
 

Eccentric-orbit extreme-mass-ratio-inspiral radiation. II. 1PN correction
to leading-logarithm and subleading-logarithm flux sequences

and the entire perturbative 4PN flux

Christopher Munna and Charles R. Evans
Department of Physics and Astronomy, University of North Carolina,

Chapel Hill, North Carolina 27599, USA

(Received 10 September 2020; accepted 7 October 2020; published 2 November 2020)

In a recent paper we showed that for eccentric-orbit extreme-mass-ratio inspirals the analytic forms of
the leading-logarithm energy and angular momentum post-Newtonian (PN) flux terms (radiated to infinity)
can, to arbitrary PN order, be determined by sums over the Fourier spectrum of the Newtonian quadrupole
moment. We further showed that an essential part of the eccentricity dependence of the related subleading-
logarithm PN sequences, at lowest order in the symmetric mass ratio ν, stems as well from the Newtonian
quadrupole moment. Once that part is factored out, the remaining eccentricity dependence is more easily
determined by black hole perturbation theory. In this paper we show how the sequences that are the 1PN
corrections to the entire leading-logarithm series, namely terms that appear at PN orders x3kþ1 logkðxÞ and
x3kþ5=2 logkðxÞ (for PN compactness parameter x and integers k ≥ 0), at lowest order in ν, are determined
by the Fourier spectra of the Newtonian mass octupole, Newtonian current quadrupole, and 1PN part of the
mass quadrupole moments. We also develop a conjectured (but plausible) form for 1PN correction to the
leading logs at second order in ν. Further, in analogy to the first paper, we show that these same source
multipole moments also yield nontrivial parts of the 1PN correction to the subleading-logarithm series, and
that the remaining eccentricity dependence (at lowest order in ν) can then more easily be determined using
black hole perturbation theory. We use this method to determine the entire analytic eccentricity dependence
of the perturbative (i.e., lowest order in ν) 4PN nonlog terms, R4ðetÞ and Z4ðetÞ, for energy and angular
momentum respectively.

DOI: 10.1103/PhysRevD.102.104006

I. INTRODUCTION

With development proceeding on the Laser Interferometer
Space Antenna (LISA) gravitational wave mission [1,2], the
need for accurate theoretical models of eccentric extreme-
mass-ratio inspirals (EMRIs) has continued to grow [3–6]. In
previous work [7–9] complementary approaches from post-
Newtonian (PN) theory and black hole perturbation theory
(BHPT) were combined to generate new information on the
orbit-averaged energy and angular momentum fluxes radi-
ated to infinity in (nonspinning) eccentric-orbit systems. In a
recent one of these papers [8] (hereafter Paper I), we showed
that the Fourier amplitudes of the Newtonian mass quadru-
pole moment, and the function gðn; etÞ [10,11] proportional
to their complex square, determine the functional depend-
ence in the quasi-Keplerian (time) eccentricity et [12] of the
entire leading-logarithmsequence (i.e., to arbitraryPNorder)
of these fluxes. The functional dependence in eccentricity of
each such flux term, relative to the circular orbit limit, is
commonly referred to as an enhancement function. It is
apparent that the quadrupole moment, as embodied by
gðn; etÞ, enters into each new type of radiative process in
the PN expansion: it provides the leading (quadrupole) order

emission; it determines the leading tail emission at 1.5PN
order [13]; and it provides the first appearance of a log term at
3PN order [14]. Paper I showed the continuation of this
pattern for arbitrarily higher PN order terms in the fluxes.
A similar conclusion holds for terms in the conservative
sector, such as the orbital energy of the system [15].
We then went further in Paper I to show that additional

sums over the quadrupole spectrum determine essential
parts of the eccentricity dependence of the subleading-
logarithm series, which are terms associated with leading
logs at the same PN order but with one less power of logðxÞ,
where x is a PN compactness parameter. Specifically, we
define x ¼ ððm1 þm2ÞΩφÞ2=3 [11], where m1 and m2 are
the primary and secondary masses and Ωφ is the mean
frequency of azimuthal motion. A subleading-logarithm
term can be thought of alternatively as the 3PN correction
to the leading-logarithm term of the same power of logðxÞ
(or henceforth referred to as the corresponding term in the
3PN log series).
At lowest order in ν, these quadrupole-dependent parts

can be reexpressed in terms of the Darwin [16,17] defi-
nition of eccentricity e. Each entire subleading-log term is

PHYSICAL REVIEW D 102, 104006 (2020)

2470-0010=2020=102(10)=104006(35) 104006-1 © 2020 American Physical Society

https://orcid.org/0000-0002-1682-4114
https://orcid.org/0000-0001-5578-1033
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.104006&domain=pdf&date_stamp=2020-11-02
https://doi.org/10.1103/PhysRevD.102.104006
https://doi.org/10.1103/PhysRevD.102.104006
https://doi.org/10.1103/PhysRevD.102.104006
https://doi.org/10.1103/PhysRevD.102.104006


then taken to have an assumed form for its expansion in
powers of e2, with the quadrupole-dependent part being
built in. This quadrupole portion subsumes all of the
transcendental number coefficients. The remaining
unknown structure in each flux term is found to be either
a closed form expression (at integer PN orders) or an
infinite series (at half-integer PN orders) with rational
number coefficients that can then in principle be deter-
mined more easily by BHPT calculations.
Explicitly, as mentioned in Paper I, the established

methods of computing PN expansions within BHPT,
whether numeric analytic [9] or all analytic [18], yield
eccentricity functions as simple Taylor series to finite
orders in e. In the former case involving numeric fits to
highly accurate flux data then converted to analytic form,
the integer-relation algorithm is much more likely to
succeed if the dimensionality of the search vector is held
to a minimum. The reduction of dimensionality is made
possible by understanding and removing the quadrupole-
dependent, transcendental-number-dependent part of the
subleading log terms. Additionally, the BHPT approach
does not easily present separable pieces involving functions
of e like logð1 − e2Þ. Instead, the knowledge from PN
theory allows us to resum the finite eccentricity expansions
into those compact forms. Most importantly, for integer-
order subleading logs, the separable quadrupole portion
contains the only part of the analytic eccentricity depend-
ence that is not closed in form. It is multiple orders of
magnitude faster to obtain the expansion of this piece
through the Fourier methods of Paper I than through
BHPT alone. This process is described in detail in Paper
I, and a variant is used in this paper to find new sequences
in the PN structure of the fluxes. In either event, once the
terms are determined as functions of e, then (at least at
lowest order in ν) the fluxes can be transformed back to et.
We showed this procedure in action by extracting the
entire analytic dependence of the 6PN log energy and
angular momentum terms, R6LðetÞ and Z6LðetÞ, to arbi-
trary powers of e2t .
Thus, one conclusion of Paper I is that two diagonal strips

in the high-order PN structure of the fluxes [i.e., the leading
logarithms at PN orders x3k logkðxÞ and x3kþ3=2 logkðxÞ for
integers k ≥ 0] are determined by the Fourier spectrum of
the Newtonian quadrupole moment. See Fig. 1 for a
graphical depiction of these leading log strips in the
PN structure. The second main conclusion is that two
additional diagonal strips, the subleading logs at PN orders
x3k logk−1ðxÞ and x3kþ3=2 logk−1ðxÞ for integers k ≥ 1, are
also partly determined at lowest order in ν by the quadrupole
spectrum, with the remaining eccentricity dependence hav-
ing a closed form (integer order) or infinite series (half-
integer order) and being more easily determined by BHPT.
The leading log and 3PN log sequences are represented in
the figure as (solid and dashed) red and green lines,
respectively. The question then arises is it possible to

determine additional entire diagonal strips in the PN
structure of the fluxes with only limited additional
knowledge of low-order source multipole moments? As
we show in this paper, the answer is yes if we focus on the
1PN corrections to the leading- and subleading-logarithm
sequences.
The first term in the leading-log series is the Newtonian

quadrupole flux, i.e., the Peters-Mathews [10,19] term
R0ðetÞ itself. The enhancement function in this case arises
from simply summing the Newtonian quadrupole moment
spectrum gðn; etÞ over all harmonics n in the eccentric
motion. The next order termR1ðetÞ is the 1PN correction to
the gravitational wave flux, which has been known since
Wagoner and Will [20] (see also [11,21]). In this case
determining the enhancement function requires the Fourier
spectra of the Newtonian mass octupole, the Newtonian
current quadrupole, and the 1PN-corrected mass quadru-
pole moments (hereafter called the 1PN multipoles). The
R1ðetÞ flux is the first term in one of the two new diagonal
sequences of 1PN-corrected leading logarithms, which we
will refer to as a 1PN log series (Fig. 1, solid blue line).
This sequence has PN orders x3kþ1 logkðxÞ for k ≥ 0. The
other (half-integer) 1PN log series (dashed blue line in the
figure) begins with the 2.5PN tail at x5=2 and has PN orders
x3kþ5=2 logkðxÞ for k ≥ 0. A principal result of this paper is
to show that it is merely the spectra of the three 1PN
multipoles that are required to determine these two 1PN log

FIG. 1. Schematic depiction of the presence of terms (as black
filled circles) in the high PN order relative fluxes for successively
higher powers of compactness x (horizontal axis) and higher
powers of logðxÞ (vertical axis). The Peters-Mathews [10] flux is
symbolized by the left-most point at the origin of the plot. This
representation of the PN structure of the fluxes allows a graphical
explanation of the various “log” sequences that are the focus of
this paper and Paper I. The red lines show the leading-log
sequences, both integer order (solid) and half-integer order
(dashed) detailed previously in Paper I. The 3PN log sequences
(previously called subleading logs), also the subject of Paper I,
are shown as green lines, both integer order and half-integer
order. The blue lines represent the 1PN log sequences and the
orange lines denote the 4PN log sequences, all of which are the
focus of this paper.
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series in their entirety to arbitrary PN order (at lowest order
in ν).
Calculation of the Newtonian mass octupole and current

quadrupole for eccentric bound motion is fairly straightfor-
ward and can be found in the original, earlier papers
[12,20], the review by Blanchet [11], or extrapolated from
techniques reviewed in Paper I. Calculation of the 1PN
correction to the mass quadrupole is more involved. At 1PN
order, the determination of the mass quadrupole must
account for relativistic orbital precession, which means
that the spectrum cannot be represented as a single Fourier
series but instead requires a double Fourier sum over
harmonics of the two different frequencies, Ωr (radial
libration) and Ωφ [12,14,22–24]. Once these spectra are
computed for given orbital parameters, their sums weighted
by powers of n over all harmonics combine to give terms in
the 1PN log series. One key difference though between the
1PN log series and the leading logs themselves is that
the former now have contributions beyond lowest order in
the mass ratio ν. Because the multipole moment analysis in
this paper makes no a priori assumptions on the mass ratio,
we are able to extract the likely forms for these OðνÞ
corrections, though without (presently) second-order
BHPT to assist in verification. At lowest order in ν, the
analysis found in this paper provided a theoretical under-
pinning for several previously known closed-form flux
terms [7–9].
With the 1PN log series thus understood, we then find

that the same set of 1PNmultipoles again appear in the 1PN
correction to the subleading logarithms. These sequences
will be referred to as 4PN log series, since for a given
power of logðxÞ each term in this series occurs at order x4

relative to the corresponding leading log term. In other
words, the 4PN log sequences are two diagonal strips in the
high PN order flux structure that appear at orders
x3kþ1 logk−1ðxÞ and x3kþ5=2 logk−1ðxÞ for k ≥ 1 (solid and
dashed orange lines in the figure). The first sequence begins
with the 4PN nonlog flux and the second with the 5.5PN
nonlog term. In direct analogy to our findings in Paper I, the
set of 1PN multipoles provides essential separable portions
of the terms in the 4PN log series, which include all
transcendental coefficients, leaving only rational series
which at lowest order in ν can then be calculated (more)
easily with BHPT. For the first (integer-order) sequence
(solid orange line), the remaining parts can be factored
into closed forms with rational coefficients, and it is
possible to determine their entire analytic eccentricity
dependence in this manner. For the second (half-integer-
order) sequence (dashed orange line), the remaining
eccentricity dependence is an infinite power series with
rational coefficients, and BHPT can be used to determine
coefficients to some depth in the e2 expansion. We illustrate
this procedure in detail by obtaining the 4PN nonlog
energy and angular momentum fluxes at lowest order in
the mass ratio.

The layout of this paper is as follows. In Sec. II we
review the PN expansion for radiated energy and angular
momentum, with an illustration of the terms that will be
computed in this analysis. There we also derive the Fourier
expansion for each of the 1PN multipole moments, and in
Sec. III we detail their previously known contributions to
the energy and angular momentum flux expansions.
Section IV shows how these source multipole spectra
contribute to the 1PN log series, with explicit general
formulas which generate all members of those sequences.
We proceed in Sec. V to derive the 4PN tail flux using these
same Fourier spectra in order to check various results and to
aid our extraction of the full 4PN log series fluxes at lowest
order in ν. Then, in Sec. VI we illustrate how the various
1PN Fourier summations manifest specifically in the 4PN
flux (and more generally in higher-order terms in the 4PN
log series) and combine these observations with BHPT flux
calculations from [9] to compute R4ðetÞ and Z4ðetÞ in
compact form. This result is quite timely, as it will provide a
valuable check for the PN community as they close in on a
full description of the orbital mechanics and radiative losses
at 4PN. That section also gives our analysis of the 5.5PN
nonlog energy flux, showing the procedure carries over to
half-integer order 4PN log terms. We conclude in Sec. VII
with discussion of potentially extending his process to the
2PN-corrected logarithm series (i.e., the 2PN log sequence
and 5PN log sequence).
In this paper we use units such that c ¼ G ¼ 1. As in

Paper I, for any pair of functions with names distinguished
by a tilde [e.g., gðn; etÞ and g̃ðn; etÞ], the “plain” quantity
will relate to the energy flux while the “tilde” version will
correspond to its angular momentum counterpart (see
e.g., [25] also).

II. ECCENTRIC-ORBIT PN FLUX EXPANSION
AND FOURIER DECOMPOSITION

OF 1PN MULTIPOLES

In this section we lay out the parts of the PN expansion of
the orbit-averaged fluxes that are of interest in this paper
and review the calculation of the Fourier spectra of the 1PN
multipoles. The focus is on eccentric EMRIs with the
binary consisting of two nonspinning bodies of mass m1

(primary) and mass m2 (secondary). We are primarily
concerned with m2 ≪ m1 but keep the symmetric mass
ratio ν ¼ m1m2=ðm1 þm2Þ2 as a variable.

A. PN flux expansions

In the modified harmonic gauge [11,14,21,25], the
flux expansions are parametrized by the aforementioned
ν and compactness parameter x, as well as the quasi-
Keplerian time eccentricity et (also reviewed below). The
expansion of the energy flux at infinity has the following
form [7–9,11,26–28]:
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�
dE
dt

�
¼ 32

5
ν2x5

h
R0þxR1þx3=2R3=2þx2R2þx5=2R5=2þx3ðR3þ logðxÞR3LÞþx7=2R7=2

þx4ðR4þ logðxÞR4LÞþx9=2ðR9=2þ logðxÞR9=2LÞþx5ðR5þ logðxÞR5LÞþx11=2ðR11=2þ logðxÞR11=2LÞ
þx6ðR6þ logðxÞR6Lþ log2ðxÞR6L2Þþx13=2ðR13=2þ logðxÞR13=2LÞþ �� �

i
: ð2:1Þ

In this expression the Newtonian circular-orbit energy flux
has been factored out. Each quantity Ri ¼ Riðet; νÞ is a
function of eccentricity and mass ratio that helps determine
the flux radiated at PN order i. The scripts denoting
PN order track both the power of x and the presence of
powers of logðxÞ. The dependence of each term on
et and ν differs notationally from Paper I, where the flux
terms were considered only at lowest order in ν and thus
taken to be functions of et alone. In this paper, while
we retain both parameters, we will be interested occasion-
ally in just the lowest order in ν limit. In those circum-
stances we revert to writing explicitly RiðetÞ or Riðet; 0Þ.
With x as the compactness parameter, each flux function is
known to diverge as et → 1 (see however [9] for an
alternative).

In both Paper I and this paper we are concerned with
diagonal strips in the high order PN structure where for
each unit increase in power of logðxÞ there is an increase of
three powers of x. As mentioned, the first example of such
strips were the two leading-logarithm series, with (integer)
orders x3k logkðxÞ and (half-integer) orders x3kþ3=2 logkðxÞ
(for k ≥ 0), which were given by Eq. (2.2) in Paper I. That
work also dealt with what were there called the subleading-
logarithm sequences, which here we refer to as the 3PN log
sequences, with (integer) orders x3k logk−1ðxÞ and (half-
integer) orders x3kþ3=2 logk−1ðxÞ (for k ≥ 1).
In this paper our attention is initially on a pair of diagonal

sequences that can be considered the 1PN correction to the
two leading-log series and which form the following subset
of the flux terms in (2.1):

�
dE
dt

�
1L

¼ 32

5
ν2x5½xR1 þ x5=2R5=2 þ x4 logðxÞR4L þ x11=2 logðxÞR11=2L

þ x7log2ðxÞR7L2 þ x17=2log2ðxÞR17=2L2 þ x10log3ðxÞR10L3 þ � � ��: ð2:2Þ

These 1PN log series, with integer PN order x3kþ1 logkðxÞ and half-integer PN order x3kþ5=2 logkðxÞ (for k ≥ 0), are evident.
Later in this paper we focus on yet another pair of diagonal sequences, the 4PN log series, which make up another subset of
the flux terms in (2.1)

�
dE
dt

�
4L

¼ 32

5
ν2x5½x4R4 þ x11=2R11=2 þ x7 logðxÞR7L þ x17=2 logðxÞR17=2L

þ x10log2ðxÞR10L2 þ x23=2log2ðxÞR23=2L2 þ x13log3ðxÞR13L3 þ � � ��: ð2:3Þ

The average loss of angular momentum is an expansion similar to (2.1) but with a different Newtonian circular-orbit
factor and with new flux (enhancement) functions that are referred to by Ziðet; νÞ instead ofRiðet; νÞ. The analogous 1PN
and 4PN log series in angular momentum are

�
dL
dt

�
1L

¼ 32

5
ν2ðm1 þm2Þx7=2½xZ1 þ x5=2Z5=2 þ x4 logðxÞZ4L þ x11=2 logðxÞZ11=2L

þ x7log2ðxÞZ7L2 þ x17=2log2ðxÞZ17=2L2 þ x10log3ðxÞZ10L3 þ � � ��; ð2:4Þ

and

�
dL
dt

�
4L

¼ 32

5
ν2ðm1 þm2Þx7=2½x4Z4 þ x11=2Z11=2 þ x7 logðxÞZ7L þ x17=2 logðxÞZ17=2L

þ x10log2ðxÞZ10L2 þ x23=2log2ðxÞZ23=2L2 þ x13log3ðxÞZ13L3 þ � � ��: ð2:5Þ
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B. The 1PN equations of motion

The 1PN source multipoles include the 1PN correction to
the mass quadrupole moment. Its computation requires the
1PN correction to the equations of motion, i.e., treatment of
the two-body motion as a precessing ellipse. The other two
1PN multipoles, the mass octupole and current quadrupole,
need only be computed to Newtonian order.
We take the total mass to be M ¼ m1 þm2 and assume

the motion occurs in the x, y plane. Coordinates r ¼ rðtÞ
and φ ¼ φðtÞ represent the separation distance and the
azimuthal angle, respectively. We introduce then the well-
known quasi-Keplerian parametrization of the motion
[12,29–31] involving three anomalies, uðtÞ, lðtÞ, VðuÞ,
three eccentricities, et, eφ, er, the two frequencies, Ωr, Ωφ,
and the semimajor axis, a. In this description, uðtÞ is the
eccentric anomaly, lðtÞ is the mean anomaly, VðuÞ is
the true anomaly, eφ is the azimuthal eccentricity, er is
the radial eccentricity, and et is the aforementioned time
eccentricity. At the 1PN level these quantities can be related
by the following equations:

r ¼ að1 − er cos uÞ; φ ¼
�
Ωφ

Ωr

�
VðuÞ;

l ¼ Ωrðt − tPÞ ¼
2π

Tr
ðt − tPÞ ¼ u − et sin u;

du
dt

¼ Ωr

1 − et cos u
; βφ ¼ 1 − ð1 − e2φÞ1=2

eφ
;

VðuÞ ¼ uþ 2 arctan

�
βφ sin u

1 − βφ cos u

�
; ð2:6Þ

where tP is the time of last periastron crossing and VðuÞ is
written in a form that preserves continuity across u ¼ 2π.
A more detailed description of these equations is given
in [11,12,31].
Our goal is to obtain all quantities in terms of u, et, and

x ¼ ðMΩφÞ2=3 prior to transformation to the frequency
domain. As part of this process, er and eφ must be
expressed in terms of et to 1PN order. We find

er ¼ et

�
1þ

�
4 −

3

2
ν

�
xþ � � �

�
; ð2:7Þ

eφ ¼ et½1þ ð4 − νÞxþ � � ��: ð2:8Þ

The semimajor axis can be expressed simply in terms of the
(dimensionless) energy ε [11] and ε can itself be PN
expanded. Through 1PN order these are found to be

a ¼ M
ε

�
1þ ε

4
ð−7þ νÞ

�
; ð2:9Þ

ε ¼ xþ
�

3þ 5e2t
4ð−1þ e2t Þ

−
ν

12

�
x2; ð2:10Þ

from which we obtain the 1PN expansion of a,

a ¼ M
x

�
1 −

ð1 − 3e2t Þ
1 − e2t

xþ ν

3
x

�
: ð2:11Þ

Similarly, the radial frequency Ωr can be PN expanded in
straightforward fashion, simultaneously providing the
expansion for the frequency ratio K ¼ Ωφ=Ωr. We obtain

Ωr ¼
x3=2

M

�
1 −

3x
1 − e2t

�
; K ¼ 1þ 3x

1 − e2t
: ð2:12Þ

The motion in the coordinate φ combines a mean
advance at the rate Ωφ and a periodic motion at the
frequency Ωr. In the Fourier expansion of gravitational
wave source terms this produces a biperiodic expansion.
Defining the 1PN difference in the mean angular advance
as kl ¼ ðK − 1Þl and starting with φ ¼ KV, we separate
the advance of φðtÞ into parts as follows:

φðtÞ ¼ klþ lþ KðVðuÞ − lÞ: ð2:13Þ

With this done, all of the previous relations can be
combined to give the coordinate positions and velocities
in terms of x, u, and et to the desired order. Because of the
particular manifestation of velocity in the 1PN mass
quadrupole, only the lowest order in x is required for
the coordinate velocity components. We obtain

r
M

¼ 1 − et cos u
x

−
1 − 3e2t þ 3et cos u − e3t cos u

1 − e2t

þ 1

6
ð2þ 7et cos uÞν; ð2:14Þ

φ ¼ klþ uþ 2 arctan

�
et sin u

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
− et cos u

�

þ
�

4et sin uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð1 − et cos uÞ

þ 3et sin u
1 − e2t

þ
�

6

1 − e2t

�
arctan

�
et sin u

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
− et cos u

��
x

−
et sin uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

ð1 − et cos uÞ
xν; ð2:15Þ

dr
dt

¼ et sin u
1 − et cos u

x1=2; M
dφ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð1 − et cos uÞ2

x3=2;

v2 ¼
�
1þ et cos u
1 − et cos u

�
x: ð2:16Þ
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C. Review of calculating the Newtonian mass
octupole and current quadrupole moments

1. Fourier decomposition

We review here the calculation of the Fourier series of
the mass octupole and current quadrupole. For more details
see [14,21,25] and the review [11]. The calculation is also a
straightforward extension of our review of the mass
quadrupole Fourier calculation presented in Paper I.
The symmetric tracefree (STF) Newtonian mass octu-

pole tensor is defined as

Iijk ¼ Qijk − δijQaak=5 − δjkQibb=5 − δikQcjc=5;

Qijk ¼
X
α

mαxαi x
α
j x

α
k: ð2:17Þ

The nonzero components are given by

Ixxx ¼
μ

20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3ð3 cosφþ 5 cos 3φÞ;

Ixxy ¼ Ixyx ¼ Iyxx ¼
μ

20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3ðsinφþ 5 sin 3φÞ;

Ixyy ¼ Iyxy ¼ Iyyx ¼
μ

20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3ðcosφ − 5 cos 3φÞ;

Iyyy ¼
μ

20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3ð3 sinφ − 5 sin 3φÞ;

Ixzz ¼ Izxz ¼ Izzx ¼ −
μ

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3 cosφ;

Iyzz ¼ Izyz ¼ Izzy ¼ −
μ

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
r3 sinφ; ð2:18Þ

where μ is the reduced mass.
Similarly, the STF form of the current quadrupole is

given by

Jij ¼
1

2

X
α

mα½xiðx⃗ × v⃗Þj þ xjðx⃗ × v⃗Þi�;

Jxz ¼ Jzx ¼
1

2
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
cosðφÞr3 dφ

dt
;

Jyz ¼ Jzy ¼
1

2
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
sinðφÞr3 dφ

dt
: ð2:19Þ

The transformation is now made from ðr;φÞ to variables
ðx; ν; et; uÞ using the relations of the previous section.
Without listing every component, we find for example

Ixxx ¼
M3μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

x3

�
ðet − cos uÞ3

−
3

5
ðet − cos uÞð1 − et cos uÞ2

�
; ð2:20Þ

Jxz ¼ −
M2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

x3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
2

�
ðet − cos uÞ; ð2:21Þ

with obvious extension to the other tensor components.
There is no difference between the time eccentricity and the
Keplerian eccentricity at Newtonian order, but we use the
notation et uniformly to prepare for more general expan-
sions. This also allows us to reserve the symbol e for the
relativistic Darwin eccentricity.
In each multipole component, the scale and dimension

are carried by the initial prefactor. Since we are concerned
with the dimensionless eccentricity enhancement functions
that will appear in the fluxes, we remove these factors now
and define

Îijk¼
x3

M3μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ν

p Iijk; Ĵij ¼
x3=2

M2μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ν

p Jij: ð2:22Þ

It is then these scaled multipole moment tensors that we
represent with Fourier series

Îijk¼
Xn¼∞

n¼−∞
Îijk
ðnÞ

einl; Îijk
ðnÞ

¼ 1

2π

Z
2π

0

Îijke−inldl; ð2:23Þ

with a similar expression for Ĵij. As mentioned in Paper I,
the Fourier components are most easily evaluated as
integrals over u. For instance,

Îijk
ðnÞ

¼ 1

2π

Z
2π

0

Îijke−inðu−et sin uÞð1 − et cos uÞdu:

Then, a closed-form expression can be obtained through
multiple applications of the Bessel integral formula

JpðxÞ ¼
1

2π

Z
2π

0

e−ipuþx sin udu: ð2:24Þ

We find the following expressions for the mass octupole
moment components:

Îxxx
ðnÞ

¼ −
3ð3 − 4e2t þ e4t Þ

e3t n2
JnðnetÞ

þ 3ð10 − 6e2t þ 5ð1 − e2t Þ2n2Þ
5e2t n3

J0nðnetÞ;

Îxxy
ðnÞ

¼ −
3i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð2ð5 − e2t Þ þ 5ð1 − e2t Þ2n2Þ

5e3t n3
JnðnetÞ

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð9 − 5e2t Þ

e2t n2
J0nðnetÞ;

Îxyy
ðnÞ

¼ 9 − 13e2t þ 4e4t
e3t n2

JnðnetÞ

−
3ð10 − 8e2t þ ð1 − e2t Þ2n2Þ

5e2t n3
J0nðnetÞ;
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Îyyy
ðnÞ

¼ 3i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð10 − 4e2t þ 5ð1 − e2t Þ2n2Þ

5e3t n3
JnðnetÞ

−
3i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð3 − 2e2t Þ

e2t n2
J0nðnetÞ;

Îxzz
ðnÞ

¼ 1 − e2t
etn2

JnðnetÞ −
6

5n3
J0nðnetÞ;

Îyzz
ðnÞ

¼ 6i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
5etn3

JnðnetÞ −
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
n2

J0nðnetÞ; ð2:25Þ

and the following for the current quadrupole moment
components:

Ĵxz
ðnÞ

¼ −
1

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
J0nðnetÞ;

Ĵyz
ðnÞ

¼ −
i

2etn
ð1 − e2t ÞJnðnetÞ: ð2:26Þ

We successively applied the well-known Bessel function
identities

Jnþ1ðnetÞ ¼ −
nJ0nðnetÞ

n
þ JnðnetÞ

et
;

Jn−1ðnetÞ ¼ −Jnþ1ðnetÞ þ
2JnðnetÞ

et
; ð2:27Þ

in order to simplify the above expressions for the compo-
nents of the multipoles (see also [8,32]).

2. Partial flux functions

To derive the 1PN log series, the Fourier amplitudes of
the two multipoles given above are not used directly but
rather go into forming a pair of (flux) spectral functions.
This is similar to the derivation of the Newtonian (Peters-
Mathews [10,19]) energy flux term fðetÞ, which was called
R0ðetÞ in Paper I. In that case a quadrupole Fourier
spectrum gðn; etÞ ¼ ð1=16Þn6jðnÞÎijj2 is derived from the

complex square of the Newtonian quadrupole Fourier
amplitudes. The function gðn; etÞ was derived by Peters
and Mathews [10] (with a correction to their printed
expression pointed out by [13]). The power spectrum then
produces R0ðetÞ as the direct sum over the harmonics

R0ðetÞ ¼
X∞
n¼0

gðn; etÞ ¼
1

ð1 − e2t Þ7=2
�
1þ 73

24
e2t þ

37

96
e4t

�
:

ð2:28Þ

In Paper I we showed that gðn; etÞ [and its angular
momentum counterpart g̃ðn; etÞ] could generate the entire
leading log series through sums of gðn; etÞ over different
powers of n. Here we show that spectral functions similar to
gðn; etÞ are formed from complex squares of the mass
octupole (MO) and current quadrupole (CQ) Fourier
amplitudes. Then, later in the paper, these spectral func-
tions are shown to generate part of, but not all of, the
various 1PN log series terms.
The Fourier amplitudes of Îijk and Ĵij each contribute to

both the energy flux and the angular momentum flux.
Calculation of all four pieces follows in close analogy to
that of the mass quadrupole as reviewed in Paper I. The
corresponding lowest-order energy and angular momentum
fluxes are written as [11,33–35]

�
dE
dt

�
MO

1

¼ 1

189
hI⃜ijk I

⃜

ijki; ð2:29Þ

�
dL
dt

�
MO

1

¼ 1

63
ϵijlL̂ih I

…

jab I
⃜

labi; ð2:30Þ

�
dE
dt

�
CQ

1

¼ 16

45
hJ…ij J

…

iji; ð2:31Þ

�
dL
dt

�
CQ

1

¼ 32

45
ϵijlL̂ihJ̈ja J

…

lai; ð2:32Þ

where angled brackets denote the time average over an
orbital period, the subscript 1 indicates these are contri-
butions to the 1PN fluxes, and L̂i is the unit vector in the
direction of the angular momentum vector (which we take
to be in the z direction). To compute these 1PN fluxes the
mass octupole and current quadrupole moments need only
be calculated at Newtonian order.
Inserting the Fourier expansions, integrating, and pulling

out the Newtonian circular orbit limit and added power of x
for a 1PN term [see (2.1)], we obtain the following
functions as analogs of gðn; etÞ and g̃ðn; etÞ:

hðn; etÞ ¼
5

3024
n8jÎijk

ðnÞ
j2 ¼ n2ð1 − e2t Þ

504e6t
½12ð10 − 5e2t þ e4t Þ þ 5n2ð78 − 153e2t þ 91e4t − 16e6t Þ þ 30n4ð1 − e2t Þ4�JnðnetÞ2

þ n2

504e4t
½12ð10 − 15e2t þ 6e4t Þ þ 5ð78 − 183e2t þ 142e4t − 37e6t Þn2 þ 30ð1 − e2t Þ4n4�J0nðnetÞ2

−
5n3

14e5t
½ð2 − 3e2t þ e4t Þð2 − e2t þ ð1 − e2t Þ2n2Þ�JnðnetÞJ0nðnetÞ; ð2:33Þ
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h̃ðn;etÞ ¼−
5i

1008
n7ϵijlL̂iÎjab

ðnÞ
Î�lab
ðnÞ

¼ 5ð1− e2t Þ3=2n2
168e6t

½15e6t n2− 36ð2þn2Þ− 2e4t ð4þ 33n2Þþ e2t ð48þ 87n2Þ�JnðnetÞ2

þ 5
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
n2

168e4t
½−8ð3− 2e2t Þ2þ 3ð1− e2t Þ2ð−12þ 7e2t Þn2�J0nðnetÞ2

þn
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
126e5t

½36ð5− 5e2t þ e4t Þþ 5ð1− e2t Þð−3þ 2e2t Þð−39þ 19e2t Þn2þ 45ð1− e2t Þ4n4�JnðnetÞJ0nðnetÞ; ð2:34Þ

kðn; etÞ ¼
1

9
n6jĴij

ðnÞ
j2 ¼ 1

18e2t
ð1 − e2t Þ2n4JnðnetÞ2 þ

1

18
ð1 − e2t Þn4J0nðnetÞ2; ð2:35Þ

k̃ðn; etÞ ¼ −
2i
9
n5ϵijlL̂iĴja

ðnÞ
Ĵ�la
ðnÞ

¼ ð1 − e2t Þ3=2
9et

n3JnðnetÞJ0nðnetÞ: ð2:36Þ

Contributions can then be found to the full 1PN energy
and angular momentum fluxes, for example, by summing
each of these expressions over n. To focus on one particular
example, the mass octupole contribution to the energy flux
is found by calculating

RMO
1 ðetÞ ¼ ð1 − 4νÞ

X∞
n¼0

hðn; etÞ

¼ 1 − 4ν

ð1 − e2t Þ9=2
�
1367

1008
þ 18509e2t

2016

þ 2395e4t
384

þ 1697e6t
5376

�
: ð2:37Þ

Additional explicit expansions for component sums like
this one are given in Appendix A. We note that this term in
the flux became a simple closed form expression once the
specific eccentricity singular factor was pulled out. This
particular eccentricity singular factor bears an extra power
of ð1 − e2t Þ−1 over that found in R0. Clearly, this mass
octupole contribution to the energy flux is not the entirety
of the 1PN flux, as can be seen by examining equation
(356b) of [11].

D. The 1PN mass quadrupole

The next step is to find the 1PN correction to the mass
quadrupole. Fourier decomposition at 1PN order presents a
considerable increase in difficulty. The motion no longer
closes, which implies that the simple Fourier series, as
found in the expansion of the mass octupole and current
quadrupole, must be replaced by a double Fourier sum over
harmonics of the two frequencies, Ωr and Ωφ. This Fourier
structure, first identified by [22–24], was laid out for use
with hereditary contributions to the flux by Arun et al.
in [14].

We follow some of the procedure and notation found in
Loutrel and Yunes [32], who provided a detailed derivation
of the 1PN expansion as part of their work. The expression
for the components of the mass quadrupole tensor at 1PN
order is

Iij¼μ

��
1þv2

�
29

42
−
29ν

14

�
−
M
r

�
5

7
−
8ν

7

��
xhixji

þ
�
11

21
−
11ν

7

�
r2vhivji−

�
4

7
−
12ν

7

�
rr0xhivji

�
; ð2:38Þ

where bracketed indices denote STF projection [14].
Given the 1PN equations of motion, this tensor is converted
from polar coordinates to the parameters x, ν, et, u, and k
through 1PN order. At the same time a factor μM2=x2 is
pulled out of Iij to provide a dimensionless quadrupole
moment tensor

Îij ¼
x2

μM2
Iij; ð2:39Þ

similar to what we did with Iijk and Jij.
To obtain the Fourier expansion, the u dependence of Îij

is expressed in terms of complex exponentials and the result
is collected over powers of eikl. The coefficient of each
power of eikl is singly periodic in t, meaning that each can
themselves be expressed as a simple Fourier series. The
entire tensor can then be written as

ÎijðtÞ ¼
X∞
n¼−∞

X
p¼−2;0;2

Îij
ðn;pÞ

eiðnþpkÞl; ð2:40Þ

where the k dependence has introduced a magnetic-type
separation of components due to 1PN differences inΩφ and
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Ωr. The goal is then to determine the Fourier coeffi-
cients ðn;pÞÎij.
Proceeding further, we find that the (magnetic) term for

each p can be written as the product of a single function
(e.g., one of the components) with a constant matrix.
Explicitly,

Îij
ðpÞ

¼ Îxx
ðpÞ

Mij
ðpÞ

; ð2:41Þ

where

Mij
ð2Þ

¼

2
64

1 −i 0

−i −1 0

0 0 0

3
75; Mij

ð0Þ
¼

2
64
1 0 0

0 1 0

0 0 −2

3
75;

Mij
ð−2Þ

¼

2
64
1 i 0

i −1 0

0 0 0

3
75: ð2:42Þ

It is most convenient to separate each ðnÞÎij on powers of
x and ν before making the Fourier transformation. To
facilitate the process, we introduce a superscript notation,
Îabij , where a represents the order in x (0 or 1) and b the

order in ν (also 0 or 1). Then each Fourier coefficient will
formally separate into

Îij
ðn;pÞ

¼ Î00ij
ðn;pÞ

þ xð Î10ij
ðn;pÞ

þ ν Î11ij
ðn;pÞ

Þ: ð2:43Þ

Since we will just need to compute the Îabxx functions, as the
full tensors will be determined from these functions via
multiplication by ðpÞMij, we can drop the lower ij indices,

leaving Îab, to simplify the notation.
Starting at lowest order, the Fourier components are

found to be

Î00
ðn;�2Þ

¼ 1

2e2t n2
ðe2t − 2� 2nð1 − e2t Þ3=2ÞJnðnetÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
etn2

	
1 ∓ n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q 

J0nðnetÞ;

Î00
ðn;0Þ

¼ −
JnðnetÞ
3n2

; ð2:44Þ

which are precisely the terms needed to generate gðn; etÞ
and reproduce the Peters-Mathews flux. Then we jump to
next order in both x and ν, and find that these coefficients
can also be expressed cleanly in terms of Bessel functions

Î11
ðn;�2Þ

¼ −
1

84e2t n2

	
134þ 17e2t ∓ 146n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
∓ 22ne2t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
þ 12ð1 − e2t Þ2n2



JnðnetÞ

þ 1

42etð1 − e2t Þn2
ð�ð67 − 25e2t Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
� 6n2ð1 − e2t Þ5=2 − nð73 − 65e2t − 8e4t ÞÞJ0nðnetÞ;

Î11
ðn;0Þ

¼ 17JnðnetÞ
126n2

−
etJ0nðnetÞ

21n
: ð2:45Þ

Finally, we arrive at the portion that is first order in x and zeroth order in ν. Here some difficulty arises, as the integrals for

ðn;�2ÞÎ
10 have terms that apparently cannot be expressed in closed form. We find

Î10
ðn;�2Þ

¼ 1

84e2t ð1− e2t Þn3
h
∓ 756ð−2þ e2t Þ þ 4n3ð1− e2t Þ3 − 3n

	
−74þ 19e4t þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
ð756− 420e2t Þ þ 111e2t




� 2n2ð1− e2t Þ
	
378−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
ð113− 22e2t Þ− 378e2t


i
JnðnetÞ−

1

42etð1− e2t Þn3
h
−756

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q

∓ 3nð−378þ 37ð1− e2t Þ3=2 þ 273e2t Þ− n2ð1− e2t Þð−113þ 23e2t þ 378

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
Þ∓ 2n3ð1− e2t Þ5=2

i
J0nðnetÞ

−
3i

16ð1− e2t Þπ
Z

2π

0

e−inðu−et sinuÞð1− et cosuÞ
h
�3e2t ∓ 4et cosu∓ ð−2þ e2t Þ cos2u− 4i

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
ðet − cosuÞ sinu

i

× arctan

�
et sinu

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
− et cosu

�
du;

Î10
ðn;0Þ

¼ −
ð75− 19e2t ÞJnðnetÞ

42ð1− e2t Þn2
þ 26etnJ0nðnetÞ

21n2
: ð2:46Þ

Note that these results directly reveal the crossing relations, ðn;pÞI
� ¼ ð−n;−pÞI.
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When computing eccentricity enhancement functions,
these unevaluated integrals must be expanded in et before
proceeding. One might presume that this precludes the
possibility of eventually finding closed form expressions in
the fluxes, but surprisingly this is not the case. Instead, in
the case of certain flux terms, once the appropriate
eccentricity singular factor is pulled out, we find that parts
of the expansion of ðn;pÞÎ

10 and of ðn;pÞÎ
00 conspire perfectly

to cancel all coefficients beyond certain orders in e2t in the
remaining power series.

E. Discussion

The mass octupole and current quadrupole power spectra
hðn; etÞ; h̃ðn; etÞ; kðn; etÞ; k̃ðn; etÞ, along with the Fourier
decomposition of the 1PN-corrected mass quadrupole
(MQ), will be shown to generate the entire 1PN log series.
In order to more clearly explain the calculation of each flux
term, we introduce the notationRi ¼ RMQ

i þRMO
i þRCQ

i
(with a similar form for Z) to represent the contributions
from the (1PN)mass quadrupole,mass octupole, and current
quadrupole, respectively. For the latter two (Newtonian)
multipole moments, this categorization will be sufficient, as
the spectral functions presented in Sec. II C 2 compactly
express the entirety of those contributions to the 1PN
logarithms. Note also that in RMO

i and RCQ
i the OðνÞ

contributions will be immediately accessible through the
ν-dependent prefactors in (2.22).
Unfortunately, the 1PN mass quadrupole contribution is

not encoded in a single spectral function and so instead we
work directly with the Fourier components introduced in
the last section. The dependence on the two orders in ν is
more subtle also. In what follows we are led to separate the
relative flux RMQ

i into five terms

RMQ
i ¼ RMQ0

i þ νRMQ1
i

¼ RMQ01
i þRMQ02

i þRMQ03
i þ νðRMQ11

i þRMQ12
i Þ;
ð2:47Þ

distinguished by the a, b superscripts in RMQab
i . The a

represents the relative order in ν and b ∈ f1; 2; 3g repre-
sents a particular “type” of summation over different parts
in the decomposition of Îij (see the next section for explicit
examples). This notation for separating the relative flux
functions carries over to the corresponding absolute
flux, e.g.,

�
dE
dt

�
MQ03

1

ð2:48Þ

represents the mass quadrupole contribution of the “3-type”
summation to the full 1PN (subscript) flux at lowest order
in ν (0 superscript).

III. RECOVERING THE 1PN AND 2.5PN
RELATIVE FLUXES: FIRST ELEMENTS

IN THE 1PN LOG SEQUENCES

Using the frequency-domain tools developed above,
this section demonstrates the recovery of the previously
known first elements in the 1PN log sequences—namely
the instantaneous 1PN fluxes R1ðetÞ and Z1ðetÞ and the
hereditary 2.5PN tail fluxes R5=2ðetÞ and Z5=2ðetÞ.

A. The full mass octupole and current quadrupole
relative flux contributions

The contributions from the spectra of the two
Newtonian-order moments are intuitive in form and mirror
the way gðn; etÞ contributed to the leading logarithms (see
the discussion in Paper I). We examine first the 1PN fluxes.
These enhancement functions have been known from PN
analysis for some time and, since they are entirely instanta-
neous in nature, are easily calculated through time domain
methods [20,36]. Here we give for the first time (as far as
we know) their calculation via frequency domain analysis.
The mass octupole and current quadrupole contributions to
energy flux are trivial in this approach, and are simply
given by sums over hðn; etÞ and kðn; etÞ

RMO
1 ¼ ð1 − 4νÞ

X∞
n¼1

hðn; etÞ;

RCQ
1 ¼ ð1 − 4νÞ

X∞
n¼1

kðn; etÞ: ð3:1Þ

Similarly the angular momentum terms are found by
substituting the use of h̃ðn; etÞ and k̃ðn; etÞ

ZMO
1 ¼ ð1 − 4νÞ

X∞
n¼1

h̃ðn; etÞ;

ZCQ
1 ¼ ð1 − 4νÞ

X∞
n¼1

k̃ðn; etÞ: ð3:2Þ

The 2.5PN tail functions require a bit more work [14,32]
as these hereditary terms do not lend themselves to a time
domain approach. The results, though, follow exactly what
one would expect from Newtonian-order moments based
on the analysis found in Paper I [see that paper for a review
of the construction of the 1.5PN tail flux from an analogous
sum over gðn; etÞ]. We find

RMO
5=2 ¼ 2πð1 − 4νÞ

X∞
n¼1

nhðn; etÞ;

RCQ
5=2 ¼ 2πð1 − 4νÞ

X∞
n¼1

nkðn; etÞ; ð3:3Þ
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ZMO
5=2 ¼ 2πð1 − 4νÞ

X∞
n¼1

nh̃ðn; etÞ;

ZCQ
5=2 ¼ 2πð1 − 4νÞ

X∞
n¼1

nk̃ðn; etÞ: ð3:4Þ

B. Relative flux contributions from the mass
quadrupole at lowest order in ν

As discussed in Sec. II D, the contribution to the fluxes
from the mass quadrupole, calculated through 1PN order, is
more involved and is best split into parts. A significant part
of the split involves considering the two orders in ν
separately. This subsection focuses only on the flux terms
at lowest order in ν, which in the previously defined
notation means

RMQ0
i ¼ RMQ01

i þRMQ02
i þRMQ03

i ;

ZMQ0
i ¼ ZMQ01

i þ ZMQ02
i þ ZMQ03

i : ð3:5Þ

(The next subsection will handle the next order in ν terms.)
These expressions add up the three summation types and i
refers to 1 or 5=2 order. Subject to this split, we show in this
subsection the contributions from the 1PN-corrected mass
quadrupole to all of the 1PN and 2.5PN relative flux terms.

1. Contributions to the 1PN relative energy flux
from the mass quadrupole at lowest order in ν

The 1PN mass quadrupole energy flux follows from
retaining 1PN corrections to the well-known quadrupole
formula

�
dE
dt

�
MQ

¼ 1

5
h I…ij I

…

iji1 ¼
1

5

� X∞
n;m¼−∞

X2
p;s¼−2

ðΩrÞ6ðiðnþ pkÞÞ3ðiðmþ skÞÞ3 Iij
ðn;pÞ

Iij
ðm;sÞ

eiðnþmþðpþsÞkÞl
�

1

; ð3:6Þ

which is here converted in the second equality from the
time domain to the frequency domain. All of the terms on
the right-hand side must be expanded and retained through
1PN order including the quadrupole moment Iij, the
frequency, the polynomial terms, and the exponential
factor. We recall the 1PN expansions for Ωr and k,
given by

k ¼ 3x
1 − e2t

þOðx2Þ

Ωr ¼
x3=2

M

�
1 −

3x
1 − e2t

�
þOðx7=2Þ

¼ Ωφ

�
1 −

3x
1 − e2t

�
þOðx7=2Þ: ð3:7Þ

Expanding some of the terms and retaining factors linear in
k and x, we can write this summation as

�
dE
dt

�
MQ

¼ −
1

5

X∞
n;m¼−∞

X2
p;s¼−2

ðΩrÞ6

× ðm3n3 þ 3m2n2ðnsþmpÞkÞ
× Iij

ðn;pÞ
Iij
ðm;sÞ

heiðnþmþðpþsÞkÞli: ð3:8Þ

Next we expand the time average. The deficit in the
frequency ratio, k, is a small quantity, so the integrand in
the integral for the time average can be expanded about
k ¼ 0

heiðnþmþðpþsÞkÞli ¼
Z

2π

0

eiðnþmþðpþsÞkÞl

2π
dl

≃
Z

2π

0

eiðnþmÞl

2π
ð1þ iðpþ sÞklÞdl: ð3:9Þ

This leads to two cases. If m ≠ −n, the lowest order term
(k ¼ 0) vanishes, leaving

Z
2π

0

eiðnþmÞl

2π
ðiðpþ sÞklÞdl ¼ pþ s

nþm
k: ð3:10Þ

On the other hand, when m ¼ −n we find

Z
2π

0

1þ iðpþ sÞkl
2π

dl ¼ 1þ iπðpþ sÞk: ð3:11Þ

However, it turns out that when these averages are
inserted in the full sums in (3.8) the linear in k parts
vanish in both cases. To see this, consider the matrices

ðpÞMij. Direct calculation shows that the sum ðpÞMijðsÞMij

vanishes whenever pþ s ≠ 0. Therefore,

ðpþ sÞ Iij
ðn;pÞ

Iij
ðm;sÞ

¼ 0; ð3:12Þ

which is precisely the form of the terms produced when the
two linear-in-k terms above are inserted in (3.8). This
identity turns out to have strong consequences on the
calculation of 1PN log series fluxes (see Appendix B for
details). Here the result is that the 1PN time average
reduces to the simple Kronecker delta, δm;−n, leaving
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�
dE
dt

�
MQ

¼1

5

X∞
n¼−∞

X2
p;s¼−2

ðΩrÞ6ðn6þ3n5ðp−sÞkÞ Iij
ðn;pÞ

Iij
ð−n;sÞ

:

ð3:13Þ

The other consequence of (3.12) is that only elements in the
double sum with s ¼ −p will survive, so that

�
dE
dt

�
MQ

¼ 1

5

X∞
n¼−∞

X2
p¼−2

ðΩrÞ6ðn6 þ 6n5pkÞ Iij
ðn;pÞ

Iij
ð−n;−pÞ

:

ð3:14Þ

We then make a PN expansion of (3.14), combining
expansions for the moments, the frequency, and the
polynomial factor. Once the Newtonian order flux is
discarded, the remainder is the 1PN mass quadrupole flux,
which we split into three sums

�
dE
dt

�
MQ01

1

¼x
5

X∞
n¼−∞

X2
p¼−2

ðΩφÞ6n6
h
I00ij
ðn;pÞ

I10ij
ð−n;−pÞ

þ I10ij
ðn;pÞ

I00ij
ð−n;−pÞ

i
;

�
dE
dt

�
MQ02

1

¼−
1

5

X∞
n¼−∞

X2
p¼−2

�
18x
1−e2t

�
ðΩφÞ6ðn6Þ I00ij

ðn;pÞ
I00ij

ð−n;−pÞ
;

�
dE
dt

�
MQ03

1

¼1

5

X∞
n¼−∞

X2
p¼−2

ðΩφÞ6ð6n5pkÞ I00ij
ðn;pÞ

I00ij
ð−n;−pÞ

:

ð3:15Þ

In each case, negative n terms duplicate positive n terms (see
AppendixB).Applying the crossing relations and pulling out
the Newtonian circular-orbit factor of ð32=5Þν2x5, we arrive
at the following relative flux contributions:

RMQ01
1 ¼ 1

16

X∞
n¼1

n6
h
Î00ij
ðnÞ

Î10�ij
ðnÞ

þÎ10ij
ðnÞ

Î00�ij
ðnÞ

i
;

RMQ02
1 ¼ −

9

8ð1 − e2t Þ
X∞
n¼1

n6jÎ00ij
ðnÞ

j2;

RMQ03
1 ¼ 9

8ð1 − e2t Þ
X∞
n¼1

X2
p¼−2

n5pj Î00ij
ðn;pÞ

j2; ð3:16Þ

where we define Î00ij
ðnÞ

¼ Î00ij
ðn;−2Þ

þ Î00ij
ðn;0Þ

þ Î00ij
ðn;2Þ

.

2. Contributions to the 1PN relative angular momentum
flux from the mass quadrupole at lowest order in ν

Similarly, the angular momentum flux is given by the
1PN correction to the formula

�
dL
dt

�
MQ

1

¼ 2

5
ϵijlL̂iḧIja I

…

lai;

¼ 2

5
ϵ3jl

� X∞
n;m¼−∞

X2
p;s¼−2

ðΩrÞ5

× ðiðnþ pkÞÞ2ðiðmþ skÞÞ3

× Ija
ðn;pÞ

Ila
ðm;sÞ

eiðnþmþðpþsÞkÞl
�

1

ẑ; ð3:17Þ

where as mentioned earlier L̂i ¼ ẑ for Kepler motion in the
x, y plane. This sum simplifies in almost the same manner
as the energy flux. There is a key identity involving (pþ s)
in the angular momentum summations that is analogous to
the one in the energy flux. We find

X
p;s

ðpþ sÞϵ3jl Ija
ðn;pÞ

Ila
ðm;sÞ

¼ 0: ð3:18Þ

The angularmomentum also has the identity ϵ3jl Ija
ðn;0Þ

Ila
ðm;0Þ

¼0,

so that only ϵ3jlMja
ð�2Þ

Mla
ð∓2Þ

¼ �4i survives. Inserting δm;−n for

the time average and taking s → −s as above, the expression
reduces to

�
dL
dt

�
MQ

1

¼ −
2i
5
ϵ3jl

X∞
n¼−∞

X
p¼−2;2

ðΩrÞ5ðn5 þ 5n4pkÞ

× Ija
ðn;pÞ

Ila
ð−n;−pÞ

ẑ : ð3:19Þ

As expected, we are left with three sums, all similar in
form to their energy counterparts. We apply the crossing
relation and simplify to obtain the following flux contri-
butions:

ZMQ01
1 ¼−

i
8
ϵ3jl

X∞
n¼−∞

n5½Î00ja
ðnÞ

Î10�la
ðnÞ

þÎ10ja
ðnÞ

Î00�la
ðnÞ

�ẑ;

ZMQ02
1 ¼ 15i

8ð1−e2t Þ
ϵ3jl

X∞
n¼1

n5Î00ja
ðnÞ

Î00�la
ðnÞ

;

ZMQ03
1 ¼−

15i
8ð1−e2t Þ

ϵ3jl
X∞
n¼1

X
p¼−2;2

n4p Î00ja
ðn;pÞ

Î00�la
ðn;pÞ

ẑ : ð3:20Þ

As stated previously, the biperiodicity of the 1PN mass
quadrupole introduces three separate sums in the calcu-
lation of the 1PN flux. It turns out that these three sums
characterize the entirety of both 1PN logarithm series at
lowest order in ν. As we will see next, transition to the next
highest 1PN logarithm flux (at 2.5PN order) will involve an
increase in the power of n in the sums, along with
multiplication by a different leading coefficient.
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3. Contributions to the 2.5PN relative energy flux from
the mass quadrupole at lowest order in ν

In the time domain, the mass quadrupole part of the
energy tail flux [14,32] is given by

PMQtail
∞ ¼ 4M

5
I
…

ijðtÞ
Z

∞

0

Ið5Þij ðt − τÞ
�
log

�
τ

2r0

�
þ 11

12

�
dτ;

ð3:21Þ

where M is the Arnowitt-Deser-Misner (ADM) mass
M ¼ Mð1 − νx=2þOðx2ÞÞ. This expression gives the
time-dependent flux, which will subsequently be time
averaged over an orbital libration. It represents a nonlinear
interaction between the mass quadrupole and ADM mass
monopole of the system. However, because we are currently
working at lowest order in ν, M can be replaced with M.
We insert the biperiodic Fourier expansion (2.40) for the

quadrupole moment, replace time derivatives, and take the
time average to find

�
dE
dt

�
MQ

5=2
¼ 4M

5

X∞
n¼−∞

X
p;s

ðΩrÞ8ð−n8þn7ð5s−3pÞkÞ

× Iij
ðn;pÞ

Iij
ð−n;sÞ

Z
∞

0

eiðn−skÞΩrτ

�
log

�
τ

2r0

�
þ11

12

�
dτ:

ð3:22Þ

The only significant difference between this summation
and that at 1PN order is the last integral term, which can be
rewritten slightly to aid subsequent evaluation

Z
∞

0

eiðn−skÞΩrτ

�
log

�
τ

2r0

�
þ 11

12

�
dτ

¼
Z

∞

0

eiðn−skÞΩrτ log

�
τ

2r0e−ð11=12Þ

�
dτ: ð3:23Þ

This expression is regularized by rotating the mean motion
into the complex plane. We refer the reader to [14,32,37] as
well as Paper I (Sec. IV C and Appendix A) for details. The
result is

−
i

ðn− skÞΩr

�
πi
2
signð−nÞþ logð2Ωrjn− skjr0Þþ γE−

11

12

�

ð3:24Þ

≈−
1

nΩr

�
π

2
signðnÞþ i

�
logð2Ωφjnjr0Þþ γE−

11

12

��

−
sk

n2Ωr

�
π

2
signðnÞþ i

�
logð2Ωφjnjr0Þ−

n
s
þ γE−

23

12

��
;

ð3:25Þ

where the second line is an expansion to first order in k.

Appendix B shows that the imaginary portion will
identically vanish in sums over positive and negative n,
thus allowing those terms to be eliminated. Using the
remaining factor, taking s → −s, and then setting s ¼ p, as
in our earlier derivation, leads to

�
dE
dt

�
MQ

5=2
¼ 4M

5

X∞
n¼−∞

X
p

ðΩrÞ7ðn7 þ 8n6pkÞ Iij
ðn;pÞ

Iij
ð−n;−pÞ

×
hπ
2
signðnÞ −

�
pk
n

�
π

2
signðnÞ

i
: ð3:26Þ

As in the 1PN case, this result splits into three well-defined
sums, which can be written as

RMQ01
5=2 ¼ π

8

X∞
n¼1

n7½Î00ij
ðnÞ

Î10�ij
ðnÞ

þÎ10ij
ðnÞ

Î00�ij
ðnÞ

�;

RMQ02
5=2 ¼ −

21π

8ð1 − e2t Þ
X∞
n¼1

n7jÎ00ij
ðnÞ

j2;

RMQ03
5=2 ¼ 21π

8ð1 − e2t Þ
X∞
n¼1

X
p

n6pj Î00ij
ðn;pÞ

j2: ð3:27Þ

Summed together andnormalized, these termswill recover the
enhancement function αðetÞ defined by Arun et al. [14,32].

4. Contributions to the 2.5PN relative angular momentum
flux from the mass quadrupole at lowest order in ν

Similarly, the (time-dependent) angular momentum tail
flux [32] is given by

GMQtail
∞ ¼4M

5
ϵ3jl

�
ÏjaðtÞ

Z
∞

0

Ið5Þla ðt−τÞ
�
log

�
τ

2r0

�
þ11

12

�
dτ

þ I
…

laðtÞ
Z

∞

0

Ið4Þja ðt−τÞ
�
log

�
τ

2r0

�
þ11

12

�
dτ
�
ẑ:

ð3:28Þ

By inserting the Fourier series and performing the same
simplifications as in the energy case, we arrive at

ZMQ01
5=2 ¼−

πi
4
ϵ3jl

X∞
n¼1

n6½Î00ja
ðnÞ

Î10�la
ðnÞ

þÎ10ja
ðnÞ

Î00�la
ðnÞ

�ẑ;

ZMQ02
5=2 ¼ 9πi

2ð1−e2t Þ
ϵ3jl

X∞
n¼1

n6Î00ja
ðnÞ

Î00�la
ðnÞ

ẑ;

ZMQ03
5=2 ¼−

9πi
2ð1−e2t Þ

ϵ3jl
X∞
n¼1

X
p¼−2;2

ðn5pÞ Î00ja
ðn;pÞ

Î00�la
ðn;pÞ

ẑ: ð3:29Þ

Despite the factor of i that is pulled out of each sum, the
complex conjugation and presence of the Levi Civita tensor
ensure that all of these terms are real.
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C. Relative flux contributions from the mass
quadrupole at next order in ν

We next need to consider the linear-order-in-ν contribu-
tions to (2.47), i.e., theRMQ1

i and ZMQ1
i terms. Fortunately,

much of the procedure is identical to that in the previous
subsection, with only minor modifications to generate the
corresponding reductions. One difference lies in the fact
that there can be no appearance of ν at 0PN order. Thus,
contributions from the radial frequency and magnetic factor
p (that is, of typeRMQ02

1 andRMQ03
1 , respectively) will not

recur here. This eliminates two potential types of terms
that involve the Newtonian portion of the mass
quadrupole. However, a sum involving the Newtonian
mass quadrupole (termed RMQ12

i ) will still manifest at
OðνÞ in all 1PN logarithms except R1, first appearing in
the 2.5PN tail through a factor of the ADM mass M ¼
Mð1 − νx=2þOðx2ÞÞ.
As a result, the 1PN order ν flux terms are straightfor-

ward, containing only the OðνÞ correction induced by the
corresponding portion of the quadrupole moment. All
aspects of their derivations are functionally identical to
those of RMQ01

1 and ZMQ01
1 at ν0, with the simple sub-

stitution I10 → I11. We find

RMQ11
1 ¼ 1

16

X∞
n¼1

n6½Î00ij
ðnÞ

Î11�ij
ðnÞ

þÎ11ij
ðnÞ

Î00�ij
ðnÞ

�;

ZMQ11
1 ¼ −

i
8
ϵ3jl

X∞
n¼−∞

n5½Î00ja
ðnÞ

Î11�la
ðnÞ

þÎ11ja
ðnÞ

Î00�la
ðnÞ

�ẑ; ð3:30Þ

withRMQ12
1 ¼ ZMQ12

1 ¼ 0. The square bracket in the second
sum has the same anti-Hermetian behavior as before.
The 2.5PN terms are only slightly more involved. The

first contribution emerges from the same substitution in
RMQ01

5=2 , with I10 → I11. However, now there is a second
term that comes from the 1PN correction to the ADMmass.
We find

RMQ11
5=2 ¼ π

8

X∞
n¼1

n7½Î00ij
ðnÞ

Î11�ij
ðnÞ

þÎ11ij
ðnÞ

Î00�ij
ðnÞ

�;

RMQ12
5=2 ¼ −

π

16

X∞
n¼1

n7jÎ00ij
ðnÞ

j2;

ZMQ11
5=2 ¼ −

πi
4
ϵ3jl

X∞
n¼1

n6½Î00ja
ðnÞ

Î11�la
ðnÞ

þÎ11ja
ðnÞ

Î00�la
ðnÞ

�ẑ;

ZMQ12
5=2 ¼ πi

8
ϵ3jl

X∞
n¼1

n6Î00ja
ðnÞ

Î00�la
ðnÞ

ẑ : ð3:31Þ

These 2.5PN contributions to the flux can be summed
together and normalized to generate the enhancement
functions θðetÞ and θ̃ðetÞ defined in [14,25,32].

D. Eccentricity singular factors
and full flux functions

The various sums over Fourier amplitude products
derived abovewill produce, when added together, the power
series in eccentricity for the full flux contributions at 1PN
and 2.5PN. As with the leading logarithms [8], each such
sum will have an associated eccentricity singular factor
governing its divergent behavior as et → 1. For each of the
separated parts (except one) its own singular behavior is
easily determined using the asymptotic analysis developed
in [7] (specific examples are given in Appendix A). The
exception is the term labeled MQ01, which involves the
quadrupole components with unevaluated integrals (2.46).
Because this part does not have a clean representation in
terms of Bessel functions, it is not amenable to the exact
same asymptotic analysis technique. Nevertheless, its diver-
gent behavior appears to adhere to the same patterns, and we
have demonstrated apparent convergence through 22PN
(see Appendix A for more details) and verified the behavior
with a new all-analytic perturbation code [18]. The con-
clusion is that the terms in the various 1PN log sequences
have the following singular behavior:

Rð3kþ1ÞLðkÞ∼
1

ð1− e2t Þkþ9=2 ; Rð3kþ5=2ÞLðkÞ∼
1

ð1− e2t Þkþ6
;

Zð3kþ1ÞLðkÞ∼
1

ð1− e2t Þkþ3
; Zð3kþ1ÞLðkÞ∼

1

ð1− e2t Þkþ9=2 :

ð3:32Þ

With the divergent behavior understood, the remaining
eccentricity dependence is found to be closed-form (poly-
nomial) expressions for the integer-order 1PN logarithms
and convergent power series at the half-integer orders.
Putting all of these elements together involves summing

the results of the previous sections and extracting the
appropriate overall eccentricity singular factor. Focusing on
low PN order, we can rederive the known energy and
angular momentum flux functions. This frequency domain
approach leads to the well-known closed-form expressions
at 1PN

R1ðet;νÞ ¼
1

ð1− e2t Þ9=2
�
−
1247

336
þ 10475e2t

672

þ 10043e4t
384

þ 2179e6t
1792

�

−
ν

ð1− e2t Þ9=2
�
35

12
þ 1081e2t

36
þ 311e4t

12
þ 851e6t

576

�
;

Z1ðet;νÞ ¼
1

ð1− e2t Þ3
�
−
1247

336
þ 3019e2t

336
þ 8399e4t

2688

�

−
ν

ð1− e2t Þ3
�
35

12
þ 335e2t

24
þ 275e4t

96

�
; ð3:33Þ
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which (being purely instantaneous) were previously
derived through time domain analysis [20,36].
The 2.5PN flux functions on the other hand do not have

closed-form representations. The original work in [14,25]
showed numerical results and presented expansions in
eccentricity only through e4t . Forseth et al. [7] used a
frequency-domain procedure similar to the present one to
generateR5=2 to e70t and developed the asymptotic analysis

to investigate the behavior as et → 1 at lowest order in ν.
Later, Loutrel and Yunes [32] also derived asymptotics of
these functions as et → 1 and for both orders in ν. We have
now calculated the terms in the power series to e120t using
the methods described above, with the ability to push to
much higher order should it prove necessary. These two
series have leading behavior

R5=2ðet; νÞ ¼
1

ð1 − e2t Þ6
�
−
8191

672
þ 36067e2t

336
þ 19817891e4t

43008
þ 62900483e6t

387072
þ 26368199e8t

7077888
−
1052581e10t
34406400

þ � � �
�

þ ν

ð1 − e2t Þ6
�
−
583

24
−
717733e2t
2016

−
21216061e4t

32256
−
78753305e6t
387072

−
208563695e8t
37158912

þ 46886227e10t
3715891200

þ � � �
�
;

Z5=2ðet; νÞ ¼
1

ð1 − e2t Þ9=2
�
−
8191

672
þ 108551e2t

1344
þ 5055125e4t

43008
þ 4125385e6t

774144
−
11065099e8t
49545216

þ 68397463e10t
2477260800

þ � � �
�

þ ν

ð1 − e2t Þ9=2
�
−
583

24
−
32821e2t
168

−
1566125e4t
10752

−
712219e6t
96768

þ 457507e8t
12386304

−
792569e10t
309657600

þ � � �
�
: ð3:34Þ

As et → 1, these series approach approxima-
tely ð 722.1524014 − 1247.1117956ν Þ = ð 1 − e2t Þ6 and
ð191.2520614 − 372.6399916νÞ=ð1 − e2t Þ9=2, respectively
(see discussion in Sec. III C of [9] regarding prior tabulated
numerical values [25] of these series in the vicinity of
et ¼ 1).

IV. HIGHER-ORDER ELEMENTS
OF THE 1PN LOG SEQUENCES

With the derivations in the previous sections, plus the
leading logarithm series [8] and numerical input from
BHPT, we now have enough information to generalize
to the form of the 1PN logarithm series for all PN orders.
As in Paper I, this process will involve incrementing
powers of n within sums over products of the Fourier
amplitudes and determining the correct rational-number
prefactor at each order.

A. Mass octupole and current quadrupole
contributions to higher-order 1PN log terms

We begin with the two 1PN source multipole moments
(mass octupole and current quadrupole) that can be
calculated (for present purposes) using Newtonian dynam-
ics. These moments give rise to the spectra hðn; etÞ and
kðn; etÞ. Sums over these multipole spectra with higher
powers of n lead to their contributions to the higher-order
1PN log fluxes, much as sums over the Newtonian mass
quadrupole spectra did in contributing to the higher-order
leading logs as shown in Paper I. For integers k ≥ 0, the
mass octupole contributions to the 1PN log (energy) fluxes
are given by

RMO
ð3kþ1ÞLðkÞ ¼ ð1 − 4νÞ

�
−
26

21

�
k
�
1

k!

�X∞
n¼1

n2khðn; etÞ;

ð4:1Þ

RMO
ð3kþ5=2ÞLðkÞ ¼ ð1 − 4νÞ

�
−
26

21

�
k
�
2π

k!

�X∞
n¼1

n2kþ1hðn; etÞ:

ð4:2Þ

The current quadrupole series are even closer in appearance
to the leading logarithms of Paper I, taking the following
forms:

RCQ
ð3kþ1ÞLðkÞ ¼ ð1 − 4νÞ

�
−
214

105

�
k
�
1

k!

�X∞
n¼1

n2kkðn; etÞ;

ð4:3Þ

RCQ
ð3kþ5=2ÞLðkÞ ¼ ð1 − 4νÞ

�
−
214

105

�
k
�
2π

k!

�X∞
n¼1

n2kþ1kðn; etÞ:

ð4:4Þ

In each case, the angular momentum analog Zi is obtained
by simply substituting h → h̃ or k → k̃, as appropriate.

B. Mass quadrupole (at lowest order in ν)
contributions to higher-order 1PN log terms

1. The energy flux

At lowest order in the mass ratio, three separate sums
over Fourier amplitudes must be handled. The simplest of
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the three to derive (though the hardest to compute explic-
itly), RMQ01

ð3kþ1ÞLðkÞ, comes from the correction to the mass
quadrupole itself. Careful inspection reveals that this term
must be identical in form to the leading logarithm series,
except with the Newtonian part of the mass quadrupole
supplanted by its 1PN counterpart. Thus, the prefactor must
be the same, and we can simply adjust the result of Paper I
to get the following energy flux contributions:

RMQ01
ð3kþ1ÞLðkÞ ¼

1

16ðk!Þ
�
−
214

105

�
kX∞
n¼1

n2kþ6½Î00ij
ðnÞ

Î10�ij
ðnÞ

þÎ10ij
ðnÞ

Î00�ij
ðnÞ

�;

ð4:5Þ

RMQ01
ð3kþ5=2ÞLðkÞ ¼

π

8ðk!Þ
�
−
214

105

�
kX∞
n¼1

n2kþ7½Î00ij
ðnÞ

Î10�ij
ðnÞ

þÎ10ij
ðnÞ

Î00�ij
ðnÞ

�:

ð4:6Þ

(We note again that in these and all sums in this section, k
refers to any non-negative integer, rather than the ratio of
frequencies k ¼ Ωφ=Ωr − 1.)
The next sum type, RMQ02

i , which in our scheme
involves the 1PN correction to Ωr, can be found in a
similar manner. The portion of the quadrupole moment
involved is just the Newtonian part and the k-dependent
coefficient follows from a binomial expansion of powers of
Ωr ¼ Ωφð1 − 3x=ð1 − e2t ÞÞ to 1PN order. We find

RMQ02
ð3kþ1ÞLðkÞ ¼ −

3kþ 9

8ðk!Þð1 − e2t Þ
�
−
214

105

�
k X∞
n¼1

n2kþ6jÎ00ij
ðnÞ

j2;

ð4:7Þ

RMQ02
ð3kþ5=2ÞLðkÞ ¼ −

3πð2kþ 7Þ
8ðk!Þð1 − e2t Þ

�
−
214

105

�
k X∞
n¼1

n2kþ7jÎ00ij
ðnÞ

j2:

ð4:8Þ

Finally, the third sum type is RMQ03
k , whose definition

involves the magnetic factor p with Î00ij . We find (and
illustrate in the discussion below) that the k-dependent
coefficient prefacing this summation is equal and opposite
to that of RMQ02, or

RMQ03
ð3kþ1ÞLðkÞ ¼

3kþ 9

8ðk!Þð1 − e2t Þ
�
−
214

105

�
k

×
X∞
n¼1

X
p¼−2;2

n2kþ5pj Î00ij
ðn;pÞ

j2; ð4:9Þ

RMQ03
ð3kþ5=2ÞLðkÞ ¼

3πð2kþ 7Þ
8ðk!Þð1 − e2t Þ

�
−
214

105

�
k

×
X∞
n¼1

X
p¼−2;2

n2kþ6pj Î00ij
ðn;pÞ

j2: ð4:10Þ

2. The angular momentum flux

As seen throughout Sec. III, the contributions to the
angular momentum flux are nearly identical in form, only
requiring minor adjustments in the moments and prefactors.
The first sum mirrors that of the leading logarithm series,
giving

ZMQ01
ð3kþ1ÞLðkÞ ¼ −

i
8ðk!Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

n2kþ5½Î00ja
ðnÞ

Î10�la
ðnÞ

þÎ10ja
ðnÞ

Î00�la
ðnÞ

�ẑ;

ZMQ01
ð3kþ5=2ÞLðkÞ ¼ −

πi
4ðk!Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

n2kþ6½Î00ja
ðnÞ

Î10�la
ðnÞ

þÎ10ja
ðnÞ

Î00�la
ðnÞ

�ẑ: ð4:11Þ

The second sum type, ZMQ02
i , has one lower power of Ωr

than the corresponding energy flux term, RMQ02
i , and is

found to be

ZMQ02
ð3kþ1ÞLðkÞ ¼

3ð2kþ 5Þi
8ðk!Þð1 − e2t Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

n2kþ5Î00ja
ðnÞ

Î00�la
ðnÞ

ẑ;

ZMQ02
ð3kþ5=2ÞLðkÞ ¼

3πðkþ 3Þi
2ðk!Þð1 − e2t Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

n2kþ6Î00ja
ðnÞ

Î00�la
ðnÞ

ẑ; ð4:12Þ

with the antisymmetry and factor of i guaranteeing the flux is
real. Finally, terms of the third sum type emerge with
identical k-dependent factors (up to sign), and are found to be

ZMQ03
ð3kþ1ÞLðkÞ ¼ −

3ð2kþ 5Þi
8ðk!Þð1 − e2t Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

X
p¼−2;2

n2kþ4p Î00ja
ðn;pÞ

Î00�la
ðn;pÞ

ẑ;

ZMQ03
ð3kþ5=2ÞLðkÞ ¼ −

3πðkþ 3Þi
2ðk!Þð1 − e2t Þ

�
−
214

105

�
k
ϵ3jl

×
X∞
n¼1

X
p¼−2;2

n2kþ5p Î00ja
ðn;pÞ

Î00�la
ðn;pÞ

ẑ : ð4:13Þ
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C. Mass quadrupole (next order in ν) contributions
to higher-order 1PN log terms

There is an expected contribution at next order in ν to the
flux in each higher-order 1PN log term, just as there was
with the base terms of these sequences: R1, Z1, R5=2, and
Z5=2. These contributions emerge from two summations—
one involving the 1PN part of the quadrupole moment,
Î11, and one containing its Newtonian counterpart,
Î00. From the earlier discussion of the 1PN and 2.5PN
relative order fluxes, we can see that the coefficients
for RMQ11 in the 1PN log sequence must exactly
match those of their RMQ01 counterparts in the previous
subsection.
The k-dependent factor preceding the sum for RMQ12 is

less straightforward. This sum involves the Newtonian-
order mass quadrupole and is of a form that did not make an
appearance in R1. Instead, it first shows up with the ADM
mass in the 2.5PN tail. The appearance of the ADMmass in
the known hereditary flux terms is fairly regular: Each
higher-order tail merely sees an increment in the power of
M [see, for example, Eq. (4.8) of [37] ], making the tail
portion ofRMQ12 calculable to high PN order. Moreover, in
Paper I we used a combination of BHPT and PN results to
show that for leading logarithms (starting with R3L), all
instantaneous contributions uniformly equal a factor of
−2=3 of their hereditary counterparts. A similar line of
reasoning might be applied to 1PN log terms at Oðν0Þ.
However, because that argument relied upon information
from BHPT, which is presently limited to first order in the
mass ratio, it cannot be extended as written for next order in
ν [i.e., Oðν1Þ] results.
Nevertheless, the PN regularization parameter r0 [11],

which exists in all hereditary integrals but which must
cancel in the overall flux and thus implies corresponding
factors in the instantaneous flux, lends strong credence to
the notion that the simple relationship also exists at
Oðν1Þ. For the time being we conjecture that this is the
case and present the results that follow from this
assumption. If the conjecture is correct, then the coeffi-
cients on theRMQ12

i terms become nearly identical to those
of RMQ11

i , except the binomial expansion of Mq ¼
Mqð1 − νx=2Þq introduces a factor of −q=2 for the
(qþ 1)th element of the 1PN log series. We are led to
the following expected forms of the next order in ν
eccentricity-dependent flux functions:

RMQ11
ð3kþ1ÞLðkÞ ¼

1

16ðk!Þ
�
−
214

105

�
kX∞
n¼1

n2kþ6½Î00ij
ðnÞ

Î11�ij
ðnÞ

þÎ11ij
ðnÞ

Î00�ij
ðnÞ

�;

RMQ11
ð3kþ5=2ÞLðkÞ ¼

π

8ðk!Þ
�
−
214

105

�
kX∞
n¼1

n2kþ7½Î00ij
ðnÞ

Î11�ij
ðnÞ

þÎ11ij
ðnÞ

Î00�ij
ðnÞ

�;

RMQ12
ð3kþ1ÞLðkÞ ¼−

1

16ðk−1Þ!
�
−
214

105

�
kX∞
n¼1

n2kþ6jÎ00ij
ðnÞ

j2;

RMQ12
ð3kþ5=2ÞLðkÞ ¼−

πð2kþ1Þ
16ðk!Þ

�
−
214

105

�
kX∞
n¼1

n2kþ7jÎ00ij
ðnÞ

j2;

ð4:14Þ

and

ZMQ11
ð3kþ1ÞLðkÞ ¼−

i
8ðk!Þ

�
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214
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�
k
ϵ3jl

×
X∞
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n2kþ5½Î00ja
ðnÞ

Î11�la
ðnÞ

þÎ11ja
ðnÞ

Î00�la
ðnÞ

�;

ZMQ11
ð3kþ5=2ÞLðkÞ ¼−

πi
4ðk!Þ

�
−
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�
k
ϵ3jl
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X∞
n¼1

n2kþ6½Î00ja
ðnÞ

Î11�la
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þÎ11ja
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Î00�la
ðnÞ

�;

ZMQ12
ð3kþ1ÞLðkÞ ¼

i
8ðk−1Þ!

�
−
214

105

�
k
ϵ3jl

X∞
n¼1

n2kþ5Î00ja
ðnÞ

Î00�la
ðnÞ

;

ZMQ12
ð3kþ5=2ÞLðkÞ ¼

ð2kþ1Þπi
8ðk!Þ

�
−
214

105

�
k
ϵ3jl

X∞
n¼1

n2kþ6Î00ja
ðnÞ

Î00�la
ðnÞ

:

ð4:15Þ

Unfortunately, if the above conjecture were to break
down for some k, the representations forRMQ12 and ZMQ12

would cease to hold. However, we would expect that the
MQ11 summations, as well as all components ofRMQ0 and
ZMQ0, would continue to remain valid.

D. Assembling the complete 1PN log sequences

We now draw together all of the preceding computations
into compact expressions for the terms in each 1PN
logarithm sequence. To make this assembly for, say, the
integer-order energy flux terms involve the following sum
of terms:

Rð3kþ1ÞLðkÞ ¼ RMQ01
ð3kþ1ÞLðkÞ þRMQ02

ð3kþ1ÞLðkÞ þRMQ03
ð3kþ1ÞLðkÞ þ νðRMQ11

ð3kþ1ÞLðkÞ þRMQ12
ð3kþ1ÞLðkÞÞ

þRMO
ð3kþ1ÞLðkÞ þRCQ

ð3kþ1ÞLðkÞ: ð4:16Þ

The full expressions for the integer-order and half-integer-order energy fluxes are given by
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Rð3kþ1ÞLðkÞ ¼
1

16ðk!Þ
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��
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�� X
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Î11�ij
ðnÞ

þÎ11ij
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�
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�
1
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�
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�
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�
1

k!

�X∞
n¼1

n2kkðn; etÞ; ð4:17Þ

and

Rð3kþ5=2ÞLðkÞ ¼
π

8ðk!Þ
�
−
214

105

�
k X∞
n¼1

��
6kþ 21

1 − e2t

�� X
p¼−2;2

n2kþ6pj Î00ij
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�
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n2kþ1kðn; etÞ: ð4:18Þ

In these expressions (and in the angular momentum analogs
that will follow), we emphasize once again that the validity
of the portion from MQ12, which determines in part the
linear-in-ν piece of the flux, depends on the conjecture
made in the previous subsection. If that supposition were to
fail at some PN order, these expressions would not be
accurate at first order in ν but would, of course, continue to
be valid for the Oðν0Þ portion.
The last essential consideration when using these expres-

sions to generate high-order eccentricity functions or power
series is that of their eccentricity singular behavior. As
mentioned in Sec. III D, past work [7–9,18,32] shows that
each 1PN logarithm will be characterized by a divergence
as et → 1 in the form of an eccentricity singular factor. For

PN order r, that singular factor will have the form
ð1 − e2t Þ−ðrþ7=2Þ. In fact, once we account for the presence
of a singular factor ð1 − e2t Þ−ð3kþ9=2Þ, we find closed-form
expressions for the integer-order terms Rð3kþ1ÞLðkÞ. The
half-integer sequenceRð3kþ5=2ÞLðkÞ almost surely admits no
closed representations. However, here too the removal of
the singular factor ð1 − e2t Þ−ð3kþ6Þ is beneficial, and leads to
a remaining power series that is convergent as et → 1. We
have demonstrated convergence in these terms to 22PN
through direct eccentricity expansion to high order.
Returning to the assembly of the entire flux terms, the

terms in the angular momentum 1PN log sequences are
given by

Zi ¼ ZMQ01
i þ ZMQ02

i þ ZMQ03
i þ νðZMQ11

i þ ZMQ12
i Þ þ ZMO

i þ ZCQ
i ; ð4:19Þ

which for the integer-order sequence can be shown to be

Zð3kþ1ÞLðkÞ ¼
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n2kk̃ðn; etÞ; ð4:20Þ

and for the half-integer-order sequence becomes
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Zð3kþ5=2ÞLðkÞ ¼
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Î11�la
ðnÞ
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Î00�la
ðnÞ

Þ
�

þ ð1 − 4νÞ
�
−
26

21

�
k
�
2π

k!

�X∞
n¼1

n2kþ1h̃ðn; etÞ þ ð1 − 4νÞ
�
−
214

105

�
k
�
2π

k!

�X∞
n¼1

n2kþ1k̃ðn; etÞ: ð4:21Þ

To reduce further, the relevant singular factors, which are
respectively ð1 − e2t Þ−ð3kþ3Þ and ð1 − e2t Þ−ð3kþ9=2Þ, would
be pulled out. While it is difficult to see until after that step
and after the source multipoles are inserted and expanded,
the integer-order flux terms all produce residual polyno-
mials in e2t while the half-integer-order terms have residual
convergent power series.

E. Some explicit results from the 1PN log sequences

These formulas can now be utilized to generate explicit
eccentricity functions or power series for higher-order
members of the 1PN log sequences. In fact, each term
from 4PN to 8.5PN at lowest order in ν has already been
calculated to high order in Darwin e in a companion paper

[9] to this one and Paper I. Those results were obtained by
combining BHPT numerical calculations with the partial
sum of least squares integer-relation algorithm on an lmn
mode basis to extract the coefficients in analytic form. The
eccentricity functions in that paper (upon conversion from e
to et) provide a valuable check on our results. Unfor-
tunately, the portions at next order in ν cannot be similarly
validated by BHPT yet and thus remain a conjecture as
discussed in the previous two subsections.
We consider first the pair of fluxes at 4PN log order,R4L

andZ4L, which are the second elements in the integer-order
1PN log sequences. With the appropriate eccentricity
singular function removed, we find that each provides a
closed-form expression

R4Lðet; νÞ ¼
1

ð1 − e2t Þ15=2
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�
; ð4:22Þ

Z4Lðet; νÞ ¼
1

ð1 − e2t Þ6
�
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−
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: ð4:23Þ

The order ν0 part ofR4LðetÞ was previously discovered and described in [7] [actually as a closed-form function L4LðeÞ in e
which is easily converted from e to et to compare toR4LðetÞ]. The order ν0 part of Z4LðetÞ was also effectively previously
found [38] [again as a closed-form function J 4LðeÞ in e, convertible to Z4LðetÞ].
Turning next to the 5.5PN log fluxes, which are the second elements in the half-integer-order 1PN log sequences, we find

a pair of convergent infinite series that begin with
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;
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Z11=2Lðet; νÞ ¼
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The third elements in the integer-order 1PN log sequences are the 7PN log2ðxÞ fluxes. These flux contributions also have
closed-form expressions, as anticipated
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At order ν0 these functions and power series show
complete agreement with those found using BHPT fitting.
The convergent power series for R11=2L and Z11=2L were
verified to e30t in the power series expansion and those for
R17=2L2 andZ17=2L2 were checked and verified to order e20t .
Additionally, we extended the validation to 22PN at the
level e10t by combining BHPT results with Johnson-
McDaniel’s Slmn factorization [39] (see Sec. IV D of
Paper I), again at Oðν0Þ. As we will explain in the next
subsection, we now have the means to compute these and
all other members of the 1PN log series to at least e120t with
manageable computational cost.

F. Discussion

To summarize, despite an increase in calculational
complexity, the pair of 1PN log sequences (shown in blue
in Fig. 1) are determined in their entirety by a few low-order
source multipoles—namely, the Newtonian mass octupole
and current quadrupole moments and the 1PN-order mass

quadrupole moment. This behavior is exactly analogous to,
if more complicated than, the way the Newtonian quadru-
pole moment provided all the information necessary to
derive all elements of the leading-log sequences (as shown
in Paper I). The Fourier amplitudes of these moments
appear in sums as complex products weighted by succes-
sively higher powers of n, the harmonics of orbital
frequency that are present in eccentric motion. As such,
these terms represent in the time domain higher and higher
order time derivatives of the low-order source multipole
moments.
The greater complexity is due in part to the fact that the

1PN quadrupole moment gives rise to five different sums
over squares of Fourier amplitudes. In compensation,
however, simplifying patterns emerge amongst these sums.
For example, we found an exact correspondence between
the higher-order quadrupole sums MQ01 and MQ11 and
the sums over the Newtonian-order quadrupole moment
in the leading-logarithm sequence. Specifically, the sub-
stitution I00 → I10 or I00 → I11 in terms where the former
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appears, along with changes in the normalization, leads to
parts of the flux at 1PN order higher. Secondly, a relation-
ship exists between the sums we denoted by MQ02 and
MQ03, which are related to the 1PN correction in the
frequency Ωr and the “magnetic” harmonics, p, respec-
tively. The k-dependent prefactors on these sums turn out to
be the additive inverse of each other. The reason for this
symmetry is that the harmonics (as defined and manipu-
lated in Sec. III B) ultimately satisfy m ¼ −n and s ¼ −p,
given orthogonality, and so Ωr and p only appear in the
combination �Ωrðnþ pkÞ. Through 1PN order this can be
rewritten as �Ωφ½nþ ðp − nÞk�, which means that a 1PN
contribution will emerge with p − n times the rest of the
quadrupole factors. We had simply split this into two
separate sums originally, with otherwise identical forms.
The open question concerns the sum that we labeled

MQ12, which involves the appearance of the I00

(Newtonian quadrupole) at next order in the mass ratio
and which first arises with the ADM mass at 2.5PN order.
As we mentioned in Sec. IV C, in PN theory it is expected
that progressively higher powers of the ADM mass will
appear in progressively higher corrections to the tail. Thus,
we expect that this will lead to a simple factor from the
relevant binomial expansion of ð1 − νx=2Þq. However, it is
not clear how else the Newtonian quadrupole might
manifest at this order in ν. If, for instance, the ADM mass
in the tail were the sole appearance of this type of sum, then
the partial cancellation between instantaneous and heredi-
tary contributions discussed in [8] would not occur,
enhancing any orders with both types of flux by a factor
of 3. According to [21], this would include all orders 3PN
and above. However, this would leave an unphysical
normalization constant r0 in the full flux (see, for example,
Sec. V E), which cannot exist. Therefore, the likeliest
possibility is that a corresponding summation exists on
the instantaneous side and the cancellation seen at Oðν0Þ
does continue here, leading to the result above. Regardless,
further developments in full PN theory or second-order
BHPT should soon be able to resolve this question
definitively. At that point, even if our conjecture of
Sec. IV C fails to hold, the Fourier infrastructure presented
here should be able to provide accurate OðνÞ expansions in
eccentricity for all elements of the 1PN log sequences once
the correct prefactor is supplied by other means.
Equally important to the generation of high-order

expansions is the question of computational implementa-
tion and cost. The procedures we describe in this paper turn
out to be quite manageable computationally, though the
calculation of complete flux terms tends to be more than an
order of magnitude more time consuming than the leading
logarithm calculations of Paper I. Of the seven required
sums, three (MQ02, MQ12, CQ) are roughly equal in
expense to the corresponding leading logarithms. Three
(MQ03, MQ11, MO) are 1.5–4 times more expensive to
compute, owing to their lengthier Bessel function

representations. In any event, calculation of all of these
terms only amounts to a matter of at most minutes for
computation to hundreds of orders in et on an average
laptop in Mathematica.
However, the remaining summationMQ01, with the 1PN

amplitudes ðnÞI
10
ij , is the ultimate bottleneck. As noted in

Sec. II D, these Fourier coefficients cannot be expressed
cleanly in terms of Bessel functions, and the unevaluated
integral in (2.46) is cumbersome to handle. We had partial
success in handling it by expanding the integrand in et
directly before integrating.However, the arctangent function
with its complicated argument remained a prime source of
difficulty, leading to a series of integrals that can require
hours to expand, as well as require large quantities of
memory, on cluster computers that support Mathematica.
We found that a convenient way to proceed was to
precompute the expansion of this arctangent function on
the University of North Carolina cluster KillDevil to e120t , a
task which required about 1.5 hours and 20 GB of RAM.
Once this expansion was calculated, the rest of the process
becamemuchmoremanageable. Indeed,with the arctangent
series in hand, we are now able to expand any element in the
1PN log sequences to e120t via laptop in only a few minutes.
This process was used in particular to expand ψðetÞ and
ψ̃ðetÞ to e120t , enhancement functions which are discussed in
[9]. Another difficult function, Rχ

4 (described below), can
also be obtained to e120t in this manner.

V. DERIVING AN ESSENTIAL PART
OF THE 4PN TAIL

Up to now we have focused on the 1PN log sequences of
gravitational wave fluxes (depicted by the blue lines in
Fig. 1). Drawing upon the frequency domain multipole
analysis in Sec. II, we rederived the known 1PN and 2.5PN
relative fluxes in Sec. III. We then used that frequency
domain approach in Sec. IV to detail the analytic depend-
ence of elements in those sequences to all higher PN orders.
What remains, for this section and Sec. VI, is to apply a
similar approach to the 4PN log sequences (i.e., the orange
lines in Fig. 1).
Like the subleading log sequences of Paper I (what we

call here the 3PN logs), the derivation of the form of the
4PN logs requires an assist from BHPT. As Paper I showed,
it is possible to find a theoretical explanation for part of
each subleading log term (even absent a full PN calcu-
lation) that is based merely on knowledge of the Newtonian
quadrupole moment. The remaining part of each sublead-
ing log term can then in principle be determined, at lowest
order in ν, by BHPT. A similar useful split carries over to
the elements in the 4PN log sequences, though it requires
the 1PN source multipoles.
Because the process is somewhat involved, we focus

primarily on illustrating how it is applied to the 4PN
nonlog fluxes, R4ðetÞ and Z4ðetÞ, the first elements in the
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integer-order 4PN log sequences. (Section VI also briefly
touches on the 5.5PN nonlog term, which is the first
element in the half-integer-order 4PN log sequence.) We
find that an essential tail portion of these 4PN terms is
theoretically determined by the same 1PN source multi-
poles that were discussed in Sec. II. Deriving that tail
portion is the subject of this section. Once this essential
4PN tail portion is known, we combine it with knowledge
of the 4PN log flux from Sec. IVand results [9] from BHPT
to determine the entire analytic form of the 4PN nonlog
fluxes R4ðetÞ and Z4ðetÞ to high order in an expansion in
eccentricity. This result is timely, as it will provide a

valuable check for those working to extend PN theory to a
full description of the orbital mechanics and radiative losses
at 4PN.
The portion of the 4PN tail to be addressed provides the

1PN correction to the 3PN enhancement function χðetÞ
[14]. This portion of the full tail is provided by the sum of
the tail2 and tail-of-tails corrections to the flux, and is
determined by the 1PN source multipoles. The mass
octupole and current quadrupole orbital computations will
remain at Newtonian order, mirroring the derivation of
χðetÞ itself in [14]. However, as usual, the mass quadrupole
part requires extension to 1PN, as discussed in Sec. II.

A. Mass octupole

For the mass octupole the quadratic in M portions of the energy flux tail have the following time domain expressions:

PMOðtailÞ2
∞ ¼ 4M2

189

�Z
∞

0

Ið6Þijkðt − τÞ
�
log

�
τ

2r0

�
þ 97

60

�
dτ

�
2

; ð5:1Þ

PMOðtail-of-tailsÞ
∞ ¼ 4M2

189
Ið4ÞijkðtÞ

Z
∞

0

Ið7Þijkðt − τÞ
�
log

�
τ

2r0

�
2

þ 183

70
log

�
τ

2r0

�
þ 13283

8820

�
dτ; ð5:2Þ

where the tail-of-tail coefficients were taken from Eq. (4.9a) in [37] with constant b set to r0. Note that a factor of 2 is pulled
from their equation, with another factor of 2 coming from the polynomial product ULUL.
The MO part of the tail2 term can be evaluated using the integral identity (3.24). Then, because k ¼ Ωφ=Ωr − 1 ¼ 0 and

M ¼ M for a Newtonian orbit, the time average of the MO tail2 term can be simplified to

hPMOðtailÞ2
∞ i ¼ 8M2

189

X∞
n¼1

ðΩφÞ10n10jI00ijk
ðnÞ

j2
�
π2

4
þ
�
logð2Ωrjnjr0Þ þ γE −

97

60

�
2
�
: ð5:3Þ

The tail-of-tails term requires a bit more work. First, the log2 piece must be handled using the following integral identity
[8,14,32]:

Z
∞

0

eiðn−skÞΩrτ log

�
τ

2r0

�
2

dτ ¼ i
ðn − skÞΩr

�
π2

6
þ
�
πi
2
signð−nÞ þ logð2Ωrjn − skjr0Þ þ γE

�
2
�

ð5:4Þ

≈
i

nΩr

�
−
π2

12
þ ðlogð2Ωφjnjr0Þ þ γEÞ2 þ πisignð−nÞðlogð2Ωφjnjr0Þ þ γEÞ

�
; ð5:5Þ

where in the second line we set k ¼ 0 and made a lowest-order PN expansion. When the various factors of i and n are
considered, it becomes clear that the last term in (5.5) cancels in a sum over positive and negative n. Once combined with
the rest of the integral, the total tail-of-tails contribution has the following time average:

hPMOðtail-of-tailsÞ
∞ i ¼ 8M2
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: ð5:6Þ

Then, (5.3) and (5.6) are summed to yield the complete mass octupole flux contribution

hPMOðtailÞ2þðtail-of-tailsÞ
∞ i ¼ 8M2
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Likewise, the angular momentum expressions have the following time-dependent forms:

GMOðtailÞ2
∞ ¼ 4M2
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These merge together in the same way to generate the complete mass octupole flux contribution
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B. Current quadrupole

The next component of the quadratic-in-M 4PN tail stems from the Newtonian current quadrupole. The energy and
angular momentum time domain representations are
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and
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ẑ; ð5:13Þ

respectively. Again, the particular forms the two tails-of-tails were adapted from [37]. The time averaged fluxes are then
found to be
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C. Mass quadrupole, lowest order in ν

The remaining orderM2 part of the 1PN correction to the tail2 and the tail-of-tails terms comes from the 1PN correction
to the mass quadrupole moment.
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1. The energy flux tail2

In the time domain, the mass quadrupole part of the tail2 is given by [14]

PMQðtailÞ2
∞ ¼ 4M2
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When the quadrupole moment is taken to leading (Newtonian) order, this term contributes to the 3PN hereditary flux. By
taking the calculation to one PN order higher approximation, we can obtain its contribution to the 4PN flux. To do so, we
plug in the biperiodic Fourier expansion for the quadrupole moment along with the expansion for the ADM mass, replace
the time derivatives with powers of the frequency, and take the time average. An intermediate step in the calculation is
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The product of integrals can be simplified through a double application of (3.24). Collecting the results of an expansion
through first order reduces the product of integrals to
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where we define β0 ≡ logð2Ωφjnjr0Þ þ γE − 11=12. The final result reduces to three compact sums:

hPMQ01ðtailÞ2
∞ i ¼ 2M2ðΩφÞ8

5

X∞
n¼1

ðn8ÞðI10ij
ðnÞ

I00�ij
ðnÞ

þI00ij
ðnÞ

I10�ij
ðnÞ

Þðπ2 þ 4β20Þ; ð5:19Þ

hPMQ02ðtailÞ2
∞ i ¼ −

48M2xðΩφÞ8
5ð1 − e2t Þ

X∞
n¼1

n8jI00ij
ðnÞ

j2ðπ2 þ 4β20 þ β0Þ; ð5:20Þ

hPMQ03ðtailÞ2
∞ i ¼ 48M2xðΩφÞ8

5ð1 − e2t Þ
X∞
n¼1

X
p

n7pj I00ij
ðn;pÞ

j2ðπ2 þ 4β20 þ β0Þ: ð5:21Þ

2. The energy flux tail-of-tails

The mass quadrupole part of the tail-of-tails time-dependent flux is given by [14]
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When the quadrupole moment is calculated to Newtonian order, this gives a hereditary contribution to the 3PN flux. The
4PN contribution we seek comes from considering 1PN orbital dynamics and the mass quadrupole through 1PN order. The
usual Fourier simplifications lead to
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To handle the log2 term, we expand the integral identity (5.4) to first order in k, giving
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where α0 ≡ logð2Ωφjnjr0Þ þ γE. The rest of the integral can be found using (3.24). In all cases the terms with signð�nÞwill
vanish in sums over positive and negative n, so those are dropped in what follows. We combine what is left with the other
terms in the integrand of (5.23) to get the total contribution from that integral
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With this factor reinserted in the expression for the flux, the tail-of-tails can be separated at 1PN order into the now-familiar
three sums
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3. Summing the tail2 and tail-of-tails

We can now combine the sums of corresponding type from the tail-of-tail and tail2 parts into one set of 1PN mass
quadrupole contributions. We find that upon fusing the tail pieces all of the log2 terms (i.e., α20 terms) vanish. The result is
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ðlogð2Ωφjnjr0Þ þ γEÞ −

497004

6125

�
: ð5:32Þ

4. The angular momentum tail flux

On the angular momentum side, the time-dependent tail2 and tail-of-tails fluxes take the following forms:

GMQðtailÞ2
∞ ¼ 8M

5
ϵ3jl

�Z
∞

0

Ið4Þja ðt − τÞ
�
log

�
τ

2r0

�
þ 11

12

�
dτ

�
×

�Z
∞

0

Ið5Þla ðt − τÞ
�
log

�
τ

2r0

�
þ 11

12

�
dτ

�
ẑ; ð5:33Þ
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GMQðtail-of-tailsÞ
∞ ¼ 4M2

5
ϵ3jl

�
Ið2Þja

Z
∞

0

Ið6Þla ðt − τÞ
�
log

�
τ

2r0

�
2

þ 57

70
log

�
τ

2r0

�
þ 124627

44100

�
dτ

þ Ið3Þla

Z
∞

0

Ið5Þja ðt − τÞ
�
log

�
τ

2r0

�
2

þ 57

70
log

�
τ

2r0

�
þ 124627

44100

�
dτ

�
ẑ: ð5:34Þ

The simplification procedure is nearly identical to that in the energy case, so we jump straight to the three sums that give
this essential part of the tail flux

hGMQ01ðtailÞ2þðtail-of-tailsÞ
∞ i¼−M2ðΩφÞ7iϵ3jl

X∞
n¼1

n7ðI10ja
ðnÞ

I00�la
ðnÞ

þI00ja
ðnÞ

I10�la
ðnÞ

Þ
�
16π2

15
−
1712

525
ðlogð2Ωφjnjr0Þþ γEÞ−

116761

18375

�
; ð5:35Þ

hGMQ02ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ M2xðΩφÞ7i

ð1 − e2t Þ
ϵ3jl

X∞
n¼1

n7I00ja
ðnÞ

I00�la
ðnÞ

�
112π2

5
−
1712

25
ðlogð2Ωφjnjr0Þ þ γEÞ −

17903

125

�
; ð5:36Þ

hGMQ03ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ −

M2xðΩφÞ7i
ð1 − e2t Þ

ϵ3jl
X∞
n¼1

X
p

n6p I00ja
ðn;pÞ

I00�la
ðn;pÞ

�
112π2

5
−
1712

25
ðlogð2Ωφjnjr0Þ þ γEÞ −

17903

125

�
: ð5:37Þ

D. Mass quadrupole, next order in ν

As noted in an earlier section of the paper, only minor adjustments to the above results are required to obtain these parts of
the 4PN tail at OðνÞ. The ν correction to the quadrupole moment itself can again be found by simple substitution, and the ν
correction to the ADM mass simply provides a factor of (−1). Thus, these essential parts of the 4PN tail at order ν become

hPMQ11ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ νxM2ðΩφÞ8

X∞
n¼1

ðn8ÞðI11ij
ðnÞ

I00�ij
ðnÞ

þI00ij
ðnÞ

I11�ij
ðnÞ

Þ
�
8π2

15
−
856

525
ðlogð2Ωφjnjr0Þ þ γEÞ −

116761

36750

�
; ð5:38Þ

hPMQ12ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ −νxM2ðΩφÞ8

X∞
n¼1

ðn8ÞjI00ij
ðnÞ

j2
�
8π2

15
−
856

525
ðlogð2Ωφjnjr0Þ þ γEÞ −

116761

36750

�
ð5:39Þ

for the energy flux and

hGMQ11ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ −νxM2ðΩφÞ7iϵ3jl

X∞
n¼1

ðn7ÞðI11ja
ðnÞ

I00�la
ðnÞ

þI00ja
ðnÞ

I11�la
ðnÞ

Þ
�
16π2

15
−
1712

525
ðlogð2Ωφjnjr0Þ þ γEÞ −

116761

18375

�
;

ð5:40Þ

hGMQ12ðtailÞ2þðtail-of-tailsÞ
∞ i ¼ νxM2ðΩφÞ7iϵ3jl

X∞
n¼1

ðn7ÞI00ja
ðnÞ

I00la
ðnÞ

�
16π2

15
−
1712

525
ðlogð2Ωφjnjr0Þ þ γEÞ −

116761

18375

�
ð5:41Þ

for the angular momentum flux.

E. Putting the essential part of the 4PN tail together

We are now in a position to assemble the entire order-M2 part of the 4PN tail. We will focus on the energy flux case first.
This net tail flux comes from summing together (5.30), (5.31), (5.32), (5.38), and (5.39). Since this is a 4PN energy flux, we
pull out the circular-orbit limit and an extra factor of x4 to define a tail enhancement function Rtail

4 ðet; νÞ:
�
dE
dt

�
tail

4L
¼ 32

5
ν2x9Rtail

4 ðet; νÞ: ð5:42Þ
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WithRtail
4 ðet; νÞ defined, we then make a new separation of

this function by grouping on common factors like π2,
rational numbers, a variant of the eulerlog function [8,9],
and logðn

2
Þ, all of which appear in (5.30), (5.31), (5.32),

(5.38), and (5.39). Then these separate groupings are each
expanded in power series in e2.
We draw attention first to the grouping on the logðn

2
Þ term

within the sums, which defines a new function that we call
Rχ

4ðet; νÞ. This function is reminiscent of the 3PN function

χðetÞ [7,8,14] that leads to the related relative flux function
Rχ

3ðetÞ,
Rχ

3ðetÞ ¼ −
1712

105
χðetÞ ¼ −

1712

105

X∞
n¼1

n2

4
log

�
n
2

�
gðn; etÞ:

ð5:43Þ
In turn, χðetÞ is related to an infinite sequence of functions
ΛkðetÞ that we defined in Sec. IV of Paper I. With these
connections in mind, the definition for Rχ

4ðet; νÞ, along
with its power series expansion, is found to be

Rχ
4ðet; νÞ ¼

�
107

420

�X∞
n¼1

log

�
n
2

���
24

1 − e2t

��
n8jÎ00ij

ðnÞ
j2 −

X
p¼−2;2

n7pj Î00ij
ðn;pÞ

j2
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− n8ðÎ00ij

ðnÞ
Î10�ij
ðnÞ

þÎ10ij
ðnÞ

Î00�ij
ðnÞ

Þ

þ νn8jÎ00ij
ðnÞ

j2 − νn8ðÎ00ij
ðnÞ

Î11�ij
ðnÞ

þÎ11ij
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Î00�ij
ðnÞ

Þ
�
− ð1 − 4νÞ

X∞
n¼1

n2 log

�
n
2

���
52

21

�
hðn; etÞ þ

�
428

105

�
kðn; etÞ

�

¼ −3R4L logð1 − e2t Þ þ
1

ð1 − e2t Þ15=2
�
133771 logð2Þ

4410
−
47385 logð3Þ

1568
þ
�
−
232597

2940
−
19405829 logð2Þ

8820

þ 15792327 logð3Þ
15680

�
e2t þ

�
1414531

2940
þ 365627093 logð2Þ

17640
þ 459923913 logð3Þ

71680
−
15869140625 logð5Þ

903168

�
e4t

þ
�
13183159

1764
þ 30959613721 logð2Þ

317520
−
276844091571 logð3Þ

1003520
þ 2189439453125 logð5Þ

16257024

�
e6t þ � � �

�

þ ν

ð1 − e2t Þ15=2
��

−
267542 logð2Þ

2205
þ 47385 logð3Þ

392
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þ
�
−
34889

245
þ 7321852 logð2Þ
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−
11424159 logð3Þ

3920

�
e2t

þ
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−
2993785
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241129100 logð2Þ
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þ 3196747377 logð3Þ

125440
þ 15869140625 logð5Þ

225792

�
e4t

þ
�
−
29356142

2205
þ 52459170329 logð2Þ

26460
þ 3605227461 logð3Þ
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−
4796728515625 logð5Þ

4064256

�
e6t þ � � �

�
: ð5:44Þ

While this function has no overall closed form, it does have
an isolated closed-form part that involves the 1PN-log-
sequence function R4Lðet; νÞ (4.22). The reappearance of
this 1PN log function within a 4PN log function is exactly
analogous to theway a leading log function,FðetÞ, reappears
in the 3PN function χðetÞ [7] (see also Paper I, Sec. IVA). Its
appearance aids in isolating the singular behavior (as et → 1)

ofRχ
4 into two parts—onewith algebraic divergence and one

with a dual logarithmic/algebraic divergence.
The remaining groupings on the other factors (π2,

rational numbers, and a variant of the eulerlog function)
lead to the remarkable behavior that all of the rest of Rtail

4

has a closed-form appearance. We find

Rtail
4 ¼ 1

ð1−e2t Þ15=2
��

5887504939

22226400
þ105800809423e2t

44452800
−
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177811200
−
2645724108523e8t

2844979200

−
1498169789e10t
210739200

�
þν

�
−
1488040411

5556600
−
2854515929e2t

555660
−
1030726283e4t

66150
−
103160580401e6t

8890560
−
289778969059e8t

142248960

−
1066256753e10t

26342400

��
−

1
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3584

�
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�
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−
38219e4t

9
−
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6922325e8t
12096

−
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þ2

�
γEþ2 log2þ3

2
logx

�
R4Lðet;νÞþRχ

4ðet;νÞ: ð5:45Þ
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Note that the eulerlog function becomes a coefficient on another appearance ofR4Lðet; νÞ, with a form that exactly matches
the predictions laid out in Sec. IV E of Paper I. (This is only part of the appearance of log x at 4PN order; the remainder
arises in the instantaneous 4PN term, which is not calculated here.) All the other terms involve polynomials once the
relevant eccentricity singular factors are removed.
In turning to the case of the angular momentum flux, all of the steps made for energy flux carry over almost identically. At

the end of the process we find that the order-M2 part of the 4PN tail in angular momentum flux is

Ztail
4 ¼ 1

ð1 − e2t Þ6
��

5887504939
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7408800
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ð5:46Þ
Here, Z4Lðet; νÞ is the second element in the integer-order 1PN log sequence defined in (4.23). The remaining part of the
above expression is a new function defined by

Zχ
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�
107i
210

�
ϵ3jl

X∞
n¼1

log
�
n
2

���
−21
1 − e2t

��
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Î00�la
ðn;pÞ

�
þ n7ðÎ00ja
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þÎ10ja
ðnÞ
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ðnÞ
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where the second equality provides its power series
expansion. The full order-M2 tail functions, Rtail

4 ðet; νÞ
and Ztail

4 ðet; νÞ, can now be used with an assist from BHPT
to determine the flux termsR4 and Z4, at lowest order in ν.

VI. THE COMPLETE 4PN FLUXES AT LOWEST
ORDER IN ν

A. 1PN correction to χ ðetÞ and compact expressions for
L4ðeÞ and J 4ðeÞ

We demonstrated in Paper I how the threefold combi-
nation of (i) knowledge of the leading logarithm sequence,

(ii) theoretical understanding of the role of the ΛkðetÞ
sequence of functions [analogs of the function χðetÞ], and
(iii) use of BHPT and fitting to finite-order expansions in
eccentricity was sufficient to determine completely the
integer-order 3PN log sequence at lowest order in the mass
ratio. This procedure involved, first, converting a given
leading-log term and its associated ΛkðetÞ function from
expressions and expansions in et into expansions in Darwin
e, the natural eccentricity for BHPT calculations. Then,
these known functions were incorporated into a model for
the eccentricity power series dependence at the given PN
order. Thirdly, high accuracy BHPT numerical results, or a
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fully analytic BHPT calculation, were used to determine
the remaining, most-often rational, coefficients in the
model. Finally, the result was then transformed back from
e to et. In this way, the leading-log (0PN log) sequence was
used to assist in finding terms in the 3PN log sequence at
corresponding PN order. This is a connection between the
red and the green lines in Fig. 1. We used this process to
determine the R6LðetÞ and Z6LðetÞ terms in their entirety,
aided by knowledge of the leading logs R6L2ðetÞ and
Z6L2ðetÞ.
A similar process appears to hold in being able to use

terms in the 1PN log sequence to aid in determining the
form of the corresponding term in the 4PN log sequence
(i.e., a connection between the blue and orange lines in the
figure), which we demonstrate with the first element in
the 4PN log sequence—the 4PN nonlog flux itself. The
derivations in Sec. IV provided one key component of this
process—the closed-form expressions for the second ele-
ments in the integer-order 1PN log sequences,R4LðetÞ and
Z4LðetÞ. Then the analysis in Sec. V provided a second key
component—the analytic form (including one infinite
series) for the energy and angular momentum χ-like tail
fluxes, Rχ

4ðetÞ and Zχ
4ðetÞ, the analogs at 4PN of the 3PN

tail functions, χðetÞ and χ̃ðetÞ. Knowing how these func-
tions make an appearance in the full 4PN nonlog fluxes was
sufficient to allow BHPT fitting to determine closed-form
dependence for the rest of the 4PN nonlog fluxes at lowest
order in ν.
Beginning with the energy flux, we require first a high-

order eccentricity expansion for Lχ
4ðeÞ, which like Rχ

4ðetÞ
will be an infinite series. The process to obtain Lχ

4ðeÞ is
straightforward. We start with Rχ

4ðet; ν ¼ 0Þ, which can be
isolated from (5.44). This function is expanded in et to e30t .
Then, Rχ

4ðetÞ must be converted to Lχ
4ðeÞ, that is, from a

function of time eccentricity et to one of Darwin eccen-
tricity e. This is achieved by expressing et in terms of e, to
sufficient approximation, as et ¼ eð1 − 3xþOðx2ÞÞ, sub-
stituting into the full energy flux expansion, and letting
the post-Newtonian difference between e and et ripple
through the flux expressions. Then we collect all relevant
results at 4PN order. The post-Newtonian corrections not
only come from switching from et to e inR

χ
4 but also from

a correction to Rχ
3 (5.43). The result is that Lχ

4ðeÞ is
calculated by taking

x4Lχ
4ðeÞ¼

�
−
1712

105
x3χðe−3xeÞþx4Rχ

4ðeÞ
�

4PN
; ð6:1Þ

where the superscript “4PN” on the right side means
expand out and then collect and retain the Oðx4Þ terms.
We could perform a similar procedure to generateL4LðeÞ

from R3LðetÞ and R4LðetÞ, but there is no need since we
can simply use the expression already found in [7,9,38] via
fitting. The closed-form expression is

L4LðeÞ ¼
1

ð1 − e2Þ15=2
�
232597

8820
þ 4923511e2

5880

þ 142278179e4

35280
þ 318425291e6

70560

þ 1256401651e8

1128960
þ 7220691e10

250880

�
: ð6:2Þ

With those two functions, L4LðeÞ and Lχ
4ðeÞ, determined,

the procedure now closely follows that of Paper I. The tail
part Lχ

4ðeÞ is expected to appear directly as a term in L4ðeÞ,
while the functionL4LðeÞ appears also but only after having
been multiplied by a particular function containing γE and a
log term. The sum of these two terms is expanded in a power
series to e30. The model for the entire behavior of L4ðeÞ,
similar to one assumed in Paper I for LðeÞ, includes these
two parts as well as a power series in e2 with rational
coefficients and a second power series in e2 with rational
coefficients that is multiplied by π2. The starting point for
these two power series is actually three closed-form expres-
sions with relevant eccentricity singular factors.We subtract
the known part in this model due to L4LðeÞ and Lχ

4ðeÞ from
the numerical 4PN nonlog flux data provided by BHPT. The
modified numerical data should be represented by the
remaining two rational-coefficient power series in this
model. We then progressively solve for the remaining
unknown (rational) coefficients. This process is successful,
meaning the model was a correct ansatz, and yields

L4ðeÞ¼
1

ð1−e2Þ15=2
�
18510752431

44144100
−
40934075709731e2

6356750400
−
131458534402891e4
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��
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1369π2
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�
γEþ log

�
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1−e2

p
��

L4LðeÞþLχ
4ðeÞ: ð6:3Þ
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The result matches the expansion for L4ðeÞ found to e30 in [9,40].
The 4PN nonlog angular momentum flux follows precisely the same procedure, and yields

J 4ðeÞ ¼
1

ð1 − e2Þ6
�
139774944409

1059458400
−
35619868663789e2
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4ðeÞ; ð6:4Þ

where the second element in the angular momentum (integer-order) 1PN log sequence is

J 4LðeÞ ¼
1

ð1 − e2Þ6
�
232597

8820
þ 3482879e2

8820
þ 34971299e4

35280
þ 6578731e6

14112
þ 2503623e8

125440

�
: ð6:5Þ

The result in (6.4) also matches the expansion found by fitting given in [9,40] but provides a deeper, though partial,
theoretical explanation.

B. Transforming from L4ðeÞ and J 4ðeÞ to R4ðetÞ and Z4ðetÞ
In order to convert these flux terms to functions in terms of et [i.e.,R4ðetÞ and Z4ðetÞ] in the modified harmonic gauge,

we require the relationship between e and et to 4PN order at lowest order in the mass ratio. With that restriction, the
expansions relating e and et can be calculated to any PN order by analyzing geodesic motion on a Schwarzschild
background [18]. We quote the result through the necessary order

e2

e2t
¼ 1þ 6xþ ð17 − 21e2t þ 15

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
Þx2

1 − e2t
þ ð26þ 54e4t þ 150

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
− e2t ð107þ 90

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ÞÞx3

ð1 − e2t Þ2

−
ð880e6t − 10e4t ð367þ 240

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
Þ − 2ð865þ 3167

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
Þ þ e2t ð6120þ 6265

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ÞÞx4

8ð1 − e2t Þ3
þOðν; x5Þ: ð6:6Þ

We then construct the net flux by combining L0ðeÞ, L1ðeÞ, L2ðeÞ, L3ðeÞ, and L4ðeÞ and replacing e with its relationship
to et given in (6.6) along the lines done in (6.1). The result is expanded, allowing the PN corrections to ripple through to the
4PN term, giving at last

R4ðetÞ ¼
1

ð1 − e2t Þ15=2
�
20670029551

44144100
þ 90592819680523e2t

6356750400
þ 45374652958109e4t

1589187600
þ 215773793118089e6t

50854003200

−
139754682191e8t
2844979200

þ 4853373238601e10t
45203558400

−
12776867e12t
14057472

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
−
1809538139

3175200

−
30429943463e2t

3175200
−
103455982193e4t

12700800
þ 67397848199e6t

8467200
þ 863341943e8t

501760
−
308515e10t
64512

��

−
1369π2

126ð1 − e2t Þ15=2
�
1 −

62107e2t
2738

−
1011881e4t

5476
−
2147277e6t
10952

−
6242337e8t
175232

−
174501e10t
350464

�

þ 2

�
γE þ 3 logð2Þ þ log

� ð1 − e2t Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
��

R4LðetÞ þRχ
4ðetÞ: ð6:7Þ

We follow precisely the same procedure in combining J 0ðeÞ, J 1ðeÞ, J 2ðeÞ, J 3ðeÞ, and J 4ðeÞ to obtain
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Z4ðetÞ ¼
1

ð1 − e2t Þ6
�
191597595289

1059458400
þ 99527954953927e2t

12713500800
þ 191377070535107e4t

25427001600
−
101432063662609e6t

50854003200

−
13890223720171e8t

67805337600
þ 9732011e10t

21086208
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q �
−
448500667

1587600
−
14027009779e2t

3175200
−
1764770893e4t

846720

þ 235209407e6t
352800

−
81965e8t
16128

��
−

1369π2

126ð1 − e2t Þ6
�
1 −

26519e2t
1369

−
366503e4t
5476

−
252327e6t
10952

−
84753e8t
175232

�

þ 2

�
γE þ 3 logð2Þ þ log

�
1 − e2t

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
��

Z4LðetÞ þ Zχ
4ðetÞ: ð6:8Þ

Note that the polynomial attached to π2 in each of these
expressions now perfectly matches the corresponding result
obtained through analysis of the 4PN tail in Sec. V E.

C. General structure in the 4PN log sequences and a
simplified form for L11=2ðeÞ

The first part of this section has developed compact
expressions for the first elements in the two integer-order
4PN log sequences, namely the terms L4ðeÞ and J 4ðeÞ, by
combining 1PN source multipoles in formulas for tail
fluxes and using perturbation theory to find rational number
coefficients in the remaining (closed-form) functions of e.
This is simply an extrapolation to the 4PN log sequences
(solid orange line in Fig. 1) of the procedure used in Paper I
(Sec. IV) to find comparable expressions for the 3PN log
sequences (solid green line).
We went about this by deriving the form of Rχ

4ðetÞ and
Zχ

4ðetÞ directly using the 4PN hereditary contributions.
However, strictly speaking this approach was not necessary.
At lowest order in the mass ratio, the analysis of Sec. IV E
in Paper I still holds, meaning that the form of the χ-like
contribution to any 4PN logarithm can be ascertained
a priori. Using the results of that section in Paper I,
we see that the expressions for Rχ

ð3kþ1ÞLðkÞðetÞ and

Zχ
ð3kþ1ÞLðkÞðetÞ can be derived from the summations for

Rð3kþ1ÞLðkÞðetÞ and Zð3kþ1ÞLðkÞðetÞ, which appear in (4.17)

and (4.20), respectively, by including in each a factor of
ð2kÞ logðn=2Þ. In this way we can not only reproduce the
results for the 4PN nonlog flux but also generalize to
arbitrarily higher order terms in the integer-order 4PN log
sequence. The more general χ-like functions will have dual
logarithmic and algebraic divergent parts, with the former
attached to the corresponding 1PN log term. With these
higher PN order χ-like functions determined, we might then
rely upon BHPT to determine the remaining functional
dependence in these higher (integer) order 4PN log terms.
The next of these, L7LðeÞ, would have a model with a set of
closed-form functions with unknown rational coefficients.
Those functions would need to be expanded in a power
series to e34 and then BHPT would be used to fit for the
rational coefficients to that order.
Unfortunately, the terms in the half-integer 4PN log

sequences cannot be manipulated into expressions that are
quite as compact, with closed-form parts. However, each
term in these sequences can still be reduced to a remaining
infinite series with rational coefficients, once the roles of
the mass quadrupole, mass octupole, and current quadru-
pole 1PNmoments are understood. As an example, take the
first half-integer (energy) 4PN logarithm, R11=2ðetÞ. By
applying the procedure above, the counterpart function in e,
L11=2ðeÞ, can be given the following form:

L11=2ðeÞ ¼
π

ð1−e2t Þ9
�
8399309750401

101708006400
−
6431125434321667e2

203416012800
−
347369943176265227e4

813664051200
−
15186120717515117243e6

11716762337280

−
18230625005177349698411e8

14997455791718400
−
66989953560049801996499e10

249957596528640000
−
997758112480120369559e12

3856488632156160000

−
18489702206162114169107e14

1476312054497280000
−
58073989289629682554885336291e16

5418088860997889556480000

−
7460925685163379777975573791651e18

877730395481658108149760000
−
46468844430394780206366046707113e20

6751772272935831601152000000
þ�� �

�

þ2

�
γEþ3 log2þ log

�
1−e2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
��

L11=2LðeÞþLχ
11=2ðeÞ: ð6:9Þ
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As mentioned, the initial part of this expression is an
infinite series with rational coefficients. We have calculated
the series to e30 [9,40] but omitted here the last few
coefficients for brevity. The remainder of the expression
involves two functions that together capture all of the
transcendental and logarithmic constants. The first of these
is the 1PN log function itself at 5.5PN order, L11=2LðeÞ,
which can be derived from the expression for R11=2LðetÞ
given earlier in this paper or found by consulting [9]. The
second is the 5.5PN χ-like function, Lχ

11=2ðeÞ, which can be
found by the process described above.

VII. CONCLUSIONS AND OUTLOOK

This paper extended an approach found in Paper I for
determining the eccentricity dependence of the leading log
sequences of flux terms (depicted as solid and dashed red
lines in Fig. 1) and the 3PN log sequences (green lines) to
additional strips in the higher-order PN structure. The new

strips considered here are the 1PN log sequences (blue
lines) and 4PN log sequences (orange lines). In the earlier
paper we developed a complete understanding of the terms
in the leading log sequences in terms of the Newtonian
quadrupole moment Fourier spectrum gðn; etÞ. The integer-
order leading logs were found to have closed-form expres-
sions and the half-integer-order leading logs were shown to
be infinite series in e2 with calculable rational coefficients.
The 3PN log terms, at lowest order in the mass ratio, were
shown to have part of their functional dependence given by
the quadrupole spectrum, with the rest involving series with
rational coefficients that could be determined with the
assistance of BHPT fitting.
In this paper we showed that a mirror image of those

procedures could be found which would allow us to
calculate the 1PN and 4PN log sequences, provided we
use PN theory to calculate additional, 1PN multipole
moment spectra (i.e., the mass octupole, current quadru-
pole, and 1PN mass quadrupole moments) along with

TABLE I. State of knowledge of eccentricity dependence of high PN order flux terms. The second column indicates whether a closed
form exists or to what order in e the power series expansion is known. The closed-form result for L4L was previously found in Forseth
et al. [7]. All other results come from this paper and its companions, Paper I [8] and Munna et al. [9]. Flux terms labeled as “all orders”
are infinite series in e2 but with coefficients that can now be analytically calculated to arbitrary order. Other terms are only known in
analytic form up to order e30 (or in a few cases less). The fourth column gives the number of PN corrections to the leading-logs which
must be calculated to derive the term fully. The fifth column indicates the number of leading log [and ΛðetÞ=ΞðetÞ] corrections which
must be calculated to extract the term to all orders in e in the manner of Sec. VI. A superset of these terms allows for the separation of
transcendental contributions in the same way, as shown in column six. Above 5PN it is more difficult to apply these methods (labeled by
asterisk). The last two rows represent all further leading and 1PN logarithms.

Term
Known order

in e
Original
source

PN order
beyond LL

Order for fitting
extraction

Order to find
transcendental part

L7=2 Fitted to e30 Munna et al. 2PN � � � � � �
L4 All orders This paper 4PN 1PN 1PN
L4L Closed form Forseth et al. 1PN � � � � � �
L9=2 Fitted to e30 Munna et al. 3PN � � � 0PN
L9=2L All orders Paper I � � � � � � � � �
L5 Fitted to e30 Munna et al. 5PN 2PN 2PN
L5L Closed form Munna et al. 2PN � � � � � �
L11=2 Fitted to e30 Munna et al. 4PN � � � 1PN
L11=2L All orders this paper 1PN � � � � � �
L6 Fitted to e20 Munna et al. 6PN 3PN* 3PN*
L6L All orders Paper I 3PN 0PN 0PN
L6L2 Closed form Paper I � � � � � � � � �
L13=2 Fitted to e30 Munna et al. 5PN � � � 2PN
L13=2L Fitted to e30 Munna et al. 2PN � � � � � �
L7 Fitted to e12 Munna et al. 7PN 4PN* 4PN*
L7L Fitted to e26 Munna et al. 4PN 1PN 1PN
L7L2 Closed form This paper 1PN � � � � � �
L15=2 Fitted to e12 Munna et al. 6PN � � � 3PN*
L15=2L Fitted to e26 Munna et al. 3PN � � � 0PN
L15=2L2 All orders Paper I � � � � � � � � �
Lð3kÞLðkÞ Closed form Paper I � � � � � � � � �
Lð3kþ3=2ÞLðkÞ All orders Paper I � � � � � � � � �
Lð3kþ1ÞLðkÞ Closed form This paper 1PN � � � � � �
Lð3kþ5=2ÞLðkÞ All orders This paper 1PN � � � � � �

CHRISTOPHER MUNNA and CHARLES R. EVANS PHYS. REV. D 102, 104006 (2020)

104006-32



somewhat higher order in e2 BHPT fitting. In the case of
the 1PN log sequences, the PN calculation provides as a
bonus next-order-in-ν parts of the fluxes, with only some
remaining uncertainty whether the OðνÞ part of the MQ12
terms [see Eq. (4.14)] is complete. Without a full PN theory
calculation, the conjecture that the order ν part is complete
can only be verified by an (as yet unavailable) second-order
BHPT comparison. We used the procedure to detail
explicitly the 4PN log, 5.5PN log, and 7PN log2 terms.
However, our computational infrastructure allows us to
compute any integer 1PN logarithm as a closed-form
expression and permits the rapid expansion of all half-
integer (nonclosed) 1PN logs to at least e120t .
In addition to the 1PN logarithms, our approach allowed

for the computation of the 1PN correction to the ΛkðetÞ and
ΞkðetÞ set of functions of Paper I. The specific 1PN
correction to Λ1ðetÞ ¼ χðetÞ allowed for the extraction
of the full 4PN nonlog fluxes at lowest order in ν, as well as
the isolation of all transcendental contributions in the
5.5PN nonlog term, R11=2ðetÞ.
To extend the procedures of Paper I and this paper

further, we would need to calculate the Fourier spectra of
the 2PN source multipoles and use even higher-order
BHPT fitting. The algorithmic complexity and cost would
increase, and there may be additional hereditary-term
integrals that are more difficult to compute. This 2PN

extension, to the 2PN log sequences and the 5PN log
sequences, may be the subject of future work.
We conclude by presenting an update of a table found in

Paper I that summarizes the state of knowledge of the
eccentricity dependence of high PN order (lowest order
in ν) flux terms. This is given in Table I.
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APPENDIX A: COMPONENT SUMS
FOR 1PN LOGARITHMS

We provide here some low-order examples of the
component sums that, once added together, produce the
corresponding 1PN log sequence term. These illustrate
(i) some of the steps in the procedure, (ii) the particular
eccentricity dependence of individual terms, (iii) how
different source multipoles contribute, and (iv) the presence
of next-order-in-ν dependence. At 1PN order itself, we find

RMQ01
1 ¼ 1

ð1 − e2t Þ9=2
�
271

21
þ 1705e2t

28
þ 2555e4t

96
þ 1189e6t

1344

�
−

1

ð1 − e2t Þ3
�
18þ 63e2t

4

�
;

RMQ02
1 ¼ 1

ð1 − e2t Þ9=2
�
−18 −

219e2t
4

−
111e4t
16

�
;RMQ03

1 ¼ 1

ð1 − e2t Þ3
�
18þ 63e2t

4

�
;

RMQ11
1 ¼ 1

ð1 − e2t Þ9=2
�
55

21
þ 3907e2t

504
−
e4t
96

−
307e6t
2016

�
;RCQ

1 ¼ 1 − 4ν

ð1 − e2t Þ9=2
�
1

36
þ 19e2t

72
þ 23e4t

96
þ e6t
64

�
: ðA1Þ

The mass octupole portion is given in (2.37). The Newtonian moments match their expected forms, but the mass quadrupole
functions are more interesting, with the pieces displaying somewhat distinct singular behavior as et → 1. We have
confirmed that a similar pattern exists in all integer-order 1PN log terms through 22PN, with

RMQ01
ð3kþ1ÞLðkÞ ¼

1

ð1 − e2t Þ3kþ9=2 f
ð1Þ
k ðetÞ −

1

ð1 − e2t Þ3kþ3
fð2Þk ðetÞ; RMQ02

ð3kþ1ÞLðkÞ ¼
1

ð1 − e2t Þ3kþ9=2 f
ð3Þ
k ðetÞ;

RMQ03
ð3kþ1ÞLðkÞ ¼

1

ð1 − e2t Þ3kþ3
fð2Þk ðetÞ; RMQ11

ð3kþ1ÞLðkÞ ¼
1

ð1 − e2t Þ3kþ9=2 f
ð4Þ
k ðetÞ; ðA2Þ

where fð1Þk ðetÞ; fð2Þk ðetÞ; fð3Þk ðetÞ; fð4Þk ðetÞ are polynomials
in et. It is not difficult to prove that the trends in singular
behavior continue to all orders for MQ02, MQ03, MQ11,
MO, and CQ using the methods of asymptotic analysis laid
out in [7,9,32]. Unfortunately, a similar proof for MQ01 has
remained elusive, though there are overlapping reasons to
believe that the same behavior arises in this term as well,

including the fact that all divergences as et → 1 must
vanish in a PN expansion that uses 1=p (the semilatus
rectum) as the compactness parameter instead of x (see [9]).
Nearly identical trends exist in the integer-order 1PN
angular momentum log sequence terms.
At half-integer orders, the component terms are not

closed in form. For future reference, at 2.5PN we find
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RMQ01
5=2 ¼ 1

ð1 − e2t Þ6
�
1336

21
þ 29083e2t

48
þ 137933e4t

192
þ 3704005e6t

27648
þ 3902585e8t

1548288
−
54803587e10t
619315200

þ � � �
�
−RMQ03

5=2 ;

RMQ02
5=2 ¼ 1

ð1 − e2t Þ6
�
−84 −

9625e2t
16

−
27545e4t

64
−
70049e6t
3072

−
16247e8t
73728

þ 1664999e10t
29491200

−
1280041e12t
353894400

þ � � �
�
;

RMQ03
5=2 ¼ 1

ð1 − e2t Þ9=2
�
84þ 2037e2t

8
þ 1029e4t

32
−
343e6t
1536

−
763e8t
12288

−
17969e10t
4915200

þ 32543e12t
58982400

þ � � �
�
;

RMQ11
5=2 ¼ 1

ð1 − e2t Þ6
�
220

21
þ 9841e2t

144
þ 16891e4t

576
−
216235e6t
27648

−
2088109e8t
4644864

þ 4380643e10t
371589120

−
33875507e12t
22295347200

þ � � �
�
;

RMQ12
5=2 ¼ 1

ð1 − e2t Þ6
�
−2 −

1183e2t
96

þ 1565e4t
384

þ 178873e6t
18432

þ 237847e8t
442368

þ 1166257e10t
176947200

−
3037147e12t
2123366400

þ � � �
�
;

RMO
5=2 ¼ 1 − 4ν

ð1 − e2t Þ6
�
16403

2016
þ 34163e2t

336
þ 21836233e4t

129024
þ 57821777e6t

1161216
þ 67599745e8t

49545216
þ 241631e10t
132710400

þ � � �
�
;

RCQ
5=2 ¼

1 − 4ν

ð1 − e2t Þ6
�
1

18
þ 4e2t

3
þ 2041e4t

576
þ 7991e6t

5184
þ 2989e8t

49152
−

6307e10t
16588800

þ 11669e12t
212336640

þ � � �
�
: ðA3Þ

In each infinite series, the coefficients drop off rapidly in magnitude with power of et, indicating likely convergence as
et → 1. As with integer orders, similar singular behavior can be proven to hold to all orders in each type of sum except for
that of MQ01. Nevertheless, we have used high-order expansions to demonstrate apparent convergence for the MQ01 sums
(and the rest) through 20.5PN order. There is nearly identical structure observed again in the angular momentum flux case.

APPENDIX B: FOURIER SUM IDENTITIES

In this section, we briefly provide a couple of the Fourier series identities used in the various 1PN mass quadrupole
derivations. We start with sums of the following form:

X∞
n¼−∞

X2
p;s¼−2

n2rp Iij
ðn;pÞ

Iij
ð−n;sÞ

¼
X∞
n¼−∞

X2
p¼−2

n2rp Iij
ðn;pÞ

Iij
ð−n;−pÞ

; ðB1Þ

where r is an integer, and where on the right-hand side we noted that only terms with s ¼ −p will survive. Then,

X∞
n¼−∞

X
p

n2rp Iij
ðn;pÞ

Iij
ð−n;−pÞ

¼
X∞
n¼−∞

n2r½2 Iij
ðn;2Þ

Iij
ð−n;−2Þ

−2 Iij
ðn;−2Þ

Iij
ð−n;2Þ

�

¼
X∞
n¼1

n2r½2 Iij
ðn;2Þ

Iij
ð−n;−2Þ

−2 Iij
ðn;−2Þ

Iij
ð−n;2Þ

� þ
X−∞
n¼−1

n2r½2 Iij
ðn;2Þ

Iij
ð−n;−2Þ

−2 Iij
ðn;−2Þ

Iij
ð−n;2Þ

�

¼
X∞
n¼1

n2r½2 Iij
ðn;2Þ

Iij
ð−n;−2Þ

−2 Iij
ðn;−2Þ

Iij
ð−n;2Þ

� þ
X∞
n¼1

n2r½2 Iij
ð−n;2Þ

Iij
ðn;−2Þ

−2 Iij
ð−n;−2Þ

Iij
ðn;2Þ

� ¼ 0: ðB2Þ

In the same way, we can prove that

X∞
n¼−∞

X2
p;s¼−2

n2rþ1signðnÞp Iij
ðn;pÞ

Iij
ð−n;sÞ

¼ ϵ3jl
X∞
n¼−∞

X2
p;s¼−2

n2rþ1p Ija
ðn;pÞ

Ila
ð−n;sÞ

¼ ϵ3jl
X∞
n¼−∞

X2
p;s¼−2

n2rsignðnÞp Ija
ðn;pÞ

Ila
ð−n;sÞ

¼ 0;

all vanish and
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X∞
n¼−∞

X2
p;s¼−2

n2rþ1p Iij
ðn;pÞ

Iij
ð−n;sÞ

;

X∞
n¼−∞

X2
p;s¼−2

n2rsignðnÞp Iij
ðn;pÞ

Iij
ð−n;sÞ

;

ϵ3jl
X∞
n¼−∞

X2
p;s¼−2

n2rp Ija
ðn;pÞ

Ila
ð−n;sÞ

;

ϵ3jl
X∞
n¼−∞

X2
p;s¼−2

n2rþ1signðnÞp Ija
ðn;pÞ

Ila
ð−n;sÞ

;

all gain a factor of 2 when expressed in terms of positive-n sums.
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