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Abstract— The dynamics of genome regions are associated
to the functional or dysfunctional behaviour of the human cell.
In order to study these dynamics it is necessary to remove
perturbations coming from movement and deformation of the
nucleus, i.e. the container holding the genome. In literature
models have been proposed to cope with the transformations
corresponding to nuclear dynamics of healthy cells. However
for pathological cells, the nucleus deforms in an apparently
random way, making the use of such models a non trivial task.
In this paper we propose a mapping of the cell nucleus which is
based on the matching of the nuclear contours. The proposed
method does not put constraints on the possible shapes nor on
the possible deformations, making this method suited for the
analysis of pathological nuclei.

I. INTRODUCTION

The internal organisation of the human cell nucleus in
space and time is essential for its function. Within the limited
space of the nucleus the entire genome as well as many
proteins are accommodated in a non-random manner. Of
particular interest are telomeres, the ends of chromosomes,
which show a spatiotemporal behaviour that is functionally
relevant to the cell and organism. Telomeres are arranged
in distinct patterns and display mobility regimes at different
time scales. Diverse biological processes such as telomere
maintenance, cell ageing and apoptosis, i.e. cell death, are
associated with specific telomere movements [1]. Likewise,
altered telomere dynamics and by expansion nuclear protein
dynamics are associated with specific diseases such as
laminopathies and cancer [2], [3]. Therefore, quantitative
studies of nuclear dynamics may help reveal novel mech-
anisms of dysfunction and disease.

However, analyses of dynamics in time-lapse microscopic
image data sets are hampered by global cell motion and
deformation. This superimposes a motion on the submicron
dynamics that needs to be removed. Gladilin et al. have pro-
posed a mapping based on a spherical model [4]. This model
can cover for most of the cellular and nuclear displacements
(translation, rotation and small affine transformations) that
occur in normal cells during interphase. However, during
cell division and in certain pathological conditions, such
as laminopathies, the nuclear shape alters dramatically [3].
In Fig. 1 an example of such a pathological nucleus is
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shown. As can be seen, a spherical model is no longer
valid. Hence a method is required that allows reliable motion
measurements of subnuclear features in a deformable volume
without imposing any shape constraints.

In this paper we propose a new mapping technique which
maps two nuclei between consecutive time points without
imposing any constraint such as a spherical shape. Instead
we will extract the contours out of segmented micrographs.
These contours will be matched in such a way that we
retrieve a point to point correspondence. Based on this
matching a mapping of the full nucleus is calculated using
polyharmonic splines. This mapping predicts the location of
a telomere based on the deformation of the nucleus, this
predicted location can the be compared to the real location
of the telomere in order to study telomere dynamics.

This paper is arranged as follows: in the next section
we describe a simple segmentation technique, which can
be used to extract the nucleus out of a micrograph. Section
III provides a detailed description of the contour matching
algorithm. The interpolation using polyharmonic splines is
described in section IV. In section V the validation results
are explained and discussed. Section VI recapitulates and
concludes.

II. SEGMENTATION

Since the proposed method estimates the topological
changes based on the deformation of the nucleus, we first
need to segment the nucleus. In this paper we start from
fluorescent 3D micrographs captured by a confocal micro-
scope. We project the 3D micrograph on a 2D image. This
is done by taking the average in the z direction. Depending
on the microscope system it is of course possible to start
immediately from 2D micrographs such as e.g. widefield
images. In order to minimize the influence of noise, the
2D image is filtered using a Gaussian kernel. The resulting
image is then thresholded using Otsu’s thresholding [5]. This
method calculates a threshold in order to minimize the vari-
ance of the foreground and the variance of the background.
Due to remaining noise, not all desired pixels are considered
to be foreground, i.e. part of the nucleus, whereas some
background pixels are considered to be foreground. This
problem is solved by using a morphological opening and
closing. Finally the border delineating the segment is filtered
with a Gaussian kernel, i.e. we assume the nucleus has a
smooth surface. This segmentation algorithm was developed
for a specific dataset which consists of isolated cell nuclei
which have good contrast compared to the background. This
of course depends on the application and the used fluorescent
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Fig. 1. An example of a fluorescent micrograph of a pathological nucleus.

dyes. The method for nuclei mapping proposed in this paper
can also be used with more complex images, but would
then require a more suitable segmentation technique such
as described in [6], [7].

III. CONTOUR WARPING

In this section contours delineating the nucleus in subse-
quent frames will be matched, i.e. points belonging to the
contour in a frame will be linked to their counterpoints on the
contour in the next frame. In order to do so, we calculate a
signature out of the contour, and then based on this signature
the matching is done.

A. Contour Signatures

Consider the contour c(t) = (x(t),y(t)) with t ∈ N and
c(N +1) = c(1), where N is the number of samples . From
this contour, different signatures can be calculated:
• a complex signature:

s(t) = x(t) + iy(t)

where i2 = −1
• a centroid distance signature:

s(t) =
√
(x(t)− xc)2 + (y(t)− yc)2

where (xc, yc) is the centroid of c
• a direction signature, i.e. direction of the tangent line at

point t:

s(t) = cos−1
(

y(t+ 1)− y(t− 1)

‖c(t+ 1)− c(t− 1)‖

)
• a curvature signature, i.e.

s(t) =
∣∣∣∂2c(t)
∂t2

∣∣∣
The effect of these different signatures on the proposed
framework is tested and described in section V. For a more
detailed overview of signature functions we refer to [8], [9].

B. Signature Matching

Note that each point on a signature exactly corresponds
to one point on the curve. So matching contour points
is equivalent to matching points on a signature. For the
matching of two signatures, we propose a technique based
on Dynamic Time Warping or dog-man distance. The DTW

Samples Samples

Fig. 2. An example of matching two curves. On the left, a naive approach
where the matching is done using the parameterization. On the right, the
matching with the minimal cumulative difference between the samples is
shown. It is this matching which will correspond with the warping used for
DTW.

distance between two signals is analogous of a man and a
dog each walking on a different path, i.e. the signals. The
dog can walk with a different speed by giving it a longer
leash. Fig. 2 shows on the left two paths, where both paths
are scanned at the same speed, so man and dog are walking
with the same speed. On the right of the figure, different
speeds result in a better match, i.e. the cumulative difference
between the samples is less. The dog-man distance is then the
shortest possible cumulative difference between both paths,
by changing the scanning speed, i.e.

dDTW (s1(.), s2(.)) = min
γ

∑
t

‖s1(t)− s2(γ(t))‖ (1)

where γ(.) is a warping function, i.e. any monotonic function
mapping [1, N ] on [1, N ]. This can be calculated using
dynamic programming:

D(i, j) = d(i, j)+

min (αD(i, j − 1), αD(i− 1, j), D(i− 1, j − 1)) (2)

with d(i, j) = ‖s1(i)− s2(j)‖ and α a real number greater
than or equal to one. If α = 1, all warping functions
are considered equally good. In order to penalize warping
functions where to many points of one signal are matched
to a single point in the other signal, one can set α > 1.

The distance itself is of little importance to us, but the
warping function resulting in the minimal distance is, i.e.
γ(.). This warping function gives us the correspondence
between points from both signatures. Based on the warping
function the signatures will be resampled in such a way that
there is a unique point to point correspondence. Consider
the left case of Fig. 3, where one point, s(t) of the signature
is matched with multiple points in the other signature. First
define s(t − 1) and s(t + 1) the last predecessor and first
successor of s(t) with a unique point-to-point correspon-
dence, e.g. s′(t−1) and s′(t+1) respectively. The point s(t)
will be replaced by the number of points between s(t − 1)
and s(t + 1): for each point s′(i) between s′(t − 1) and
s′(t+1) a new sample is added on s(.). These new samples
are calculated in such a way that

al(s′(.), t− 1, i)

al(s′(.), t− 1, t+ 1)
=

al(s(.), t− 1, i)

al(s(.), t− 1, t+ 1)
(3)

where al(k(.), l,m) is the arc length from point l to m over
the curve k(.). The result of this resampling is shown on the
right of Fig. 3.
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Fig. 3. An example of resampling the curves based on the warping function
of DTW

IV. CELL MAPPING

Based on the previous contour matching we get for each
point on the contour at frame t a unique point on the contour
at frame (t+1). For the mapping of points not on the contour,
p = (x, y), we propose interpolation with polyharmonic
splines:

pt+1 = a+ axx+ ayy +

N∑
j=1

wjφ
(
d(pt − c(j)

)
(4)

where a, ax, ay and wj are a set of weighting coefficients, d
is a distance function and φ(.) is a radial basis function, i.e.

φ(r) =

{
rk, if k is odd
rk ln r, if k is even

(5)

where k is the degree of the basis functions. Note that k = 2
is a special case since (4) then results in the Thin Plate Spline
[10]. However the distance function used in (4) shouldn’t
be the Euclidean distance as is done by Bookstein [10],
since the Euclidean distance does not take the topology of
the biological object into account. On the left of Fig. 4 an
example of this problem is shown. The Euclidean distance
between point A and B is the length of the dotted line. This
is unaffected if the cell wall, i.e. the full blue line, intersects
the dashed line. By ignoring the topology we overestimate
points which might be close in Euclidean distance, but which
can be far away in the nucleus topology. Instead we propose
the use of the geodesic distance: the length of the shortest
path not passing the cell wall is considered to be the geodesic
distance between A and B. This is visualized on the right of
Fig. 4.

The weighting coefficients in (4) are calculated in such a
way that:
• points on the contour are mapped to the corresponding

points according to the contour matching
• the weighting vector w is orthogonal to x and y, i.e.

N∑
i=1

wi,xxi =

N∑
i=1

wi,yyi = 0 (6)

• the weighting coefficients sum to zero
These weighting coefficients can be found by solving a
linear system of equations, which can be done in a fast
way as proposed by Beatson et al. [11]. For a more detailed
discussion on polyharmonic splines and the influence of the
different radial basis functions we refer to [12]. For this
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Fig. 4. An example of distances between point A and B, i.e. the length
of the dotted line. The blue line represents a nucleus wall. In the left the
Euclidean distance is visualised, where on the right the geodesic distance
is visualised

application we propose to add an extra constraint to the
splines: the displacement should be maximal at the contour
of the nucleus, i.e. the derivative of the contour normal to the
contour equals zero. Tests showed that without this constraint
the displacement within the cell is strongly overestimated for
non-convex nuclei. To achieve this constraint we add for each
point on the contour an extra point on the normal of the curve
at a short distance outside the nucleus.

V. RESULTS

Three data sequences were used for the validation of the
proposed method. The datasets contain an isolated fibroblast
cell nucleus of a patient with a homozygous nonsense mu-
tation in lamin A/C gene. These are cells where the nucleus
can have big deformations [3]. The datasets were captured
using confocal controlled light-exposure microscopy [13],
resulting in images of 288 × 288 pixels. These cells were
transfected with a construct expressing a fluorescent fusion
protein targeting the telomeres (TRF2-mCitrine). Non-bound
protein diffuses freely throughout the nucleus and allows for
delineating the boundaries for contour identification. For the
validation datasets the telomeres were manually tracked by
the author using MTrackJ. This annotation is done in 27
frames from three different cells, resulting in the detection
of 272 telomeres. The centroids of these tracked telomeres
will serve as ground truth for the validation. Note that
the telomeres themselves might move locally, but this a
small local motion, e.g. 1 to 2 pixels, which is neglectable
compared to the big motion introduced by deforming nuclei.

In Fig. 5 an example of the mapping is shown. The red
and blue curves are the contours of a nucleus in subsequent
time frames. The red and blue dots are the centroids of
the telomeres corresponding to respectively the red and
blue contours. The green dots are the location of the ”red”
telomeres mapped with the proposed technique using the
complex signature and a radial basis of degree 1. So the
green dots are the prediction of the location of the blue dots.
As can be seen, the mapping closely approximates the real
telomeres’ location in the next time frame.

Tests have been done for different signatures and for
different radial basis functions used by the mapping. These
test where done using 100 samples for the signatures, tests
showed that more samples didn’t result in better results. In
Table I the results are shown for the full test set. The first row
of Table I the used basis function is shown. The first column
shows the signature which is used. In this column RAW
means the non processed data, i.e. the centroid coordinates



method 1st degree 2nd degree 3rd degree 4th degree
av. err. σ2 ICP err. av. err. σ2 ICP err. av. err. σ2 ICP err. av. err. σ2 ICP err.

RAW 7.90 4.88 47 7.90 4.88 47 7.90 4.88 47 7.90 4.88 47
Complex 6.23 3.52 31 6.96 3.80 41 6.50 3.52 30 6.52 3.64 29
Centroid distance 5.75 3.99 27 6.30 4.01 36 6.02 3.96 33 6.08 4.19 27
Direction 4.93 2.99 8 5.55 3.06 13 5.45 3.31 14 5.52 3.63 19
Curvature 5.24 3.16 10 5.68 3.38 14 6.10 4.73 20 5.56 3.51 14

TABLE I
ERROR MEASUREMENTS OF THE PROPOSED METHODS USING DIFFERENT SIGNATURES AND DIFFERENT RADIAL BASIS

Fig. 5. An example of mapping telomeres from a frame to a subsequent
time frame. The red and blue curves represent the nucleus contour in the
subsequent frames. The red and blue dots represent the telomere centroids
in the frame corresponding to respectively the red and blue curve. The green
dots are the mapping of the red ”telomeres” based on the warping of the
red and blue contour.

are used as they are extracted out of the images, without any
mapping. So these values are independent of the radial basis
function. For each basis function three error measurements
are shown. First, the average Euclidean distance between the
telomeres in the one frame and where the telomeres ought to
be according to the mapping of the location of the telomeres
in the previous frame. This distance or error is expressed
in pixels. Second, the standard deviation of this error is
shown. As a last measurement the telomeres of a frame were
matched with the telomeres in the previous frame using the
Iterative Closest Point (ICP) method. The amount of false
matches for the full test set is shown. As can be seen in the
results the biharmonic spline, i.e. radial basis of degree 1,
performs best for all signatures. From the four signatures
tested the ”direction signature” gives the best result, just
slightly better than the ”curvature signature”.

Some part of the remaining error might be due to the 2d
mapping of a 3d deformation. However, big deformations of
the nuclei mainly occur in the x and y direction and not in the
z direction. So there might be a remaining error due to a 2d
mapping instead of a 3d mapping, but the proposed mapping
will cope with the most important, i.e. biggest, deformation.

It took on average 4.18s to calculate the mapping of 13
telomeres embedded in a contour of 100 samples. Approx-
imately 90% of this time was spend on the calculation of
the geodesic distance between points. There is no significant
difference in computational time depending on the type of
signature or on the type of basis function used. These time
measurements were done using a matlab implementation run
on an intel i7 processor with 4Gb memory.

VI. CONCLUSION

In this paper a new mapping algorithm was proposed for
the mapping of cell nuclei. This mapping does not impose

any shape constraints, which allows it to map cell nuclei
of pathological cells. The proposed technique works in two
steps. First the nucleus contours are matched. Four different
matching techniques are defined and tested. Based on this
contour matching the full nucleus is mapped using polyhar-
monic interpolation, radial basis up to degree four have been
tested. The proposed method was tested on three real datasets
showing significant improvement over the unprocessed data.
The best results were achieved using a polyharmonic spline
of degree one, in combination with the ”direction” signature.
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