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Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies
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The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies
represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the
onset of fusion hindrance depends strongly on the “stiffness” of the nuclei in the entrance channel. In this work,
we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion
hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.
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I. INTRODUCTION

During the last 30 years of sub-barrier fusion studies, three
important observations have been made: (1) the discovery of
sub-barrier fusion enhancement associated with couplings to
the intrinsic excitations of the participating nuclei [1–4]; (2)
measurements of the spin-distributions of the fused-compound
nuclei and their theoretical description [5]; (3) the introduction
of the concept of barrier distributions and their subsequent
detailed measurements [6,7]. In these studies it has been
found that new representations of the fusion cross sections,
such as the spin distribution dσ (l)/dl, the moments 〈l〉 and
〈l2〉 of this distribution, as well as the quantity d2(Eσ )/dE2

associated with the distribution of fusion barriers [6], are
essential for exposing pertinent features of the data. In general,
the coupled-channels theory, when using appropriate ion-ion
potentials, is able to describe the fusion cross section for
moderately heavy systems down to an energy just below the
interaction barrier. Recently, it was found that to reproduce
fusion cross sections at above barrier energies it was necessary
to increase the diffuseness parameter to values larger than
those derived from elastic scattering data [8]. This effect is
possibly associated with the opening of the deep-inelastic
reaction channel. For very heavy systems, it is well known that
dynamical effects hinder the formation of a compound nucleus
leading to more complicated exit channels such as deep
inelastic and quasifission processes. The dynamical hindrance
of fusion in such systems has been described as a diffusion
process which may eventually reach the configuration of the
compound nucleus [9].

Recently, a new phenomenon of hindrance in heavy-ion
fusion reactions has been found in medium-heavy systems
[10–13]. This hindrance occurs at extreme sub-barrier energies
whereas the fusion cross section at near barrier energies agrees
fairly well with standard coupled-channels calculations. At
present, the exploration of this hindrance phenomenon is
only in its initial stage; the underlying physics reason is still
unknown. Several colliding systems have been measured down
to very low cross section levels. In addition, many existing
data have been reanalyzed in order to uncover systematic
trends. Thus, it has been found that the nuclear structure of
the fusing nuclei plays a decisive role for the onset energy
for the hindrance in medium-heavy systems [12,13]. In the
present paper, we study the dependence of the hindrance on

the mass, and by extension also on the Q-value of the fusing
systems over a wide range of projectile-target combinations.
In general, the Q-value becomes less negative with decreasing
mass, and even positive for the lightest systems. We note that
the possible occurance of fusion hindrance in the lightest nuclei
is of great astrophysical interest.

II. HINDRANCE IN Q > 0 SYSTEMS

In order to be able to recognize the hindrance in the
rapidly varying sub-barrier fusion cross sections, we have
earlier studied the effect in terms of two representations,
which are not often used in heavy-ion fusion studies. These
are the logarithmic derivative, L(E) = d ln(σE)/dE and
the S-factor, S(E) = σE exp(2πη), where η = Z1Z2e

2/(h̄v)
is the Sommerfeld parameter [10–13]. In Fig. 1 these quantities
are given for the 58Ni + 58Ni and 64Ni + 64Ni systems. The
maximum in the S-factor occurs at the energy, Es , where the
logarithmic derivative L(E) crosses the curve for a constant
S-factor, which is given by Ref. [11]

Lcs(E) = πη/E = 0.495Z1Z2
√

µ/E3/2 (MeV−1), (1)

where µ = A1A2/(A1 + A2) (dashed curves in Fig. 1). We
note that the logarithmic slope of the data, L(E), intersects
Lcs(E) at a substantially larger angle, and therefore the peak
in the S-factor is narrower, for 58Ni + 58Ni than for 64Ni +
64Ni. This is a consequence of the “stiffness” of the former
system. A dependence on the “stiffness” of the fusing nuclei
has been seen in many cases such as 90Zr + 90,92Zr, 89Y (see
Table I column 5) and was discussed in Refs. [10,11].

A negative fusion Q-value requires that there be a maximum
of S(E) [11]. This is a consequence of the fact that the
cross section must vanish at a finite center-of-mass energy
corresponding to the ground state of the fused system, i.e., at
E = −Q. In this limit, L(E) = σ−1dσ/dE + 1/E → +∞,
whereas Lcs(E) remains finite. This means that for such
systems there is always an energy for which the S-factor has a
maximum. This occurs when L(E) becomes equal to πη/E, a
condition that is always fulfilled, since πη/E is finite near and
above E = −Q, whereas L(E) = d ln(σE)/dE approaches
infinity as E → −Q.

For positive Q-value systems, however, a maximum may
not develop, because both L(E) and Lcs(E) become infinite in
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FIG. 1. Comparison of the logarithmic derivative and S-factor
representations of the fusion cross section for the systems, 58Ni + 58Ni
[14] and 64Ni + 64Ni [12]. The dashed curves correspond to a constant
S-factor, whereas the solid curves display results of coupled-channels
calculations. The L(E) data were obtained from a fit to the cross
sections at three consecutive beam energies.

the limit of E = 0. If L(E) does not grow faster than Lcs(E)
with decreasing energy, it may not cross Lcs(E) for any positive
value of E. It is, therefore, of interest to study the systematics of
the sub-barrier fusion hindrance over a wide range of systems,
including some with positive Q-value, as is the case mainly in
fusion between lighter nuclei.

The expected dependence on the Q-value of the system
appears to be borne out by data. The systematics of the
logarithmic derivative L(E) of fusion excitation functions is
illustrated in Fig. 2 for a number of systems ranging from 10B +
10B to 90Zr + 92Zr. The logarithmic derivatives are represented
by open circles for five-point derivatives, whereas the open
squares were obtained by a fit to three consecutive data points.
We observe that L(E) for all systems increases with decreasing
energy. The dashed curves represent the logarithmic slopes
corresponding to a constant S-factor [(Eq. (1)]. In an earlier
study of fusion between “stiff” nuclei [11], which did not
include systems lighter than 16O + 144Sm, we found that
the S-factor maximum systematically occurred at a value of
Ls = 2.33 MeV−1 corresponding to

Eref
s = 0.356(Z1Z2

√
µ)

2
3 (MeV). (2)

Studying the full range of systems, we observe that the
crossing point, Es , for lighter systems, which have increasingly
positive Q-values, indeed occurs at larger values of L(E). For
the lightest systems, the logarithmic derivatives of the data
intersect the constant S-factor curve at a small angle and it
is, therefore, difficult to accurately estimate Es . Consequently,
we have used fits to the data with the expression a + b/E3/2

(solid curves), a and b being adjustable parameters, to obtain
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FIG. 2. Logarithmic derivative representations for a range of
systems. The dashed curves correspond to a constant S-factor,
whereas the dashed-dotted curves display results of coupled-channels
calculations, and the solid curves represent a fit to the data using the
function a + b/E3/2. The range of Es values are indicated by vertical
line segments for heavy systems. For the four lightest systems only
lower limits of Ls can be derived (shown as arrows). The data are
taken from Refs. 10B + 10B [15], 11B + 12C , 12C + 13C, 12C +
16O, 16O + 16O [16], 48Ca + 48Ca [17], 60Ni + 89Y [10], and 90Zr +
92Zr [18].

a less subjective estimate of Es . The results are given in
Table I. Relatively large error bars are, however, assigned to
the resulting Es values and, for the lightest systems, only
upper limits are given, because of the inaccuracy of this
procedure. We also observe that the value of the logarithmic
slope, L(E), obtained by coupled-channels calculations for
heavy systems (dashed-dotted curves in Fig. 2) saturates at
a value of ∼1.5–2.0 MeV−1, much lower than measured.
It has been shown that coupled-channels calculations using
reasonable ion-ion potentials are unable to reproduce the
extreme sub-barrier behavior [11].

III. SYSTEMATICS

The systematics of sub-barrier hindrance is illustrated in
Fig. 3. Here, the derived values of Es and Ls = L(Es) are
plotted as a function of the parameter Z1Z2

√
µ in panels

(a) and (b), respectively. Aside from local deviations of Ls

from the value of 2.33 MeV−1 in medium-heavy systems (of
the order of ∼10%, arising from nuclear structure effects) Ls

clearly starts deviating from this value in lighter systems. The
corresponding Es values also fall below the Eref

s systematics
(solid curve) given in Eq. (2). A purely empirical expression

Lemp
s = 2.33 + 400/(Z1Z2

√
µ) (MeV−1) (3)
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TABLE I. This table lists the parameter Z1Z2
√

µ, the energy Es and the logarithmic derivative, Ls = L(Es), that characterize the maximum
of the S-factor for different systems. Also given are the (dL/dE)exp and (dL/dE)cs values, corresponding to the measured and the constant
S-factor curves at Es . R is the ratio (dL/dE)exp/(dL/dE)cs , Q is the fusion Q-value, and VBass is the height of the Bass barrier [19]. Systems
in categories I and II exhibit a clear maximum in the S(E) curve for “stiff” and “soft” systems, respectively. A maximum has not quite been
reached for systems in category III and IV. Extrapolated values of Es and Ls etc. are listed for category III, and only upper limits for Es (lower
limits of Ls) are included for most category IV systems. Uncertaintiesa are given in parentheses for Es, (dL/dE)exp and R. In cases where
only upper limits for Es can be given the values of (dL/dE)exp, (dL/dE)cs , and R correspond to the crossing points obtained from the fit to
the data. Uncertainties for Ls and (dL/dE)cs can be obtained from the uncertainties on Es with the constant S-factor formula.

System Z1Z2
√

µ Es Ls (dL/dE)exp (dL/dE)cs R Q VBass Ref.
(MeV) (MeV−1) (MeV−2) (MeV−2) (MeV) (MeV)

Category I
90Zr + 90Zr 10733 175(1.8) 2.29 −1.61(0.16) −0.020 81.9(8.2) −157.35 195.3 [18]
90Zr + 89Y 10436 171(1.7) 2.31 −1.12(0.08) −0.020 55.1(4.4) −151.53 190.1 [18]
90Zr + 92Zr 10792 171(1.7) 2.40 −0.84(0.07) −0.021 39.0(3.6) −153.71 184.4 [18]
58Ni + 58Ni 4222 94(0.9) 2.29 −1.64(0.31) −0.036 44.9(8.6) −66.122 102.0 [14]
60Ni + 89Y 6537 123(1.2) 2.38 −0.80(0.19) −0.029 27.5(6.6) −90.497 136.5 [10]

32S + 89Y 3026 72.6(0.7) 2.42 −0.58(0.15) −0.050 11.5(3.0) −36.597 79.8 [20]

Category II
64Ni + 100Mo 7343 121(1.2) 2.74 −0.57(0.09) −0.034 17.0(2.7) −92.287 143.3 [13]
64Ni + 64Ni 4435 87.3(0.9) 2.69 −0.35(0.02) −0.046 7.7(0.5) −48.783 98.1 [12]

Category III
48Ca + 48Ca 1960 48.1(0.9) 2.90 −0.59(0.03) −0.090 6.5(0.5) −2.988 50.1 [17]
28Si + 64Ni 1729 47.3(0.9) 2.57 −0.70(0.12) −0.080 8.7(1.7) −1.783 50.8 [21]
16O + 76Ge 930.5 27.6(0.8) 3.17 −0.36(0.05) −0.172 2.1(0.2) 10.506 32.5 [22]

Category IV
16O + 16O 181.0 7.1(0.8) 4.7(0.7) −1.7(0.2) −1.0 1.7(0.2) 16.542 8.2 [16,23–26]
12C + 16O 125.7 <6.2 >4.0 −3.0 −2.2 1.4 16.756 6.0 [16,27–29]
12C + 14N 106.8 <5.0 >4.7 −4.1 −3.2 1.3 15.074 5.2 [16]
12C + 13C 89.9 <4.0 >5.6 −3.9 −2.7 1.4 16.318 4.3 [16]
11B + 12C 71.9 <3.0 >6.8 −8.8 −7.6 1.2 18.198 3.5 [16]
10B + 10B 55.9 <1.9 >10.6 −26.6 −24.4 1.1 31.144 2.9 [15]

aIn the measurements of excitation functions there are often systematic errors for both yields (cross sections) and energies. It should be noted
that the value of the logarithmic derivative L(E) is little influenced by such systematic errors. The value of Es can often be extracted quite
accurately, but because of the possible systematic uncertainty on the absolute beam energy, the errors on Es were always assigned as 1% or
more.

[dashed curve in Fig. 3(b)] is seen to provide a good
approximation to the experimental data, and it reproduces the
asymptotic value of 2.33 MeV−1 observed earlier for heavy
systems with Z1Z2

√
µ > 2500. The corresponding curve for

E
emp
s obtained from Eqs. (1) and (3) namely,

Eemp
s = (

0.495Z1Z2
√

µ/Lemp
s

)2/3
(MeV), (4)

is seen also to reproduce the experimental values in Fig. 3(a).
These two equations thus represent the overall systematics for
the onset of sub-barrier fusion hindrance. This systematics
appears to be correlated with the parameter Z1Z2

√
µ in the

simple fashion expressed in Eqs. (3) and (4), but it should be
kept in mind that both the Q-value and the fusion (interaction)
barrier vary smoothly, although not quite monotonically, with
this parameter. Hence, it is not possible to ascertain whether
the observed physical effect of fusion hindrance is associated
with either, or with both of these quantities.

Figure 3(c) presents the ratio of the logarithmic slopes,
R = (dL/dE)exp/(dL/dEcs), for the data relative to the

constant S-factor curve. For Z1Z2
√

µ > 2000, this ratio is
substantially larger than unity which means that there is a sharp
intersection point between the two curves and, consequently,
a well-defined, narrow maximum in the S-factor curve. For
Z1Z2

√
µ values below about 2000, the slope ratio approaches

unity which results in a less well defined intercept point. For
the lightest systems, it appears that the logarithmic slope of
the data approaches the value for a constant S-factor and the
sub-barrier hindrance may well disappear.

It should be emphasized that Lcs(E) equals the logarithmic
derivative in a point charge, pure Coulomb penetration model,
as long as η is greater than ∼10, which is always the case
in the energy range studied here. A relative slope R � 1,
therefore, implies that the fusion cross section drops more
rapidly than predicted in a point charge pure Coulomb
interaction model, whereas a relative slope near unity indicates
that the fusion cross section decreases at the predicted
rate.

For orientation, it may also be of interest to relate the
observed values of Es to the fusion (or interaction) barrier and
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FIG. 3. (a) Experimental values (symbols) and limits (horizontal
bars) are shown as a function of Z1Z2

√
µ for Es (panel a),

Ls (panel b), logarithmic slope ratio, R = (dL/dE)exp/(dL/dE)cs
at Es (panel c), ratio Es/VBass (panel d), and E∗ = Es + Q (panel e),
which also shows effective particle emission thresholds (histogram).
Solid lines in panels (a) and (b) correspond to Ls = 2.33 MeV−1,
whereas dashed curves represent empirical trends of the data. Open
diamonds in panel (c) represents the slope ratio at the crossing point
obtained from the fit to the data.

the Q-value of the fusion process, as given in Fig. 3(d) and 3(e)
as a function of the parameter Z1Z2

√
µ. Since the cross section

must vanish at an energy of E = −Q (for Q < 0) or E = 0
(for Q > 0), the larger of these two values represents a lower
bound for Es . On the other hand, one may consider the fusion
barrier, taken here from the Bass prescription [19], VBass, as an
upper bound for Es . In Fig. 3(d), the experimental values of
Es do not appear to have a simple or fixed relation to VBass: the
onset of sub-barrier hindrance, Es , occurs at an energy between
5% and 35% below the fusion barrier. Furthermore, relatively
large fluctuations between systems with similar values of the
parameter Z1Z2

√
µ are present, some of which are clearly

related to the structure of the fusing nuclei [12,13].
A potential cause of fusion hindrance at sub-barrier energies

could be the rarefication of final states accessible in the fused
system, which may be expressed as the ratio of total width
to the spacing of the states, i.e., �tot/D, in the appropriate

energy regime of the compound nucleus. In other words, a
fusion reaction can only proceed if a quantum state with
the appropriate energy, spin and parity is available in the
compound nucleus. The �tot/D value is expected to increase
exponentially with excitation energy and will approach unity
slightly above the particle (n, p, or α) emission threshold
(binding energy+Coulomb barrier). In order to explore this
possibility, we have plotted in Fig. 3(e), the excitation
energy corresponding to Es , i.e., Es + Q (solid symbols) and
compared it to the particle thresholds for the systems listed in
Table I. We note that the experimental values of Es correspond
to excitation energies exceeding the particle thresholds by a
wide margin in all cases, and there does not appear to be
a significant correlation between these two quantities. Even
accounting for the fact that some of the excitation energy
is bound in rotational energy does not alter this conclusion.
Although the simple explanation of rarefication of the final
states in the fusion process is appealing, it does not appear
to account for the observed hindrance phenomenon. It seems
that the behavior seen in Fig. 3(a)–(c) provides indications that
the hindrance phenomenon is closely related to the entrance
channel.

IV. SUMMARY

In conclusion, the systematics of sub-barrier fusion hin-
drance has been studied over a wide range of systems from
10B + 10B to 90Zr + 90Zr. Hindrance appears to be a general
phenomenon, at least for systems with Z1Z2

√
µ >∼ 3000.

For the lightest systems (Z1Z2
√

µ <∼ 200), the logarithmic
slopes of the cross section in the sub-barrier region merge
smoothly into those expected on the basis of a constant S-factor
(i.e., a point charge in a pure Coulomb interaction model).
Simple empirical formulae are given for both the energy
and the logarithmic slope of the cross section at which the
onset of fusion hindrance occurs. These point to an entrance
channel effect as the source of this phenomenon. Until now,
all direct observations of fusion hindrance have been made
in systems with Z1Z2

√
µ >∼ 3000. It would be interesting to

study sub-barrier fusion in more systems in the range 200 <∼
Z1Z2

√
µ <∼ 3000, where the fusion Q-values change from

positive to negative values. If the fusion hindrance does indeed
occur in light systems, such as 12C + 12C, 12C + 16O, and 16O +
16O, it will strongly affect the predicted rates of astrophysical
processes, which are presently obtained by simple empirical
extrapolations from experimental data. As yet, no satisfactory
theoretical explanation for this phenomenon has been put forth.
Simple considerations in terms of relations to the fusion barrier
height or the rarefication of compound states in the fusion
channel do not appear to clarify the situation.
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