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Abstract. In this paper, we analyse a discrete-time single-server queue
operating under the NT -policy, which aims at clustering the service of
customers in order to reduce the number of server activations and deacti-
vations. Starting from an empty queue, the service of arriving customers
is postponed until either of two thresholds is reached. Specifically, ex-
haustive service of customers is initiated only if either N customers have
accumulated (space threshold) or if more than T slots have passed since
the arrival of the first customer. This way, the queue cycles between three
states, i.e. an empty phase, an accumulating phase and a serving phase.
A Bernoulli arrival process and deterministic service times are assumed.
We derive the steady-state probabilities of the system’s state as well as
the distributions of the phase sojourn times and the customer delay. For
the latter, we condition on the phase during the customer’s arrival slot.
The influence of the model parameters on the results is discussed by
means of a numerical example.

1 Introduction

In a typical work-conserving queue under low to moderate load conditions, the
service unit has to switch often between being idle and being busy. This fre-
quent activation and/or deactivation of the service unit may pose a considerable
overhead, e.g. with machines that need to power up, be configured, checked or
undergo any other costly initialisation procedure before customers can be served
after a period of idleness. In such cases, it is beneficial to cluster the customer
services to some extent by using a threshold policy such as the N -policy, first
presented in [1]. Under this policy the server is deactivated if the queue is de-
pleted as usual but is only reactivated once N > 1 customers have accumulated
again, instead of only one in the work-conserving case. This assures longer unin-
terrupted busy periods, such that less server switch-overs are required. Since [1],
many adaptations of this N -policy have been proposed and studied in literature.
Up to recently, most of this research [2–4] has been done in a continuous-time
setting while far less attention has been spent on discrete-time models. Never-
theless, batch arrivals and batch service for discrete-time N -policy queues are
studied in [5]. In [6], a bilevel threshold mechanism is studied and in [7], service
is differentiated between the N accumulated customers and later arrivals.
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Although the N -policy effectively reduces server switch-overs it also increases
the queueing time (delay) of the customers. Consider in particular a first cus-
tomer arriving when the queue is empty, then its service is delayed until such
time as N − 1 other customers have arrived as well. Clearly, if the arrival rate is
very low this may result in customer starvation, i.e. the customer delay tends to
infinity. The NT -policy counters this drawback by imposing a time limit T on
the accumulation time, besides the space threshold N . So, the server reactivates
when the queue has length N or if the first customer has been waiting in the
queue for a time T , whichever happens first. Continuous-time models of this
double threshold policy are found in [8–10]. In this paper however, we propose
an analysis in a discrete-time setting.

The paper is organised as follows. In Sect. 2, we present a mathematical
model of the NT -policy. This model is then used in Sect. 3 to analyze the
system’s behaviour. The analysis allows us to determine some interesting and
useful measures in Sects. 4–5. Sect. 6 is focused on the delay performance of the
NT -policy. We then illustrate the properties of the NT -policy in Sect. 7 with
some numerical results and compare to the N -policy in Sect. 8. Finally, Sect. 9
concludes this paper.

2 Model Description

We consider a discrete-time single-server queue with infinite storage capacity op-
erating under the NT -policy. Time is divided into fixed-length intervals called
slots, corresponding to the service time required by a single costumer. The ar-
rivals of customers form a Bernoulli process with rate λ, such that in each slot
a customer arrives with probability λ and no customer arrives with probability
1−λ. The number of arrivals during slot k is referred to as ak. Thus, the system
load ρ equals the arrival rate λ and stability is assured, even if λ = 1.

The NT -policy implies that when the server becomes idle, it deactivates and
will remain inactive until exactly N customers have accumulated in the queue
and/or until there is a customer in the queue for exactly T slots. Note that only
situations where 1 < N ≤ T are of interest to us. Indeed, for N = 1 the policy is
the same as in a normal work-conserving queueing system. If on the other hand
T < N , only the time threshold T would be relevant since it takes at least N
slots for N customers to accumulate in the queue. This system would therefore
only implement a T -policy. Hence we will restrict the analysis to systems where
the inequality 1 < N ≤ T holds. Note that if T tends to infinity, the system
converges to an N -policy system; if N tends to infinity as well, the system will
never be reactivated once it has become empty.

Due to the NT -policy, the system’s operation exhibits a cyclic behaviour,
as illustrated in Fig. 1. When a first customer arrives in an empty system, the
system proceeds to an accumulating state until at least one of the thresholds
is reached. Thereupon the system will start serving the customers exhaustively
until it becomes empty again. Thus, we distinguish three subsequent phases, i.e.
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empty, accumulating customers and serving customers. The total time for the
system to complete all three phases, is referred to as a cycle with length Q.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

N

T

Fig. 1. Evolution of the system content of an NT -policy system with N = 4 and
T = 10. The vertical dotted lines denote the transition from an accumulating
phase to a serving phase.

3 System Equations and Buffer Analysis

In order to analyse the behaviour of the NT -policy system, we first introduce
the random variable φk as the phase in which the system resides during slot k.
This variable can take only the values 0, 1 and 2 to refer to the empty phase,
the accumulating phase and the serving phase respectively. In what follows, we
will mainly refer to the different phases by using their corresponding index.

We also introduce the random variable tk to represent the sojourn time of the
first customer in the queue at the end of a random slot k in phase 1. Specifically,
if a first customer arrives in an empty queue during slot k− 1, the phase in slot
k becomes 1 and the variable tk takes value 1. It is clear that 1 ≤ tk ≤ T for any
slot k in phase 1. If tk = T , then for sure the system proceeds to phase 2 in slot
k + 1. For simplicity, we assume tk = 0 for any slot k in phase 0 or in phase 2.

Finally, we introduce the random variable uk as the system content at the
beginning of slot k, this is before any arrivals or departures.

How the system evolves from slot to slot, is described by the system equations
(1)–(3), depending on the value of φk.
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φk = 0 φk = 1 φk = 2
uk+1 = ak uk + ak uk + ak − 1 (1)

tk+1 =

{
0, ak = 0
1, ak > 0

{
tk + 1, tk < T ∧ uk+1 < N

0, tk = T ∨ uk+1 = N
0 (2)

φk+1 =

{
0, ak = 0
1, ak > 0

{
1, tk < T ∧ uk+1 < N

2, tk = T ∨ uk+1 = N

{
2, uk+1 > 0
0, uk+1 = 0

(3)

The system equations show that the set of vectors {(φk, tk, uk)} forms a
Markov chain. Therefore the vector (φk, tk, uk) is sufficient to describe the sys-
tem state at a random slot k and as such, it is called the system state vector.

The next step in the analysis is to introduce the following probabilities:

p0 , Prob[φk = 0] , (4)

p1,m,n , Prob[φk = 1, tk = m,uk = n] , 1 ≤ n ≤ N − 1, n ≤ m ≤ T , (5)

p2,n , Prob[φk = 2, uk = n] , 1 ≤ n ≤ N . (6)

We will not determine expressions for p0, p1,m,n and p2,n directly, rather we will
determine the corresponding coefficients q0, q1,m,n and q2,n defined as

q0 ,
p0

p1,1,1
, q1,m,n ,

p1,m,n

p1,1,1
, q2,n ,

p2,n

p1,1,1
. (7)

The idea is that p1,1,1 corresponds to an event that occurs precisely once per
cycle; i.e. it refers to the first slot of the accumulating phase. Therefore the q’s
correspond to the fraction of certain events within a single cycle.

First, we find that

p1,1,1 = λp0 ⇔ q0 =
1
λ
. (8)

This can be understood by the fact that the system shifts from the empty phase
to the accumulating phase under influence of an arriving customer. For q1,m,n, we
first notice that in phase 1, the value of tk increments with 1 and uk increments
with the number of arrivals during slot k. Thus we find

q1,m,n = (1− λ)q1,m−1,n + λq1,m−1,n−1

=
(
m− 1
n− 1

)
λn−1(1− λ)m−n , 1 < n ≤ m , (9)

with q1,m,1 = (1− λ)m−1,∀m ≥ 1. Indeed, after the arrival of the first customer
in an empty system, it takes m− 1 slots with a total of n− 1 arrivals to end up
in phase 1 with a sojourn time m and buffer content n. Note that the value of
any q1,m,n is independent of both thresholds N and T , it only depends on m, n
and λ. The coefficient q2,N corresponds to a system with N customers in phase
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2. This can only occur if there was an arrival and either the system was already
in phase 2 or the system was in phase 1 and the N -threshold has been reached:

q2,N = λ

T∑
m=N−1

q1,m,N−1 + λq2,N =
λ

1− λ

T∑
m=N−1

q1,m,N−1

=
T∑

m=N−1

(
m− 1
N − 2

)
λN−1(1− λ)m−N . (10)

An expression for q2,n, n < N can then be found by expressing that the cor-
responding event could have been reached either from within phase 2 or from
phase 1 in case the T -threshold has been reached. So we find

q2,n = (1− λ)q1,T,n + λq1,T,n−1 + (1− λ)q2,n+1 + λq2,n

=
1

1− λ
q1,T+1,n + q2,n+1 = . . . =

1
1− λ

N−1∑
j=n

q1,T+1,j + q2,N

=
N−1∑
j=n

(
T

j − 1

)
λj−1(1− λ)T−j +

T∑
m=N−1

(
m− 1
N − 2

)
λN−1(1− λ)m−N .

(11)

Note that in the above we have used q1,T+1,n , (1−λ)q1,T,n+λq1,T,n−1. Although
this corresponds to an event that is impossible to occur in the current system,
the expression itself is justified.

From (7), the probabilities p0, p1,m,n and p2,n can now be written in terms
of p1,1,1. The latter probability can then finally be found from the normalization
condition:

1 = p0 +
N−1∑
n=1

T∑
m=n

p1,m,n +
N∑
n=1

p2,n ,

which leads to

p1,1,1 =

(
q0 +

N−1∑
n=1

T∑
m=n

q1,m,n +
N∑
n=1

q2,n

)−1

. (12)

In the Sects. 4 and 5, the obtained distribution of the Markovian system
state will be used to study the distribution of the phase and cycle durations and
the probabilities of being in a certain phase. These in turn will then enable us
to study the delay of a customer under the NT -policy in Sect. 6.

4 Phase and Cycle Duration

As pointed out earlier, the system exhibits a cyclic behaviour, with each cycle
consisting of the three subsequent phases 0, 1 and 2. In this section, we will
derive expressions for the phase sojourn times, this is the number of slots the
system resides in a certain phase. We introduce Φi as the phase i sojourn time,
with probability generating function (pgf) Φi(z) (i ∈ {0, 1, 2}).
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Empty phase. As can be derived from the system equations, the empty phase
kicks in as soon as the system becomes empty, and ends at the end of the first
slot with an arrival. An empty phase of t slots (1 ≤ t) can therefore only occur
if there are t − 1 consecutive slots without any arriving customers, followed by
a slot during which a customer does arrive. From this notion, we see that

Prob[Φ0 = t] = λ(1− λ)t−1 , 1 ≤ t , (13)

Φ0(z) , E
[
zΦ0
]

=
λz

1− (1− λ)z
. (14)

Accumulating phase. At the beginning of the first slot of any accumulating phase,
there is exactly one customer in the queue, and its sojourn time at the end of
the slot is exactly 1. An accumulating phase ends either when the Nth customer
arrives at the queue or when the first customer has been waiting for T slots, or
both, whichever occurs first. The accumulating phase sojourn time will then be
T , unless the Nth customer arrives at the queue sooner. This can be expressed
as

Prob[Φ1 = t] =

{
λq1,t,N−1 , N − 1 ≤ t ≤ T − 1 ,∑N−1
n=1 q1,T,n , t = T ,

(15)

with pgf

Φ1(z) , E
[
zΦ1
]

= λ

T−1∑
m=N−1

q1,m,N−1z
m +

N−1∑
n=1

q1,T,nz
T . (16)

We now introduce ω as

ω , Prob[N customers have accumulated during Φ1] = λ

T∑
t=N−1

q1,t,N−1 .

(17)

Serving phase. During the final phase the server is active and the customers get
served. The phase lasts until the queue becomes empty and no more customers
are present in the system. The phase 2 duration is the result of two aspects: the
number of customers in the queue at the start of the phase and the number of
new customer arrivals during the phase. Therefore we first introduce ∆ as the
time that is needed to reduce the number of customers in the system by 1. The
total number of customers in the system only decreases when no new customers
arrive, whereas it remains unaltered when there is an arrival. Therefore the
distribution of ∆ can be found as Prob[∆ = t] = λt−1(1− λ), 1 ≤ t, with pgf

∆(z) , E
[
z∆
]

=
(1− λ)z
1− λz

. (18)

The number of customers in the system at a phase 2 start is highly dependent
on the preceding accumulating phase. If the corresponding Φ1 < T we know for
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sure that there are N customers in the queue, whereas for Φ1 = T there could
be less customers. This is reflected in the joint pgf Φ1,2(x, y) of Φ1 and Φ2 as

Φ1,2(x, y) , E
[
xΦ1yΦ2

]
= λ∆(y)N

T−1∑
m=N−1

q1,m,N−1x
m

+
N−1∑
n=1

q1,T,nx
T
(
(1− λ)∆(y)n + λ∆(y)n+1

)
. (19)

The pgf Φ2(z) of Φ2 can then be found by substituting x = 1 and y = z in (19);
this yields

Φ2(z) = λ∆(z)N
T−1∑

m=N−1

q1,m,N−1 +
N−1∑
n=1

q1,T,n
(
(1− λ)∆(z)n + λ∆(z)n+1

)
.

(20)

Cycle length. The total length Q of an arbitrary cycle can then be found as the
sum of the lengths of the three constituting phases. Note that, especially for Φ1

and Φ2, we must consider consecutive phases, such that the number of customers
accumulated in phase 1 corresponds to the initial number of custumers of phase
2. The pgf Q(z) of the cycle length is then given by

Q(z) , E
[
zΦ0+Φ1+Φ2

]
= Φ0(z)Φ1,2(z, z)

=
λz

1− (1− λ)z

(
λ∆(z)N

T−1∑
m=N−1

q1,m,N−1z
m

+
N−1∑
n=1

q1,T,nz
T
(
(1− λ)∆(z)n + λ∆(z)n+1

))
. (21)

5 Phase Probability

Analogously to p0 earlier, we introduce p1 and p2, such that pi , Prob[φk = i],
i ∈ {0, 1, 2}. The pi can be understood as the fraction of the time the system is
in phase i, and therefore it can be seen that pi , E[Φi]

E[Q] , i ∈ {0, 1, 2}. Specifically
for p0 we find that

p0 =
E[Φ0]
E[Q]

=
1

λE[Q]
, (22)

or from (8)

E[Q] =
1
λp0

=
1

p1,1,1
= q0 +

N−1∑
n=1

T∑
m=n

q1,m,n +
N∑
n=1

q2,n . (23)

Also p2 can be determined in an atypical way. As mentioned before, we
assume the system load to be less then one so that the system is stable. In
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equilibrium the mean arrival rate must be equal to the mean departure rate.
Since departures only occur in phase 2 and that at a rate of 1 departure per slot,
the mean departure rate is equal to p2. So we find

p2 = λ . (24)

From (22) and (24) and the normalization condition, we get

p1 = 1− p0 − p2 . (25)

6 Customer Delay Distribution

The customer delay is the integer number of slots a customer resides in the
system, starting at the end of the customer’s arrival slot, until the end of the
slot during which the customer leaves the system. In this section we will pick a
random customer C, and determine what delay this customer suffers. As can be
expected, the customer delay will highly depend on the system state at the be-
ginning of the customer’s arrival slot; for convenience we will refer to this arrival
slot as slot I. The BASTA property (Bernoulli Arrivals See Time Averages) [11]
assures that the distribution of the system state in C’s arrival slot I is the same
as the system state distribution during a random slot, even though I is not a
random slot itself. This notion is essential to the delay analysis presented here.

In what follows we will determine the delay di for a random customer C that
arrives during phase i of a cycle (i ∈ {0, 1, 2}). Finally we will combine these
results to find the delay d of a random customer C, regardless of the phase during
which C enters the system.

C arrives during phase 0. Any customer that arrives during an empty phase,
will trigger an accumulating phase at the beginning of the next slot. When the
accumulating phase ends, this customer will be the first to get served. Thus the
delay of customer C that arrives during phase 0 consists of the entire induced
phase 1 and C’s service time, or d0 = Φ1 + 1 with pgf

D0(z) , E
[
zd0
]

= zΦ1(z) . (26)

Fig. 2 shows how C (the dark square) passes through the buffer.

C arrives during phase 1. If a customer C arrives during an accumulating phase,
C will have to wait until the phase ends and all previously arrived customers
have left the system before the server is ready to take care of C as is depicted
in Fig. 3. Note that at the beginning of slot I, exactly uI customers are present
in the system and by the end of slot I the first customer has been waiting for
exactly tI slots. The current accumulation phase then lasts until, starting from
slot I+1, N−uI−1 more customers have accumulated or T −tI more slots have
passed, whichever happens first. This time span corresponds to an accumulating
phase duration of an N ′T ′-policy system with N ′ = N − uI and T ′ = T − tI .
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d0

N

Fig. 2. Graphic representation of d0.

Therefore the delay of C can be expressed as d1 = Φ
(N ′,T ′)
1 + uI + 1, where we

introduced Φ
(N ′,T ′)
1 as the phase 1 sojourn time of the N ′T ′-policy system. In

case 1 < N ′ ≤ T ′, we may use (15)–(16) directly to obtain the distribution of
Φ

(N ′,T ′)
1 , only by substituting the alternate values for the thresholds. Indeed the

values for the different q1,m,n remain unchanged, since they are independent of
both the thresholds. Note however that if uI = N − 1 or tI = T , (15)–(16) no
longer hold; in these cases the accumulating phase ends immediately after slot I,
and Φ(N ′,T ′)

1 in the expression for d1 should be taken equal to 0. The distribution
of d1 is then given by

Prob[d1 = t] = Prob
[
Φ

(N ′,T ′)
1 = t− uI − 1

]
=
N−1∑
n=1

T∑
m=n

p1,m,n

p1
Prob

[
Φ

(N−n,T−m)
1 = t− n− 1

]

=
1
p1

(N−2,t−2)−∑
n=1

p1,T−t+n+1,n

N−n−1∑
i=1

q1,t−n−1,i +

[
T−1∑

m=N−1

p1,m,N−1

]
t=N

+ [p1,T,t−1]2≤t≤N +

[
λ

N−2∑
n=1

T−t+n∑
m=n

p1,m,nq1,t−n−1,N−n−1

]
t≥N

 , (27)

where we introduced (x, y)− as the minimum of x and y and also [x]c to be equal
to x if the condition c holds, and to be equal to 0 otherwise. The pgf D1(z) of
d1 is then given by

D1(z) , E
[
zd1
]

=
1
p1

T+1∑
t=2

zt
(N−2,t−2)−∑

n=1

p1,T−t+n+1,n

N−n−1∑
i=1

q1,t−n−1,i + zN
T−1∑

m=N−1

p1,m,N−1

+
N∑
t=2

p1,T,t−1z
t + λ

T+1∑
t=N

zt
N−2∑
n=1

T−t+n∑
m=n

p1,m,nq1,t−n−1,N−n−1

)
. (28)
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d1

N

Fig. 3. Graphic representation of d1.

C arrives during phase 2. During phase 2 the server is busy serving customers.
Therefore the only delay suffered by a customer C arriving in a phase 2 slot, is
the time needed to serve all customers (including C) in the queue at the end of
slot I. Since one customer gets served during this slot, we have d2 = uI with pgf

D2(z) , E
[
zd2
]

=
N∑
n=1

p2,n

p2
zn =

p1,1,1

λ

N∑
n=1

q2,nz
n . (29)

In Fig. 4, we see how C is inserted in the queue, comes closer to the server and
eventually leaves the system.

d2

N

Fig. 4. Graphic representation of d2.

Customer delay. The delay distribution of a random customer C, regardless of
the phase during which C enters the system, can then be found as

Prob[d = t] = p0Prob[d0 = t] + p1Prob[d1 = t] + p2Prob[d2 = t] , (30)
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with pgf
D(z) , E

[
zd
]

= p0D0(z) + p1D1(z) + p2D2(z) . (31)

7 Numerical Results

In this section, we will concentrate on some numerical results of the system’s
characteristics. The examples here are based on an NT -policy system, with
N = 40 and T = 100. Unless otherwise stated, we consider an arrival rate
λ = 0.4. In this configuration N = λT and hence, the mean number of slots
needed to accumulate N customers equals T .

First we consider the mean phase sojourn times versus the arrival rate λ,
depicted in Fig. 5. As one could expect from (13), the mean empty phase sojourn
time ( 1

λ ) decreases when λ increases. Also, we notice that for λ ≤ 0.4, the mean
phase 1 sojourn time is virtually equal to 100. This is due to the fact that for
low arrival rates, the threshold T will generally be the one that triggers a new
phase 2. Since every arrival during a serving phase prolongs the phase’s sojourn
time, the mean phase 2 sojourn time increases for increasing arrival rates.

arrival rate λ

log E[Φ0]
log E[Φ1]
log E[Φ2]
log E[Q]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Fig. 5. Mean phase sojourn times E[Φi] (i ∈ {0, 1, 2}) and mean cycle length
E[Q] in slots versus the arrival rate λ on a log scale for N = 40 and T = 100.

Fig. 6 shows the effect of the arrival rate λ on the phase probabilities pi
(i ∈ {0, 1, 2}). These probabilities are important as they serve as a weight factor
in the calculation of the customer delay distribution and the mean customer
delay, as shown in (30). We see that the probability of a random slot to be
part of an empty phase is high for extremely low arrival rates, but it very soon
drops as the arrival rate gets higher; for the greater part of the graph, p0 is
even negligible. The probability p1 runs a very different course: if the arrival
rate is very low, the majority of time will be spent in phase 0, but as the arrival
rate increases, the server will be empty less and both p1 and p2 will increase.
Since the phase 1 sojourn times are limited to a maximum of T slots, only the
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serving phase will become longer due to an increasing arrival rate, therefore p1

will decrease again, while p2 continues to rise linearly.

arrival rate λ

pi p0
p1
p2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 6. Phase probabilities pi (i ∈ {0, 1, 2}) versus the arrival rate λ for N = 40
and T = 100.

We now concentrate on the customer delay distribution, as presented in Fig.
7. Note the limited support of the different stochastic variables di (i ∈ {0, 1, 2})
and how the three corresponding curves are very different but add up to a
suprisingly smooth curve for d, with only two outliers. The outlier at t = T+1 =
101 originates from the distribution of d0 and corresponds to all cycles where the
threshold T is reached at the end of phase 1. Thus, the sudden peak accumulates
all cycles where the timer expires, regardless of how many customers eventually
did arrive during the accumulating phase. Fig. 8 shows that the other outlier, at

t

log Prob[d0 = t]
log Prob[d1 = t]
log Prob[d2 = t]
log Prob[d = t]

0 20 40 60 80 100

−6

−4

−2

0

Fig. 7. Probability mass functions of the customer delays di (i ∈ {0, 1, 2}) and
d on a log scale for N = 40, T = 100 and λ = 0.4.

t = N = 40, is due to a peak in the probability mass function (pmf) of d1, caused
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by cycles in which the threshold N is reached. Of course, in every cycle where
N is reached, the last customer will always have a delay N . Note however that
all customers that arrive during consecutive slots share the same delay, so any
customer that arrives in a series of consecutive slots with arrivals, that contains
the phase’s final slot, will have d1 = N , thus creating the peak.

t

N reached
N not reached

0 20 40 60 80 100

−6

−4

−2

0

Fig. 8. Probability mass functions of the customer delay d1 (split up) on a log
scale for N = 40, T = 100 and λ = 0.4.

In Fig. 9, the effect of the arrival rate λ on the mean customer delay is
presented, as well as the effect of λ on the weighted delays piE[di] (i ∈ {0, 1, 2}).
The graph shows that for extremely low arrival rates, the mean customer delay
is dominated by the mean phase 0 customer delay E[d0]. In accordance to p0 the
importance of d0 rapidly decreases when the arrival rate increases, as a result of
which the mean phase 1 delay becomes more important. Once the arrival rate is
beyond N

T = 0.4, the N -threshold becomes ever more conclusive.

arrival rate λ

p0E[d0]
p1E[d1]
p2E[d2]
E[d]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Fig. 9. Weighted mean customer delays piE[di] (i ∈ {0, 1, 2}) and the overall
mean customer delay E[d] versus the arrival rate λ for N = 40 and T = 100.
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8 Comparison with N -Policy

With respect to the basic N -policy, the NT -policy’s main objective is to elim-
inate the possibility of starvation due to a low arrival rate of the customers.
Indeed, due to the time threshold T no customer delay can ever exceed T + 1,
whereas under the N -policy there is no upper bound for the customer delay.

In Fig. 10, the mean customer delay for both the N -policy and the NT -policy
is presented as a function of the system load ρ = λ. This shows clearly how the
NT -policy has much better performance than the N -policy in case of a low rate
arrival stream. For λ > N

T , there is only little benefit of the threshold T and
both policies have an identical performance.

arrival rate λ

E[d] N -policy
NT -policy

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Fig. 10. Mean customer delay E[d] for both N -policy and NT -policy versus the
arrival rate λ for N = 40 and T = 100.

We should however note that the comparison presented here is somewhat
unfair, since we assumed identical values for N in both policies. Parameter op-
timization for a specific cost model would, especially in the low rate traffic case,
result in different values for N .

9 Conclusion

In this paper, we have studied the NT -policy in a discrete-time queueing system
with independent Bernoulli arrivals and a deterministic server. We have obtained
the distribution of the sojourn times of the three system phases. We also derived
the customer delay distribution, conditioned on the phase during which the
customer arrives. With some numerical examples, we illustrated the features and
characteristics of the NT -policy. Finally, we compared the delay performance of
the NT -policy with that of its more basic variant, the N -policy.
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