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Radius of curvature of the S factor maximum in sub-barrier fusion hindrance
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A maximum of the S(E) factor is evidence for an onset of sub-barrier fusion hindrance and it can be well
described by a radius-of-curvature expression near the maximum. The systematics of this radius of curvature has
been studied over a wide range of projectile-target combinations. It follows a tentative general trend as a function
of the parameter ζ = Z1Z2

√
µ, and is strongly affected by effects associated with the nuclear structure of the

nuclei in the entrance channel. It also explains the reason why the S factor maximum is not easily recognized
visually for lighter, astrophysically interesting fusion systems.
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It was recently been demonstrated that the appearance of
sub-barrier fusion hindrance in heavy-ion fusion reactions is
associated with a maximum in the astrophysical S factor [1].
Here, the S factor is given as S = σEe2πη, where η is the
Sommerfeld parameter, η = Z1Z2e

2/(h̄v), v is the relative
velocity of the two heavy ions and Z1 and Z2 are their
respective atomic numbers, σ is the fusion cross section and E

is the center of mass energy. The energy corresponding to the
maximum is denoted Es and the corresponding logarithmic
derivative of the cross section is denoted Ls . Since

dS/dE = S(E)[L(E) − πη/E] (1)

is zero at E = Es , the logarithmic derivative for a function of
constant S factor is [1]

Lcs(E) = πη

E
, and Ls = Lcs(Es). (2)

Furthermore, the radius of curvature, ρ, of ln S at the maximum
is given by
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at E = Es, (3)

i.e., ρ is determined by the difference of derivatives from the
logarithmic derivative of the experimental cross section, L(E),
and that corresponding to a constant S factor, Lcs(E).

In this work we explore the systematics of the radius
of curvature at the S factor maximum. Previously, we have
found that Es follows an overall systematics over a wide
range of projectile-target combinations as a function of the
parameter Z1Z2

√
µ [2–4], where µ is the reduced mass

number. In addition, Es appears to depend sensitively on the
nuclear structure of the interacting nuclei. As demonstrated
in Fig. 1, the logarithmic derivative, L(E), near Es is much
steeper for the stiff system 58Ni + 58Ni, than for the open-shell
system 64Ni + 64Ni [4]. Correspondingly, the S factor curve
for 58Ni + 58Ni is much narrower than for 64Ni + 64Ni, see
Fig. 1(b). The solid curves in Fig. 1(b) represent second-order
Taylor expansions of ln S(E) around the S factor maximum
such that

S = S0e
−(E−Es )2/2ρ, (4)

where S0 is the value of the S factor at its maximum.

Following the approach of Ref. [4], we have examined the
radius of curvature of the S factor maximum for a number of
systems for which the fusion cross sections have been studied
down to small cross sections. The systems are divided into
four categories depending on their “stiffness” and whether
an S factor maximum was observed or an extrapolation was
required to project the location of the maximum (see Table I).
The radius of curvature is in all cases derived from the
difference in logarithmic derivatives between the data and the
constant S factor expression according to Eq. (3). Categories
I and II refer to systems for which an S factor maximum
has been observed in either “stiff” or “soft” systems, whereas
extrapolation methods have been used to obtain the slopes of
the logarithmic derivatives near Es for category III systems.
For light (category IV) systems, the slope was determined by
fitting a function of the form L(E) = A0 + B0/E

3/2 to the
data, see Refs. [4,27].

In order to understand the general trend of ρ, absolute values
of the logarithmic derivatives dLcs(E)/dE and dL(E)/dE

at the energy Es and the corresponding ratio of these two
quantities,

RR = dL(E)/dE

dLcs(E)/dE
, (5)

are shown in Figs. 2(a), 2(c), and 2(b) as a function of
the parameter ζ = Z1Z2

√
µ, respectively. Aside from the

local fluctuations, in general, |L′
cs(Es)| and RR are changing

monotonically with ζ , i.e., the overall mass of the fusing
system. The systematics of the energy Es , the slope ratio RR
and the logarithmic derivative Ls at Es have been discussed in
Ref. [4].

By using the definition of dLcs(E)/dE (Eq. (2)) and the
emprical equation of Ls [4] (see1):

Ls = 2.33 + 500/ζ (MeV−2), (6)

the absolute value of dLcs(E)/dE at Es can be obtained. This
is shown by the solid curve in Fig. 2(a), which describes the
experimental values quite well. In this paper, an empirical solid

1Because more data are included and some of the uncertainties have
been reduced, the value of the parameter in Eq. (3) of Ref. [4] has
been changed to 500.
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TABLE I. This table lists the values of the quantities ζ = Z1Z2
√

µ, Es, (dL/dE)exp, (dL/dE)cs and the radius-of-curvatures, ρ obtained
from the two slopes at Es . Q is the fusion Q-value. Systems in categories I and II exhibit a clear maximum in the S(E) curve for “stiff” and “soft”
systems, respectively. A maximum has not quite been reached for systems in category III; extrapolated values of Es, (dL/dE)exp and (dL/dE)cs
are listed. For category IV, a least squares fit of L(E) = A0 + B0/E

3/2 is used to determine the values Es and others. Uncertainties are included
in parentheses. In general the Q-value is positive at small value of the parameter Z1Z2

√
µ and decreases (though not monotonically) to large

negative values for large ζ . (In order to keep the table to a manageable size, some systems studied previously with the extrapolation method,
have not been included. It was verified that the removal of these systems does not affect the fits and conclusions of the present work.)

System Z1Z2
√

µ Es (dL/dE)exp (dL/dE)cs ρ Q Ref.
(MeV) (MeV−2) (MeV−2) (MeV2) (MeV)

Category I
90Zr + 90Zr 10733 175.2(1.8) −1.61(0.16) −0.020 0.63(0.06) −157.35 [6]
90Zr + 89Y 10436 170.8(1.7) −1.12(0.08) −0.020 0.91(0.07) −151.53 [6]
90Zr + 92Zr 10792 170.4(1.7) −0.82(0.07) −0.021 1.25(0.11) −153.71 [6]
58Ni + 58Ni 4222 94.1(0.9) −1.64(0.31) −0.036 0.62(0.12) −66.122 [5]
60Ni + 89Y 6537 122.6(1.2) −0.49(0.07) −0.029 2.16(0.34) −90.497 [8]
32S + 89Y 3026 72.6(0.7) −0.58(0.15) −0.050 1.90(0.55) −36.597 [9]

Category II
64Ni + 100Mo 7343 120.6(1.2) −0.58(0.09) −0.034 1.84(0.31) −92.287 [3]
64Ni + 64Ni 4435 87.5(0.9) −0.35(0.03) −0.046 3.26(0.34) −48.783 [2]
28Si + 64Ni 1729 45.6(0.5) −0.40(0.03) −0.091 3.29(0.27) −1.787 [7]

Category III
90Zr + 96Zr 10899 165.3(4.9) −0.37(0.05) −0.023 2.8(0.4) −62.03 [6]
58Ni + 74Ge 5106 97.4(2.9) −0.56(0.18) −0.041 1.9(0.7) −62.03 [10]
64Ni + 74Ge 5249 96.4(2.9) −0.49(0.08) −0.043 2.2(0.4) −58.48 [10]
58Ni + 60Ni 4258 92.0(1.8) −0.67(0.07) −0.039 1.59(0.17) −62.69 [11]
58Ni + 64Ni 4325 89.4(1.8) −0.79(0.30) −0.043 1.3(0.5) −53.04 [10]
36S + 90Zr 3244 74.1(1.1) −0.72(0.13) −0.051 1.49(0.29) −36.76 [12]
36S + 96Zr 3273 72.1(1.1) −0.87(0.05) −0.055 1.23(0.07) −27.67 [12]
28Si + 58Ni 1703 49.5(0.7) −0.42(0.06) −0.073 2.9(0.5) −17.16 [13]
28Si + 62Ni 1721 48.5(0.7) −0.74(0.29) −0.078 1.5(0.7) −8.07 [13]
30Si + 58Ni 1742 48.0(1.0) −0.42(0.09) −0.081 3.0(0.8) −11.96 [13]
30Si + 62Ni 1762 45.9(0.9) −0.31(0.08) −0.091 4.6(1.7) −4.37 [13]
30Si + 64Ni 1771 47.3(0.9) −0.45(0.12) −0.086 2.8(0.9) −3.12 [13]
32S + 58Ni 2034 56.0(0.8) −0.42(0.08) −0.064 2.8(0.6) −20.94 [13]
32S + 64Ni 2068 51.6(1.1) −0.35(0.10) −0.080 3.8(1.5) −7.04 [13]
34S + 58Ni 2073 54.6(0.8) −0.38(0.11) −0.070 3.2(1.1) −15.75 [13]
34S + 64Ni 2110 53.4(0.8) −0.51(0.13) −0.075 2.3(0.7) −8.81 [13]
36S + 58Ni 2110 51.4(1.0) −0.28(0.07) −0.083 5.0(1.8) −8.32 [13]
36S + 64Ni 2149 53.4(1.1) −0.45(0.10) −0.077 2.7(0.7) −8.58 [13]
48Ca + 48Ca 1960 48.2(1.0) −0.60(0.03) −0.090 1.96(0.12) −2.988 [14]
16O + 76Ge 930.5 27.6(0.8) −0.35(0.03) −0.172 5.5(1.0) 10.506 [15]

Category IV
16O + 16O 181.0 6.79(0.27) −2.04(0.20) −1.12 1.09(0.27) 16.542 [16–20]
12C + 16O 125.7 4.39(0.18) −3.04(0.10) −2.30 1.35(0.42) 16.756 [16,21–23]
12C + 14N 106.8 3.49(0.14) −4.27(0.45) −3.49 1.3(1.0) 15.074 [16]
12C + 13C 89.9 3.45(0.17) −4.02(0.15) −3.02 1.0(0.4) 16.318 [16]
12C + 12C 88.2 3.68(0.15) −3.05(0.07) −2.51 1.9(0.9) 13.934 [24–26]
11B + 12C 71.9 2.12(0.13) −9.4(0.3) −8.12 0.8(0.7) 18.198 [16]
10B + 10B 55.9 1.47(0.10) −18.(13.) −15.9 0.5(0.4) 31.144 [16]

curve RR is given in Fig. 2(b) as (see2)

RR = 1.10 + 1.70 × 10−3ζ + 9.48 × 10−8ζ 2. (7)

2Because more data points are included, a new, better fit with a
slightly different function as compared to Ref. [4] in Eq. (7) was
chosen.

The absolute value of L′(Es) is then given by Eq. (5) and ρ

can be obtained with Eqs. (2), (6), and (7) since

ρ = 1

(RR − 1)|L′
cs(Es)| . (8)

The dashed curves in Figs. 2(c) and 3(a) are cal-
culated by Eqs. (5) and (8), respectively. They also
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(a)

(b)

FIG. 1. (Color online) Logarithmic derivative representations (a)
and S factor representations (b) for the systems 58Ni + 58Ni [5]
and 64Ni + 64Ni [2], respectively. Solid curves are obtained with the
description of the radius-of-curvature given by Eq. (4), see text for
details. The adjustable parameter η0 serves to put the two systems on
a similar scale.

(a)

(b)

(c)

FIG. 2. Systematics of the absolute values of the logarithmic
derivatives dLcs(E)/dE (a), the ratio RR = dL(E)/dE

dLcs (E)/dE
(b) and the

dL(E)/dE (c) at energy Es , respectively. The solid curves in (a)
and (b) are empirical fitting functions. The dashed curve in (c) was
obtained from the curves in (a) and (b).

(a)

(b)

(c)

FIG. 3. (Color online) (a) Systematics of the radius-of-curvature
of the S factor maximum. The absolute value of the radius-of-
curvature, ρ, is plotted versus Z1Z2µ

1/2. The vertical bands highlight
the location of the Ni + Ni and Zr + Zr,Y systems. (b) Same as (a)
but the ordinate has been divided by the value Es . (c) S(E) factor for
the system 12C + 13C. The solid curve was obtained from Eq. (4). See
text for details.

reproduce the general trends of these two functions rather
well.

With the observed monotonic dependence of |L′
cs(Es)| and

RR on the parameter ζ , the desired quantities, |L′
cs(Es)| and

ρ show a minimum and a maximum as a function of ζ

respectively, as illustrated in Figs. 2(c) and 3(a).
Thus a maximum of ρ appears at around ζ = 1000, near the

data point for the system 16O + 76Ge, i.e., in a region where
the data were mostly obtained by extrapolation. It would,
therefore, be of interest to perform more detailed experimental
studies of some systems with the parameter ζ in the range,
ζ � 1000, to determine whether a maximum value of ρ occurs
in this region.

In Fig. 3(b) we show the same data, but normalized to the
energy Es . Here, the dashed curve was obtained by using the
systematics values of Es,Es = (0.495ζ/Ls)2/3 (Eqs. (2) and
(6), see [4]). For the light fusion systems, from 10B + 10B to
16O + 16O, the value of ρ is rather large relative to its centroid
value Es . Futhermore the ratio ρ/Es decreases by more than
one order of magnitude, from about 0.35 to about 0.015 for
heavier systems. If this ratio is large, the S factor maximum
is not easily recognized visually. Thus, the determination of
the sub-barrier hindrance effect in light systems represents a
significant experimental challenge. A S factor representation
is shown in Fig. 3(c) for the system 12C + 13C. The solid curve
is obtained with the description of the radius of curvature given
by Eq. (4). In this case it is difficult to recognize the S factor
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maximum. This is an important result with consequences for
studying the extrapolation of the S factors to very low energies
for reactions of astrophysical interest [27].

Aside from the general trend discussed above and displayed
in Fig. 3(a), large fluctuations of ρ around the average trend,
represented by the dashed curve, are seen for systems of
colliding nuclei of the same element, but with different masses.
In particular, the systems highlighted by vertical bands,
namely 58Ni + 58Ni, 58Ni + 60Ni, 58Ni + 64Ni, 64Ni + 64Ni
and 90Zr + 90Zr, 90Zr + 89Y, 90Zr + 92Zr, 90Zr + 96Zr, show
large deviations from the overall general trend. These systems
range from “stiff” to “soft” colliding nuclei. These deviations
emphasize a strong dependence of ρ on nuclear structure.
To quantify this effect, the “softness” of a system has been
expressed with a quantity, Nph, defined as the proximity to
closed proton or neutron shells with the number of “valence
nucleons”; i.e., Nph is the sum of particles and holes outside
the nearest closed shells [3]. Plots of ρ versus Nph are given in
Fig. 4 for the systems Ni + Ni and Zr + Zr, Y. It is interesting
to note that ρ is nearly proportional to the value of Nph in each
plot of Fig. 4 (dashed lines are the linear fits). Therefore, the
radius of curvature of the S factor maximum appears to give
another good measure of the “softness,” i.e., of the impact of
nuclear structure effects on the fusing systems.

Recently, the sub-barrier fusion hindrance (S factor max-
imum) has been reproduced well for the fusion reactions
64Ni + 64Ni and 28Si + 64Ni by a new calculation, which
includes explicitly the saturation property of nuclear matter
in the nuclear potential [7,28]. It would be very interesting to
see whether this new theoretical approach could be developed
further to study the systematics observed in the present paper
and in Ref. [4].

In conclusion, the systematics of the radius of curvature
of the S factor maximum has been studied in a number of

(a) (b)

FIG. 4. Plots of ρ versus Nph for reactions of Ni + Ni and of
Zr + Zr, Y, respectively, where Nph is the total number of “valence
nucleons” outside closed shells in the entrance channel. Dashed lines
are linear fittings.

systems where this behavior has been directly observed or
inferred from an extrapolation of existing data. The radius
of curvature is found to follow a tentative systematic trend
as a function of the parameter ζ = Z1Z2

√
µ, representing

the overall mass of the fusing system. However, as observed
previously in the systematics of the fusion hindrance onset,
the general trend can be strongly affected by effects associated
with the structure of the nuclei involved [4]. It also exhibits
the pattern that the S factor maximum is not easily recognized
for lighter fusion systems of astrophysical interest [27].
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