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Breakdown of K Selection in 178Hf
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Coulomb activation of the four quasiparticle K� � 16� 178Hf isomer (t1=2 � 31 y) has led to the
measurement of a set of E� matrix elements coupling the isomer band to the ground band. The present
data combined with earlier 178Hf Coulomb excitation data have probed the K components in the wave
functions and revealed the onset and saturation of K mixing in low-K bands, whereas the mixing is
negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei.
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Studies of electromagnetic (EM) excitation and deexci-
tation of high-K isomeric states [1–5] have demonstrated
significant violations of the K-selection rule in axially
symmetric, quadrupole-deformed nuclei. The purpose of
the present Letter is to probe K selection experimentally as
a function of spin by investigating the EM matrix elements
coupling rotational bands in 178Hf. The results indicate that
considerable K mixing occurs at higher spin in the low-K
bands.

The K-selection rule [6] does not allow EM transitions
between two states jIiMiKii and jIfMfKfi of an axially
symmetric nucleus for which the forbiddenness � �
j�Kj � � is greater than zero, where � is the multi-
pole order and �K � Kf � Ki. The degree of hindrance
of a K-forbidden transition can be expressed in terms of
the ‘‘reduced hindrance’’ f� � �B�M��W:u:=B�M���1=�,
where B�M��W:u: is the Weisskopf single-particle esti-
mate of the EM reduced transition probability. The EM
population of high-K states from the ground state is un-
likely, either through highly hindered K-forbidden transi-
tions or through multiple-step transitions of low or zero
forbiddenness. For K-forbidden transitions, f� is expected
to be	 1.

Predictions of the hindrance values of measured
K-isomer decays [7] have been made based on mecha-
nisms including �-barrier tunneling [1,8] and softness to
� deformation [9,10], and it has been suggested that more
than one mechanism may need to be considered [2,11,12].
Allusions to high-K components in the yrast band have
been under consideration for decades [2]. K mixing cal-
culations for high-K isomer states, based on density of
states considerations, have reproduced some of the ob-
served systematics, without discounting the existence of
some mixing in the low-K bands [11] and demonstrated the
need to consider other effects to account for some f� values
06=96(4)=042505(4)$23.00 04250
which are smaller than expected. For instance, �-barrier
tunneling and density of states calculations have both
overpredicted and underpredicted the measured reduced
hindrance values [12].

An earlier 178Hf�136Xe; 136Xe�178Hf Coulomb excitation
experiment [3] populated the K� � 6� and 8� isomer
bands in 178Hf from the ground state band (GSB) and
measured a remarkably high 19� ! 18� yield in the
known K� � 16� isomer band [Fig. 1 and [3,13] ]. A
new activation experiment was devised to measure the
Coulomb excitation of the 16� isomer as a function of
collision energy, in order to confirm the 16� band popula-
tion and to extract model-independent hIK�16 k E2 k IGSBi
matrix elements. A stack of five 1 mg=cm2 natural Ta
targets was irradiated at normal incidence by a 
 10 pnA
178Hf24� 858 MeV beam from ATLAS, providing an ex-
citation function over a centroid bombarding energy range
of 73% (target 5) to 86% (target 1) of the Coulomb barrier
ECoul. [Nuclear effects are small at 86% ECoul [14–16] and
insignificant for Ebeam � 80%ECoul.] Hollow cylindrical
42 mg=cm2 tantalum ‘‘catchers’’ collected scattered Hf
ions over 40� < �lab

scat < 90�, so that  1% of the nuclei
in the 16� state were lost or embedded in downstream
targets. Faraday cup data and scattering data from a silicon
detector determined the absolute activities.

The activities were counted five months later at Yale
University’s Wright Nuclear Structure Laboratory. The
targets were positioned between two four-crystal ‘‘clover’’
Ge detectors. A target foil and its catcher were positioned
between the clovers and counted for times ranging from
16.5 h to 237 h. (Target 2, excited at 83%ECoul was not
measured.) Relative �-ray efficiency data were taken
using a 152Eu source. The absolute efficiencies (
3% at

400 keV) and the detection probabilities of relevant
combinations of � rays were calculated, including angular
5-1 © 2006 The American Physical Society
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FIG. 1. A partial level diagram for 178Hf from the
178Hf�136Xe; 136Xe�178Hf Coulomb excitation experiment. The
converted 13 keV transition from the K� � 16� isomer was not
observed.
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correlation and summing effects. Count rates were ob-
tained from a >1-fold matrix by gating on the 326 keV
6� ! 4� GSB transition and counting the coincident
426 keV 8� ! 6� � rays in the GSB (Fig. 2).

Four measured 16� isomer activities and three prompt
19�K�16 yields of the first experiment [3] were combined in
an effort to find a single consistent set of GSB! 16�

matrix elements. Because only 7 data points were avail-
able, attempts were made to reduce the number of fit
parameters. The spin-dependent mixing (SDM) model
[Eq. (4–95) of [6] ] for K-forbidden EM transitions
failed to reproduce the measured population of the K > 6
bands, because the perturbation breaks down for strong
mixing, predicting unrealistic B�E�� values of hundreds
of W.u. coupling observed higher spin states. Ultimately,
the GSB! K� � 16� matrix elements were adjusted
individually to reproduce the yields, observing the physical
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FIG. 2. Measured 16� isomer activity vs bombarding energy
(points with �16�=�Rutherford) and reproduced activity (line) from
the direct fit of the GSB! K� � 16� matrix elements with
�2 � 3:5.
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constraints such as the measured upper limits on both the
GSB! 16� feeding intensity [
10�4 normalized to the
8�GSB ! 6�GSB yield in the Hf(Xe,Xe)Hf experiment] and
the B�E2; GSB! K� � 16�� values, etc.

There was insufficient sensitivity to determine the ma-
trix elements individually with correlated errors, but a
coherent set of matrix elements with upper limits, several
lower limits, and diagonal (uncorrelated) errors was found
that meets the physical constraints described above.
B�E2;K � 0! K � 16� values ranging from 0.04–
1.4 W.u. (Fig. 3) simultaneously reproduced the measured
activity (Fig. 2) and the 19�K�16 prompt �-ray yields from
the 178Hf�136Xe; 136Xe�178Hf experiment.

A new analysis of the K� � 8� band Coulomb excita-
tion data from the Hf(Xe,Xe)Hf experiment produced a
set of matrix elements populating the 8� bands which
were <5 W:u:, whereas the previous analysis using the
SDM model gave some (less effective) matrix elements
which were as large as hundreds of W.u., which is unreal-
istic. The experimental data were reproduced most accu-
rately, and with the lowest B�E3� values, by two-step
excitations to both 8� bands through the � band in con-
junction with single-step excitations from the GSB, both
using Alaga rule coupling for K � 5 admixtures in the
low-K bands. Other single K admixtures gave similar
results. The B�E3� values coupling the GSB to both 8�

bands are shown in Fig. 3. Strong mixing between the two
8� bands and the small set of yields necessitated coupling
the intrinsic matrix elements connecting the GSB to both
8� bands as a single intrinsic matrix element, giving
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FIG. 3 (color). The three strongest reduced transition proba-
bilities from each GSB level for GSB! K� transitions. GSB!
4�; 6� matrix elements follow the SDM model. GSB! 8�

matrix elements follow the Alaga rule, attenuated at low spin.
Transitions to unobserved high-spin levels (hollow) are extrapo-
lated to clarify the spin dependence of the intrinsic matrix
elements in the models used. Weisskopf estimates (dashed lines):
B�E2 "�W:u: � 0:0297e2 b2. B�E3 "�W:u: � 0:0132e2 b3.
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TABLE I. Values of f� given in the direction Ii ! If for
selected K-forbidden transitions in 178Hf. Weisskopf estimates
B�M� #�W:u: are 0:020e2 b (E1), 6:0� 10�3e2 b2 (E2), 2:0�
10�3e2 b3 (E3), 2:2� 10�4e2 b5 (E5), 1:8�2

N (M1), 0:52�2
N b

(M2), 0:055�2
N b3 (M4). Defined B�M� "�W:u: � �2��

1�B�M� #�W:u:.

Bands Ii If M� � f�

GSB! K� � 4� 2 4 E2 2 35
6 8 E2 2 12

12 14 E2 2 18

GSB! K� � 6� 4 6 E2 4 24
8 10 E2 4 8

12 14 E2 4 5

GSB! K� � 8� 8 8 E1 7 a67(1)
6 8 M2 6 a>130
8 11 E3 5 1.5

10 13 E3 5 1.0
12 15 E3 5 0.9

GSB! K� � 16� 12 16 E4 12 a>9
14 16 E2 14 1.2
16 18 E2 14 1.0
18 20 E2 14 1.0
20 21 E2 14 1.0

K� � 2� ! K� � 6� 4 6 E2 2 14
6 8 E2 2 6
8 10 E2 2 3.9

10 12 E2 2 2.7

K� � 2� ! K� � 8� 5 8 E3 3 6
7 10 E3 3 1.0
9 12 E3 3 0.7

11 14 E3 3 0.8

K� � 16� ! K� � 8� 16 11 E5 3 b165(5)
(Isomer decays) 16 12 M4 4 b72(2)

16 13 E3 5 b66(1)

K� � 14� ! K� � 8� 14 13 M1 5 c90
(Isomer decays) 14 12 E2 4 c33
aCalculated from Reference [18].
bReference [18].
cReference [19].
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h8�jE3jGSBi � 0:37�0:07
�0:01e b3=2. (The errors include cor-

relations.) The fit also yielded the �-band matrix element
h8�jE3j�i � 0:36�0:00

�0:06e b3=2 for both 8� bands.
It was necessary to attenuate the h8� k E3 k GSBi and

h8� k E3 k K� � 2�i matrix elements smoothly with de-
creasing spin by approximately an order of magnitude per
2@ for IGSB < 10@ (Fig. 3) in order to keep the isomer cross
section from growing unreasonably large and to preserve
the 4.0(2) s half life. This resulted in matrix elements
<4 W:u: The strength of the 3�K�2 ! 0�GSB transition in
178Hf has been measured at 4 W.u. [17], indicating that the
maximum values here are reasonable. Since the calculated
yields are not extremely sensitive to reduction of the few
matrix elements with B�E3� 
 4 W:u:, additional mea-
surements might show that the largest matrix elements
are actually smaller.

In the Xe beam experiment, it can be argued that
the isomer bands could be populated through transfer re-
actions involving the 177;179Hf contaminants in the tar-
get (4% and 3%, respectively). An upper limit on
178Hf�136Xe; 135Xe�179Hf transfer reactions was set using
the only observed possible 135Xe transition (288 keV) in
coincidence with a double gate on 178Hf GSB transitions.
In the safe Coulomb excitation region, 25� < �scat < 52�,
where significant populations of the K� � 6�isom; 8

�
isom

bands are already seen, an upper limit on
177Hf�136Xe; 135Xe�178Hf transfer was set at 10�5 of the
178Hf GSB excitation. Assuming that the cross sections
for 177Hf�136Xe; 135Xe�178Hf (Q � �0:4 MeV) and
178Hf�136Xe; 135Xe�179Hf (Q � �1:9 MeV) are similar,
the upper limit on 177Hf�136Xe; 135Xe�178Hf reactions in
the 4% 177Hf impurity is � 1

10 of the observed 16� isomer
band yield in the unsafe region 52� < �scat < 78�.
Moreover, transfer must be divided among several bands,
and transfer to a 4 quasiparticle state (e.g., the 16�isom band)
is very unlikely, since breaking a pair of nucleons is a
higher-order effect. In the 178Hf beam experiment 16�

isomer activation was observable at 73% ECoul, consistent
with the Coulomb excitation function (Fig. 2).

The systematic decrease with increasing spin of the
hindrance of K-forbidden transitions is apparent from
Fig. 3 and Table I. For each of the high-K isomer bands
observed, reproduction of the measured yields requires
that the interband B�E�� values increase with increas-
ing spin and saturate at 
 1 W:u: for I * 12 in the GSB
and the � band. This saturation point represents the
maximum mixing of K. For I � 12, reduced hindrance
values of K-forbidden transitions from low-K to high-K
bands are as low as f� � 1, showing that the K-selection
rule has little predictive power at high spin, i.e., highly
K-forbidden transitions have similar strength to allowed
interband transitions. A notable exception is the unob-

served 12�GSB !
E4

16�K�16 excitation whose hindrance
(Table I) suggests that the K � 12 admixture in the GSB

is insignificant for I < 14. The 8�GSB !
E3

8�K�8 (f� > 9) and
04250
6�GSB !
E3

8�K�8 (f� > 70) transitions [20] suggest that the
Alaga rule may not describe well all of the K-forbidden
couplings.

Band interactions are reflected in the measured moments
of inertia by an increase in slope of the moment of inertia
I�!�, seen at I 
 6 and I 
 10 in the � and GS bands,
respectively (Fig. 4), while the B�E�� values saturate at
�1 W:u: as low as I 
 8 and I 
 10 for transitions from
the � band and the GSB, respectively (Fig. 3), in order to
reproduce the measured � ray yields in the K� �
4�; 6�; 8�, and 16� bands. Moreover, Coriolis alignment
is expected to happen at much lower spin in low-K bands
than in high-K bands [21], which are strongly deformation
5-3
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coupled. The moments of inertia of the high-K bands are
relatively constant in slope, with the exception of the 6�

band at I 
 12, suggesting that the high-K bands are not K
mixed to the same degree as the low-K bands. The 16�

band has a remarkably constant moment of inertia [13] up
to I � 22. In contrast with the transitions from the K �
0; 2 bands to the high-K isomer bands, the 16�isom ! K� �
8� and 14�isom ! K� � 8� � decays are strongly hindered
with 33 � f� � 165�5� in all of the five known branches,
showing that the onset of significant high-K admixtures in
the 8� band must occur at I > 13, if at all, whereas less
hindered f� � 1 transitions from the � and GS bands are
required to reproduce the present measured yields. That is,
the strongly hindered decays of the 16� and 14� isomers to
the 11� � I�K�8 � 13� states are consistent withK being a
good quantum number for the high-K bands, suggesting
that mixing in the low-K bands is primarily responsible for
the K-selection violations and that the EM matrix elements
coupling to the high-K bands are sensitive probes of the K
distributions in the low-K bands. Coulomb excitation of a
band with projection K, assuming that it is reasonably
pure, would require admixturesK0 in the low-K (nominally
Ki) bands of K � � � K0 � K � �. Hence, the mixing
fractions of the 2 � K0 � 6 components are depicted in
Fig. 3 as a function of spin by the B�E2;Ki ! K � 4�
values, the 4 � K0 � 8 components by the B�E2;Ki !
K � 6� values, etc.

This first qualitative measurement of the K distribution
with respect to nuclear spin in low-K bands has revealed
the rapid breakdown of the goodness of the K quantum
number as the low-K bands are excited to higher rotational
frequencies. The rapid increase in the interband E� matrix
elements coincides with the rotational alignment of low-K
bands which has a noticeable effect on the moment of
inertia above the I 
 10 levels of the � band and the
04250
GSB. Higher-K components are admixed in the nominally
low-K bands with increasing spin, until the reduced tran-
sition probabilities saturate for I * 12@ near �1 W:u:
signifying the total breakdown of the K quantum number.
The present work, initially focused on explaining the
K-forbidden Coulomb excitation of the 178Hf isomers,
has reached a conclusion of broader significance: for the
first time, the loss of purity of K with increasing angular
momentum in nuclear states has been revealed. The K
mixing is largest in low-K bands, while the high-K bands
remain very pure, even at the same spin (I) levels where the
low-K bands are completely mixed.
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