead biperiodic. As
such, it is less practical to plot the self-force as a function of
time or radial position as in Figs. 5 and 7. Instead, as long as
the orbit is not resonant in r and θ motion, we can map
the self-force as contour levels on the torus spanned by the
coordinates ψ and χ, similar to the use of the torus in the
discussion surrounding Fig. 4 of Sec. IV B. The ergodic
nature of the particle’s motion implies that the SSF is a
smooth continuous field over ψ and χ, with any given point
eventually sampled by the motion (see also [44]). This
representation of the SSF for the generic (nonresonant)

orbits listed in Table IV is shown in Fig. 11. (In these plots
we use ψ and χ as coordinates rather than angle variables
qr;θ ¼ ϒr;θλ as found in [44].)
For the orbits presented in Fig. 11, the largest variations

in the scalar self-force occur in the radial direction, with the
exception of the Fθ component. Consequently, despite the
low eccentricities considered, Ft, Fr, and Fφ are most
dependent on ψ , i.e., the radial motion of the small body.
We also see that the maxima and minima of each self-
force component are shifted away from the turning
points of the particle’s motion ðψ ¼ 0;π;2π;χ¼ 0;π;2πÞ
and the particle’s passage through the equatorial plane

FIG. 11. The (dimensionless) scalar self-force components, F̃αðψ ; χÞ, for the four orbits listed in Table IV is depicted through
sampling on the torus. Each row of plots directly corresponds to the orbit in the same row of Table IV. (The first, second, third, and fourth
rows correspond to the orbits base, large e, large ι, and large a, respectively.) The vertical axis is correlated with the θ-dependence of the
self-force components, while the horizontal axis is related to the r-dependence. Colors correspond to different values of the self-force,
with the values denoted in the colorbar to the right side of each plot. The self-force is constant along each contour line. The tic labels in
each color bar correspond to the values of the contour lines. Therefore, in the top left plot, F̃t ¼ 5 × 10−5 along the leftmost contour line.
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ðχ ¼ π=2; 3π=2Þ, as a result of conservative effects. These
shifts are most easily recognized in Fr.
Taking the base orbit as a fiducial result, we can also

examine how the self-force changes as we vary the orbital
parameters e and ι or the spin parameter a. For the high e
orbit, we increase the eccentricity from e ¼ 0.1 to e ¼ 0.3.
We see that the radial dependence of the self-force becomes
further accentuated, due to the orbit’s increased eccentric-
ity. Additionally, the maximum magnitude of the scalar
self-force increases in every self-force component, most
likely due to the particle’s smaller pericentric distance at the
higher eccentricity.
For the high ι orbit, we increase the inclination from ι ¼

π=5 to ι ¼ π=3. The dependence of the scalar self-force on
the particle’s polar (χ) motion becomesmore pronounced, as
the particle sweeps out a larger region above and below the
equatorial plane. Additionally, the radial component of the
scalar self-force shifts to become predominantly positive.
A similar behavior is seen for inclined spherical orbits,
where the average value of Fr grows monotonically with
inclination, as it ranges from ι ¼ 0 to ι ¼ π [64]. (Retrograde
orbits are parametrized with a < 0 in our code.)
For the high a orbit, we increase the black hole spin

parameter from a=M ¼ 0.5 to a=M ¼ 0.9. We observe a
stronger dependence of the scalar self-force on the polar
position of the particle when a is increased. Also, the radial
component of the SSF becomes attractive (Fr < 0) along
the entire orbit in this case. This is consistent with previous
work on circular equatorial orbits, where Fr decreases with
increasing a [62].

3. Flux balance

As a final self-consistency check, we analyze the balance
between the asymptotic fluxes with the local dissipative
self-force effects [63,89,108–110]. The average work done
on the particle by the SSF should be balanced by the rate of
radiative energy loss. Likewise there should be a
balance between the local torque on the particle due to

the SSF and the angular momentum radiated away by the
scalar field. The average local work and torque are given,
respectively, by

W ¼ − lim
T→∞

1

T

Z
T

0

Fdiss
t

ut
dt; ð5:5Þ

T ¼ lim
T→∞

1

T

Z
T

0

Fdiss
φ

ut
dt: ð5:6Þ

In practice, periodicity (or bi-periodicity) can be leveraged
to compute Eqs. (5.5) and (5.6) with finite integrals over
time or finite integrals over the two-torus. Note that only
the dissipative component of the self-force contributes
because both Fcons

t and Fcons
φ are time-antisymmetric.

Therefore the conservative pieces cancel when averaging.
The asymptotic energy and angular momentum fluxes

can be calculated by analyzing the scalar field at r ≃∞ and
r ≃ rþ

h _Ei ¼ 1

4π

X
lmkn

ωmknðγmknjC−
lmknj2 þ ωmknjCþ

lmknj2Þ; ð5:7Þ

h _Lzi ¼
1

4π

X
lmkn

mðγmknjC−
lmknj2 þ ωmknjCþ

lmknj2Þ; ð5:8Þ

where E ¼ μE, Lz ¼ μLz, an overdot represents a time
derivative, and hi denotes a time (t) average. Also recall that
γmkn ≡ ωmkn −ma=2Mrþ. The flux balance formulas then
take the form

h _Ei ¼ −W; ð5:9Þ
h _Lzi ¼ −T : ð5:10Þ

The fluxes and self-force are calculated independently from
one another. Consequently, comparing our scalar self-force
results with flux calculations provides a self-consistency
check for our code. Flux balance comparisons are included
in Table V.

TABLE V. Energy and angular momentum fluxes for various orbits, along with their comparisons to the local work and torque done by
the scalar self-force on the particle. The plus signs in columns six and eight are due to the negative signs in Eqs. (5.9) and (5.10). Flux
expressions are truncated two digits prior to the order of the last calculated scalar self-force l-mode, lmax. If the energy flux for lmax is on
the order of 10−14, then the flux is reported to an accuracy of 10−12. The fluxes typically agree with the local work and angular
momentum beyond the level of reported accuracy (the relative errors are greater than the reported accuracy of the results). Note that the
inclination for the last orbit corresponds to an angular momentum value of Lz=M ¼ 1.

p e ι a=M h _Ei ×M2=q2 j1þ h _Ei=Wj h _Lzi ×M=q2 j1þ h _Lzi=T j
10 0.5 π=5 0 3.329 332 97 × 10−5 1 × 10−11 6.346 485 50 × 10−4 3 × 10−10

10 0.5 0 0 3.329 332 97 × 10−5 3 × 10−11 7.844 687 49 × 10−4 2 × 10−11

10 0.3 π=5 0.5 2.961 026 3 × 10−5 9 × 10−14 6.9840212 × 10−4 4 × 10−14

10 0.1 π=3 0.5 2.994475370 × 10−5 0 × 10−11 4.938 962 06 × 10−4 0 × 10−12

10 0.1 π=5 0.9 2.745 901 231 × 10−5 7 × 10−12 7.281 232 718 × 10−4 0 × 10−11

10 0.1 π=5 0.5 2.917 529 922 × 10−5 5 × 10−14 7.567 560 34 × 10−4 6 × 10−15

8 0.8 0 0.99 3.1363 × 10−5 7 × 10−8 4.2122 × 10−4 7 × 10−9

4 0 ∼1.22 0.998 9.642 339 9 × 10−4 7 × 10−10 3.787 652 4 × 10−3 8 × 10−10
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VI. SUMMARY

We considered a point scalar charge following generic
bound geodesics in Kerr spacetime and have calculated the
scalar self-force acting on it, as a model for the gravitational
self-force problem. A Mathematica code was designed to
perform these calculations in the frequency domain with
arbitrary numerical precision (we are currently developingC
code to accomplish the same goals with increased computa-
tional efficiency). Our numerical strategy includes novel
features such as fast spectral source integration techniques
that reduce expensive 2D source integrals to successive 1D
Fourier sums.We apply the same techniques to integrate the
geodesic equations of motion. The source calculation in the
scalar case is sped up by orders ofmagnitude and argues for a
thorough investigation of whether in the gravitational case
the Teukolsky equation source can be similarly arranged to
allow faster numerical integration.
The accuracy of our code was validated by comparing to

prior calculations of and existing results on the SSF, such as
for (1) eccentric equatorial orbits, (2) inclined spherical
orbits, and (3) self-comparison between inclined eccentric
Schwarzschild and equatorial eccentric Schwarzschild. In
all cases we verify that we calculate the scalar field and self-
force with accuracy.
In the process of computing the SSF on highly eccentric

(e ¼ 0.8) equatorial orbits about a rapidly rotating
(a=M ¼ 0.99) Kerr primary, we verified a result of
Thornburg and Wardell [65]–the existence of “wiggles”
in the self-force due to quasinormal-mode excitation of the
primary following periastron passage. Their calculations
were donewith a time domain code while ours were done in
the frequency domain. Given substantial differences in the
methods, it is heartening to see the result confirmed.
Intriguingly, we further searched for and observed quasi-

normal bursts (shortened to QNBs earlier in the paper) in the
asymptotic waveform. (This finding became a central high-
light of the paper even thoughwe have so far only computed it
on equatorial orbits.) We found that the QNBs are a super-
position of not just the least-damped l ¼ m ¼ 1 QNM (as
[65] had already discovered) but of the least-damped
l ¼ m ¼ 2, 3, 4 QNMs as well. While our calculations are
of the scalar model problem, these QNBs are likely present in
the gravitational waveform as well, which would provide a
gauge-invariant indicator of the effect. If so, these faint
repeated bursts offer a new opportunity in high signal-to-
noise ratio EMRI observations to measure rotating black hole
properties. In effect, each high e, high a EMRI waveform
would have two components: a low frequency spectrum that
evolves toward higher frequency as the inspiral (chirp)
proceeds and a high frequency spectrum of superposed
damped modes which remain fixed in frequency (though
with evolving amplitudes andphases). It awaits futurework to
decide howpracticalmeasurement ofQNBsmightbe inLISA
observations given expected ranges on EMRI event rates.
Our results also focused on four different inclined

eccentric orbits, with parameters given in Table IV, which

represents the novel elements of our method and code. We
displayed in Fig. 11 how the scalar self-force changes from
one of these orbits to the next, by varying inclination,
eccentricity, and black hole spin. Validations of the generic
orbit SSF results included examining convergence rates of
the conservative self-force and checking balance between
local SSF work and torque done on the small body and
asymptotic energy and angular momentum fluxes.
In future work we intend to apply the generic SSF code

to study resonant orbits, directly measuring the size of
jumps in the waveform that can be expected as a result of
transient resonances and how those jumps vary with phase
of the orbit upon entering the resonance [111,112]. We will
also likely make a thorough survey of QNB strengths,
including moving beyond equatorial orbits. Part of this
work may focus on strategies for processing EMRI wave-
forms, e.g., matching templates or co-adding waveform
segments, to try to draw QNBs up out of the detector noise.

ACKNOWLEDGMENTS

We thank Niels Warburton, Adrian Ottewill, Barry
Wardell, Maarten van de Meent, Marc Casals, and Scott
Hughes for helpful discussions. This work was supported
in part by NSF Grants No. PHY-1506182 and No. PHY-
1806447 and by the North Carolina Space Grant Graduate
Research Fellowship. C. R. E. acknowledges support from
the Bahnson Fund at the University of North Carolina at
Chapel Hill.

Note added in proof.—After this paper was submitted a
related paper by Thornburg, Wardell, and van deMeent was
submitted that demonstrated the effect in the gravitational
waveform [113]. Also, the authors were made aware of an
earlier paper by O'Sullivan and Hughes [114] where
quasinormal bursts were seen in the black hole horizon
shear response.

APPENDIX: REGULARIZING
THE θ-COMPONENT

As mentioned in Sec. IVA, we use a window function
discovered by Warburton [64]

fðθÞ ¼ 3sin2θp sin θ − sin3θ

2sin3θp
: ðA1Þ

This window function fðθÞ satisfies the necessary properties
fΦ → Φ and ∂θðfΦÞ → ∂θΦ as xμ → xμp, ensuring thatFret

α�
is unaffected by the transformation Φ → fΦ. Additionally
Warburton’s window function cleverly avoids wide band-
width coupling thanks to the compact relationship between
f∂θYjm and Ylm

f∂θYjm ¼ βð−3Þjm Yj−3;m þ βð−1Þjm Yj−1;m

þ βðþ1Þ
jm Yjþ1;m þ βðþ3Þ

jm Yjþ3;m: ðA2Þ
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The coefficients βð�iÞ
jm are defined as

βð�1Þ
lm ≡

�
3δð�1Þ

lm

2 sin θp
−

ζð�1Þ
lm

2sin3θp

�
; ðA3Þ

βð�3Þ
lm ≡

�
ζð�3Þ
lm

2sin3θp

�
; ðA4Þ

where δlm and ζlm are given in [115] as

δðþ1Þ
lm ¼ lClþ1;m; δð−1Þlm ¼ −ðlþ 1ÞClm;

ζðþ3Þ
lm ¼ −lClþ1;mClþ2;mClþ3;m;

ζð−3Þlm ¼ ðlþ 1ÞClmCl−1;mCl−2;m;

ζðþ1Þ
lm ¼ Clþ1;m½lð1 − C2

lþ1;m − C2
lþ2;mÞ þ ðlþ 1ÞC2

lm�;
ζð−1Þlm ¼ −Clm½ðlþ 1Þð1 − C2

l−1;m − C2
lmÞ þ lC2

lþ1;m�;

Clm ¼
�

l2 −m2

ð2lþ 1Þð2l − 1Þ
�
1=2

: ðA5Þ

Under these considerations, efficient calculation of Fret;l
θ�

follows from the replacement Φ → fΦ

Fret
θ� ¼ q lim

xμ→xμp

Xþ∞

j¼0

Xj

m¼−j
ϕ�
jmðt; rÞfðθÞ∂θYjmðθ;φÞ;

¼ q lim
xμ→xμp

Xþ∞

j¼0

Xj

m¼−j
ϕ�
jmðt; rÞðβð−3Þjm Yj−3;m

þ βð−1Þjm Yj−1;m þ βðþ1Þ
jm Yjþ1;m þ βðþ3Þ

jm Yjþ3;mÞ: ðA6Þ

Refactoring Eq. (A6), we recover Eq. (4.6)

ψ�
lmðt;rÞ¼ βð−3Þlþ3;mϕ

�
lþ3;mðt;rÞþβð−1Þlþ1;mϕ

�
lþ1;mðt;rÞ

þβðþ1Þ
l−1;mϕ

�
l−1;mðt;rÞþβðþ3Þ

l−3;mϕ
�
l−3;mðt;rÞ: ðA7Þ
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