
Towards Intelligent Scheduling of
Multimedia Content in Future Access Networks

Jeroen Famaey, Wim Van de Meerssche, Steven Latré, Stijn Melis, Tim Wauters, Filip De Turck
Department of Information Technology

Ghent University – IBBT
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

Email: jeroen.famaey@intec.ugent.be

Koen De Schepper, Bart De Vleeschauwer, Rafael Huysegems
Alcatel-Lucent Bell Labs

Copernicuslaan 50, B-2018 Antwerpen, Belgium

Abstract—The popularity of streaming multimedia services has
greatly increased in recent years. Telco- and cable-providers
have started offering a plethora of multimedia services in the
access and aggregation network, including video on demand,
interactive digital television, and time-shifted TV. However, these
services introduce additional challenges, such as stringent time
constraints, and high bandwidth requirements. To overcome
these problems, we explore the advantages of delivering such
multimedia content using deadline-aware scheduling and caching
algorithms. These algorithms decide when to send and store
which content. This enables the network to optimize bandwidth
consumption and satisfy deadline constraints.

The designed algorithm was evaluated and compared to
classical deadline-unaware delivery protocols. This allows us
to study the efficiency of the new algorithm, and identify the
scenarios in which deadline-aware scheduling improves delivery
of multimedia content.

I. I NTRODUCTION

A plethora of multimedia services have popped up in
recent years, giving end-users access to a wide range of
digital content. This content is offered both on the Inter-
net (e.g. YouTube, P2P-TV) and in access and aggregation
networks (e.g. video-on-demand, digital television, and time-
shifted TV). The delivery of multimedia content introduces
new challenges and difficulties, including stringent delivery
deadlines and high bandwidth demands. Existing best-effort
networks and protocols are not designed to overcome these
challenges.

As a solution, we propose a novel approach for deliver-
ing content with strict Quality of Service requirements in
access and aggregation networks. By introducing intelligent
scheduling nodes inside the network, content can be delivered
more timely and bandwidth can be used more efficiently.
Additionally, popular content can be temporarily stored in
intermediary nodes and re-used for later requests. This paper
describes a generic content delivery protocol and a deadline-
aware scheduling algorithm. In contrast to most existing
scheduling and caching strategies, our approach uses a generic
model, independent of the type of multimedia service.

In addition to a description of the protocol and algorithm,
this paper contains an in-depth evaluation using simulation

results. The goal of this evaluation is to answer several
pertinent questions:

1) Does deadline-aware scheduling increase the number of
satisfied deadlines?

2) Under what circumstances is deadline-aware scheduling
useful?

3) What is the effect of the amount of available client-side
memory on the efficiency of the algorithms?

The rest of this paper is structured as follows. Section II
gives an overview of existing work on the topic of scheduling
and caching multimedia content and summarizes the main
contributions of our work compared to them. The concepts
and terminology used throughout this paper are described in
Section III. Subsequently, Sections IV and V elaborate upon
the delivery protocol and scheduling algorithms respectively.
An evaluation of the algorithms is given and discussed in
Section VI. Finally, this paper is concluded in Section VII.

II. RELATED WORK

The large bandwidth requirements of multimedia services
have triggered the research for caching solutions in access
networks. In [1], [2], the authors argue that the evolution of
IPTV services from VoD to TimeShiftedTV services causes
an explosion in the requested resources which can only be
tackled by effectively caching requested multimedia content.
Several caching algorithms have been proposed for streaming
multimedia services [3], [4]. The work presented there focuses
on cache replacement techniques and how caches can co-
operate. While we use these cache replacement techniques
to organise each cache individually, our work focuses on
scheduling of the transmission of content to the clients.

Research in the scheduling of multimedia content has pri-
marily focused on scheduling in shared broadcast environ-
ments such as cellular [5] and wireless [6] networks. In these
scenarios, the prime focus is on the prioritization and selection
of traffic in contention situations. In [5], an earliest deadline
first algorithm for scheduling in HSDPA networks is proposed.
The deadline is calculated implicitly based on the measured
delay. The scheduling algorithm proposed in [6] is video codec

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55870746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dependent and chooses to prioritize I and P frames when
congestion is imminent to minimize video quality drops. Our
work differs from this as we concentrate on the bandwidth
consumption optimization of the network itself.

In an IPTV setting, scheduling algorithms in combination
with P2P live streaming systems have been suggested both
in [7] and [8]. In [7] each peer that has content available
tries to schedule the streaming of this content in such a way
that play-back freeze ups at the clients are minimized. The
proposed solution suggested in [8] follows a similar approach
but relies on the distributed clients to schedule requests on
which the serving peers can respond. In [7], the scheduling
occurs completely decentralized, which is a viable assumption
in a P2P system where the content is distributed orthogonally.
However, in an IPTV scenario, where services are streamed
from one central point at the edge of the network, the
scheduling algorithm needs to incorporate these hierarchical
dependencies, which is assumed in our network model.

III. C ONCEPTS& T ERMINOLOGY

This section gives a description of the concepts and ter-
minology used throughout this paper. The first part of this
section focuses on the network model. Then, we elaborate on
how memory and multimedia content are represented.

A. Network Model

The network consists of a set of content servers, scheduler
nodes, and clients. Thecontent servershost the multimedia
content. Every server is responsible for one or more content
items, and it is assumed that these items are entirely available
on the server at all times. Every content server has an outgoing
link. The scheduler nodesare intermediate nodes capable
of caching parts of content items, and scheduling requests.
Every scheduler node has a set of incoming and outgoing
links. Finally, theclientsrepresent the end-users that generate
requests for the hosted content. Every client has an incoming
link. Additionally, every link has an associatedbandwidth limit
and every client and scheduler node has amemory limit.

For every node, itsparent is defined as the node one
step closer to the content server, while itschildren are the
neighboring nodes towards the client-side.

B. Memory & Streaming Model

The content hosted by the content servers, is represented by
way of content items. A content item has an associatedfirst
and last byte, and anapplication bit-rate. This is the bit-rate
by which the requesting client-side application processesthe
content (e.g. the play bit-rate of a video). A node requests
(part of) a content item by sending arequestto its parent on
the path to the content server hosting this content. This request
identifies the content item and the range of bytes, consisting
of the first and last requested byte, the node wants to receive.
Additionally it specifies thedeadlineby which the content
must arrive at the child. A request may be sent by the client
before its first byte deadline. The corresponding time-interval
is called theknown timeof the request.

Upon receiving a request from a child node, a node sets
up an outgoing connection. This connection consists of a
next byte, which specifies the next byte that will be sent.
Additionally, it has acurrent bit-rate.

The bytes of a content item that are currently in the node’s
memory are represented as a set ofblocks. A block has afirst
andlast byte. Additionally, it may have an associatedincoming
connection, via which it receives data from the parent node.
The last byte of the request associated with the incoming
connection, is called thelast requested byteof the block. The
block also has a set ofcurrentandfuture outgoing connections.
Finally, to allow data to be replaced, blocks may have ashrink
rate. This is the bit-rate by which data is removed from the
block.

IV. CONTENT DELIVERY PROTOCOL

The content delivery protocol is responsible for creating,
maintaining and removing memory blocks, and setting up
connections when new requests arrive, or existing ones are
canceled.

When a new request arrives at the node from one of its
children, the node must request, to its parent, the bytes of
this request. To facilitate content re-use, only bytes thatare
not already in its memory are requested from the parent.
Additionally, bytes that have already been requested with an
earlier deadline, but that have not yet been received, are not
requested either.

A request may end for two reasons. First, the client might
no longer be interested in the data, and explicitly cancel the
request. Second, all the data associated with the request may
have been sent to the child node from which the request
originated. In the case all data of a request has been sent
to the child node, nothing needs to be done, except removing
the request and closing the associated connection. However,
in the second case, the deadline and last requested byte of
incoming connections associated with blocks of which the
outgoing connection associated with the canceled request is
a current or future connection may need to be adjusted. If this
connection dominates the deadline or last requested byte of
a block, they need to be recalculated based on the remaining
current and future outgoing connections of that block.

Currently, the delivery protocol caches only requested con-
tent. This means that when a block has no future outgoing
connections, the shrink-rate is set equal to the bit-rate of
the lowest current outgoing connection of the block (i.e. the
connection with the lowest next byte). Otherwise, the shrink-
rate of a block is set to0. In future work, we plan to study
the effect of using existing caching strategies in combination
with the delivery protocol.

V. SCHEDULING ALGORITHMS

Scheduling algorithms are responsible for setting the bit-
rates of outgoing connections. The algorithm is fully decentral-
ized, and every node is responsible for setting its own outgoing
rates. Additionally, the node can influence the bit-rates ofits
incoming connections by setting maximum incoming rates for

those connections, and setting a global maximum incoming
rate per link. The algorithm is executed periodically on every
node.

Three scheduling approaches are proposed in this paper.
Fair-share (FS), and weighted fair-share (WFS) are classical
deadline-unaware algorithms, used as a basis for comparison.
Earliest deadline first (EDF) is a more intelligent deadline-
aware scheduling algorithm.

A. Outgoing Connections

The scheduling algorithms divide the available bandwidth
per link over all outgoing connections on that link. They differ
in the amount of bandwidth that is given to every connection.

1) Fair-Share (FS):The available link-bandwidth is divided
equally among all connections on the link, independent of
their requested bit-rate, or deadline. If the maximum incoming
bit-rate of a connection is lower than its share, the left-over
bandwidth is divided among the other connections. How this
maximum bit-rate is determined, is explained in Section V-B.
In an end-to-end scenario, FS behaves similarly to end-to-end
TCP.

2) Weighted Fair-Share (WFS):Identical to FS, except that
bandwidth is divided proportionally to the requested bit-rate
of the connections.

3) Earliest Deadline First (EDF): A deadline-aware al-
gorithm that gives all available bandwidth on a link to the
connection with the earliest next byte deadline. If multiple
connections share the same deadline, bandwidth is divided
among them in WFS-fashion. If any bandwidth is left-over,
it is given to the connection(s) with the next-earliest deadline.

B. Incoming Connections

If a node is incapable of limiting the bit-rate of incoming
connections, it might receive more data than it can store in
memory or send to its children. Therefore, a mechanism is in
place that provides a node with the ability to set the maximum
bit-rate per incoming connection. The scheduling algorithms
make sure the bandwidth share of an outgoing connection does
not exceed this maximum bit-rate. Note that the maximum bit-
rate of incoming connection is only limited when the cache
memory of the node is full.

A heuristic was devised that sets the maximum incoming
bit-rate of a connection to the maximum achievable shrink-rate
of its target block. The maximum achievable shrink-rate of a
block equals0 if the block has future outgoing connections,
otherwise it equals the maximum bit-rate of its lowest current
outgoing connection. the maximum bit-rate of an outgoing
connection equals the bandwidth-share that would have been
given to this connection by the scheduling algorithm if it were
not limited by the incoming connection of its source block.

VI. EVALUATION & D ISCUSSION

The goal of the evaluation is to determine in what types
of scenarios deadline-aware scheduling is useful compared
to classical deadline-unaware scheduling approaches. To this
end, the deadline-aware EDF algorithm is compared to the
deadline-unaware FS and WFS approaches.

 0

 300

 600

 900

 1200

 0 20 40 60 80 100

m
ax

im
um

 p
la

y
ov

er
tim

e
(s

ec
)

client count C

EDF
 FS

WFS

Figure 1. Themaximum play overtime (in seconds) as a function ofC

(M = 250, K = 360), for EDF, FS and WFS

A. Methodology & Simulation Setup

As an evaluation metric, theplay overtimeof requests is
used. This is the actual playtime minus the expected playtime
of the request. The actual playtime is defined as the time
between the first byte deadline and the last byte arriving at
the requesting application. The expected playtime is calculated
by dividing the size of the requested content (in bits) by its
requested bit-rate (in bits per second). This metric is thusa
direct measure for overall deadline satisfaction. If the play
overtime of all requests is0, all deadlines have been met.

The simulated network topology consists of 1 content server,
1 scheduler node, andC scheduling capable clients. The link
between the server and scheduler has a bandwidth of 100
Mbps1, and the links to the clients 10 Mbps. As only an
end-to-end scenario was evaluated, the cache memory size
of the scheduler node was set to 0 MiB2. The client cache
memory was set to a variableM MiB. During a simulation
run, all clients send a single request for a 15 minute video
of 5 (HD), 1.5 (SD) or 0.5 (LD) Mbps. It is assumed that
one third of all requests arrive for each quality type, and that
applications never consume data faster than this bit-rate (not
even when they have missed their deadline). All clients request
a personalized video, so no content re-use occurs. Finally,all
requests are known at time 0, while their first byte deadline is
chosen uniformly at random from the interval[0, K] seconds.
The parameterK thus represents the maximum known time for
any request. Simulations were performed for the parameters
C ∈ [0, 100], M ∈ [0, 550] andK ∈ [0, 900]. A subset of the
obtained results is discussed in the rest of this section.

All simulation results are averaged over 10 iterations. The
error bars in the graphs represent the standard error of this
average.

B. Results

Fig. 1 shows maximum play overtime over all requests for
M = 250 and K = 360. The point where the maximum
play overtime no longer remains0, denotes the number of
deadlines that can be successfully met by the algorithms. FS
can handle only25 requests, while WFS can handle40 and

1
1 Mbps = 1 megabit per second= 1000× 1000 bit per second

21 MiB = 1 mebibyte= 1024 × 1024 byte

 0

 300

 600

 900

 1200

 0 20 40 60 80 100

av
er

ag
e

pl
ay

 o
ve

rt
im

e
(s

ec
)

client count C

EDF
 FS

WFS

(a) M = 250, K = 360

 0

 30

 60

 90

 120

 0 100 200 300 400 500

av
er

ag
e

pl
ay

 o
ve

rt
im

e
(s

ec
)

client memory M (MiB)

EDF
 FS

WFS

(b) C = 50, K = 360

 0

 50

 100

 150

 0 180 360 540 720 900

av
er

ag
e

pl
ay

 o
ve

rt
im

e
(s

ec
)

maximum known time K (sec)

EDF
 FS

WFS

(c) C = 50, M = 250

Figure 2. Theaverageplay overtime (in seconds) as a function ofC, M andK, for EDF, FS and WFS

EDF 50. WhenK is increased to900 seconds (not depicted)
this increases even further for EDF to70. This means that EDF
can successfully handle up to2.8 times as many requests as
FS and2.5 times as many as WFS.

A comparison between Fig. 1 and Fig. 2a, reveals that for
EDF the average and maximum play overtime are very similar
(at most a3% difference). On the other hand, for FS and WFS
this difference is up to340% and17% respectively. This poorly
balanced behavior between the average and worst-case play-
time of requests can be attributed to a bias towards requests
with a large known time, as they will be served long before
their first byte deadline is reached. EDF on the other hand
will first serve only requests with a nearby first byte deadline.
Additionally, FS gives the same amount of bandwidth to low
bit-rate requests as to high bit-rate requests. Therefore,FS will
perform well for the LD-type requests at the cost of HD-type
requests.

Fig. 2b and Fig. 2c show that EDF only performs sig-
nificantly better than the other scheduling algorithms ifM

andK are large enough. Consequently, in order for deadline-
aware scheduling to be useful, the amount of available memory
for buffering and the known time variation between requests
should be large enough.

Finally, it is expected that ifM increases, so will the
efficiency of scheduling algorithms. However, Fig. 2b clearly
shows that for FS and WFS this assumption does not hold.
Their performance increases up to a certain point, but then
decreases again. This is because, when memory is low, they
cannot send much content for requests with a large known
time, as the associated client buffer will quickly run full.
However, when this is not the case, the fair-share algorithms
will be able to serve large portions of large known time
requests, at the cost of requests with an early deadline. FS
and WFS thus become unknowingly deadline-aware when
available memory is low.

VII. C ONCLUSION

In this paper, we proposed a novel approach to delivering
multimedia content in access networks. By way of intelligent
nodes placed throughout the network, content can be strategi-
cally scheduled and cached in order to satisfy stringent Quality
of Service demands. This paper proposes a generic memory

management model, usable for many kinds of multimedia
services, and a novel deadline-aware scheduling algorithm.

The algorithm was evaluated and compared to deadline-
unaware approaches in an end-to-end scenario. This lead us
to conclude that deadline-aware scheduling is mostly useful
when enough client-side memory is available and the variation
in known time between requests is large enough. Additionally,
it was shown that, in the simulated scenario, deadline-aware
scheduling could satisfy the deadline of up to2.5 as many
requests compared to the best performing deadline-unaware
algorithm.

ACKNOWLEDGMENT

Jeroen Famaey is funded by the Institute for the Promo-
tion of Innovation by Science and Technology in Flanders
(IWT); Steven Latré and Tim Wauters are funded by the Fund
for Scientific Research Flanders (FWO); This research was
performed partially within the framework of the EUREKA
CELTIC RUBENS project.

REFERENCES

[1] M. Verhoeyen, D. De Vleeschauwer, and D. Robinson, “Content storage
architectures for boosted IPTV service,”Bell Lab. Tech. J., vol. 13, no. 3,
pp. 29–43, 2008.

[2] B. Krogfoss, L. Sofman, and A. Agrawal, “Caching architectures and
optimization strategies for IPTV networks,”Bell Labs Technical Journal,
vol. 13, no. 3, pp. 13–28, 2008.

[3] J. Liu and J. Xu, “Chapter 1 proxy caching for media streaming over the
internet .”

[4] T. Wauters, W. Van de Meerssche, F. De Turck, B. Dhoedt, and P. De-
meester, “Co-operative proxy caching algorithms for time-shifted IPTV
services,” in Software Engineering and Advanced Applications, 2006.
SEAA ’06. 32nd EUROMICRO Conference on, 2006, pp. 379–386.

[5] W. Wang, W. Wang, J. Du, and T. Peng, “A fast packet scheduling
algorithm to provide QoS for streaming service in shared channels,”
in Communication Systems, 2008. ICCS 2008. 11th IEEE Singapore
International Conference on, 2008, pp. 901–905.

[6] S. Kozlov, P. van der Stok, and J. Lukkien, “Adaptive scheduling of
MPEG video frames during real-time wireless video streaming,” in
WOWMOM ’05: Proceedings of the Sixth IEEE International Symposium
on World of Wireless Mobile and Multimedia Networks, 2005, pp. 460–
462.

[7] Y. Li, Z. Li, M. Chiang, and A. R. Calderbank, “Video transmission
scheduling for peer-to-peer live streaming systems,” inMultimedia and
Expo, 2008 IEEE International Conference on, 2008, pp. 653–656.

[8] M.-T. Lu, J.-C. Wu, K.-J. Peng, P. Huang, J. J. Yao, and H. H.
Chen, “Design and evaluation of a P2P IPTV system for heterogeneous
networks,” Multimedia, IEEE Transactions on, vol. 9, no. 8, pp. 1568–
1579, 2007.

