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Abstract 
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A completely saturated Metal Organic Framework, MIL-47 was synthesized and tested 
for its catalytic performance in the oxidation of cyclohexene with tert-butyl 
hydroperoxide as oxidant. The catalyst was compared to several reference catalysts: 
namely VAPO-5, supported VOx/SiO2 and the homogeneous catalyst VO(acac)2

 

. MIL-
47 shows a remarkable catalytic activity and preserves its crystalline structure and 
surface area after a catalytic run. Furthermore MIL-47 exhibits a very high activity in 
successive runs. 
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1. Introduction 
Metal Organic Frameworks (MOFs) are crystalline porous solids composed of a three-
dimensional (3D) network of metal ions held in place by multidentate organic molecules 
[1,2]. In recent years, MOFs have received considerable attention as potentially valuable 
gas storage and catalyst materials [3-7]. MOFs possess several attractive features: a high 
micropore volume, crystallinity and a high metal content offering potentially valuable 
active sites.  
 
So far, only a few catalytic applications of Metal Organic Frameworks have been 
reported. Some of their potential applications were outlined recently in two excellent 
reviews [8,9]. All these reports deal with Metal Organic Frameworks that have 
unsaturated sites. However, to obtain insight into the real nature of the active sites, it is 
of a paramount importance to study saturated Metal Organic Frameworks. 
Therefore, a completely saturated, vanadium containing MOF was synthesized, namely 
MIL-47. This MOF is a porous terephthalate built from infinite chains of V4+O6 
octahedra, held together by dicarboxylate groups of the terephthalate linkers and 

In the present work, we have tested MIL-47 for its catalytic performance in the 
oxidation of cyclohexene. Amongst the various oxidation products of cyclohexene, 
cyclohexane epoxide is a highly reactive and selective organic intermediate which is 
widely used in the synthesis of enantioselective drugs, epoxy paints and rubber 

has a 
three-dimensional orthorhombic structure [10]. 
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promoters [11]. Furthermore the catalytic activity of MIL-47 is compared to VAPO-5, 
VOx/SiO2 and the homogeneous catalyst VO(acac)2

2. Experimental section 

. 

The hydrothermal synthesis of MIL-47 is based on a literature procedure [10]. A 
mixture of VCl3, terephthalic acid and H2O (molar ratio 1/0.25/100) is brought into a 
Teflon lined steel autoclave, which is heated at 473 K for 4 days. In a next step, MIL-
47as is brought at 573 K for 22 h and 30 min to remove the excess of terephthalic acid 
in the pores. VAPO-5 is synthesized as described previously: a solution of oxovanadium 
(IV) sulphate-hydrate and a solution of H3PO4 are mixed together. While stirring, 
pseudo boehmite (from Sasol) and triethylamine are added. In a further step, the gel is 
brought into an autoclave and placed in an oven at 443 K for 2 days. By centrifugation, 
the solid is recovered. Furthermore the catalyst is dried and calcinated under a O2-flow 
[12]. For the synthesis of VOx/SiO2, Kieselgel 60 is stirred in a NH4VO3

After a catalytic run, the MIL-47 is regenerated by a treatment in a tubular furnace 
under a N

-solution at 
338 K for 2 h. Afterwards, the solid is filtered and dried during 2 h at 373 K, followed 
by a calcination at 823 K during 5 h. 

2

3. Results and discussion 

-flow at 523K. This is necessary to remove the organic compounds in the 
pores. 

The oxidation of cyclohexene was carried out in a three neck flask under an inert 
atmosphere. To a solution of cyclohexene (0.05 mol), tert-butyl hydroperoxide (0,14 
mol) and 1,2,4-trichlorobenzene (0.05 mol) (used as internal standard) in chloroform 
(0.38 mol) 0,1 g of the catalyst was added. The reaction mixture was stirred at 50° C. 
All the samples were analyzed with a Trace GC Ultra (Finnigan), fitted with an 
capillary column (10m, 0,1 mm, 0,4 µm) and an FID detector. Blanc reactions were 
performed without catalyst.  

 
Fig. 1 Conversion curve of cyclohexene for (■) unsupported VO(acac)2, (○) MIL-47, (▲) 

VOx/SiO2

 

 and (▼) VAPO-5. 

In Figure 1, the conversion curve of cyclohexene is presented in comparison with the 
three reference catalysts. As can be seen in Figure 1, VAPO-5 is catalytic inactive for 
the oxidation of cyclohexene, whereas the three other catalysts: MIL-47, the supported 
VOx/SiO2 and the homogeneous VO(acac)2

 

 exhibit a very high catalytic activity.  
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The turn over number (TON) of MIL-47 is calculated, based on the amount of 
cyclohexene that is converted. The TON of MIL-47 was approximately 108 after eight 
hours of reaction. Thermal Gravimetric Analysis experiments (TGA) were performed 
on MIL-47 before and after a catalytic run to quantify the amount of leached vanadium. 
In comparison with the supported vanadium oxide catalyst, only a small amount of 
vanadium is leached. The leaching was less than 20% in the first run with MIL-47, 
whereas the VOx/SiO2

 

 showed a leaching of more then 40%. Furthermore, the catalyst 
was recovered after a first catalytic run. The X-ray diffraction patterns of MIL-47 before 
and after regeneration are shown in Figure 2.  

 
 

 
Fig. 2 XRD patterns of MIL-47 (a) before and (b) after regeneration. 

 
MIL-47 preserves its crystalline structure after regeneration, as can be seen from Figure 
2. Moreover, the nitrogen adsorption experiments of MIL-47 before and after 
regeneration are presented in Figure 3. Note that the MIL-47 shows no loss at all of 
surface area and pore volume after regeneration.  
 

 
   

Fig. 3 Nitrogen adsorption isotherms of  MIL-47 (■) before and () after regeneration. 

 
To evaluate the regeneration capacity of this novel catalyst, MIL-47 was tested for a 
second catalytic run and compared to the vanadium oxide catalyst. The conversion of 
cyclohexene for MIL-47 and the VOX/SiO2

 

 catalyst in the first and second run is shown 
in Figure 4. 
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Fig. 4 Conversion of cyclohexene for MIL-47 in its (■) first run, (●) second run and VOx/SiO2

MIL-47 still shows a high conversion of cylohexene, whereas the supported VO

 
(▲) first and (▼) second run. 

x/SiO2

 

 
shows no activity at all in its second run due to leaching of the vanadium centers. This 
observation indicates that MIL-47 acts as a truly heterogeneous catalyst. 

In conclusion, the saturated Metal Organic Framework, MIL-47, is investigated for its 
catalytic activity for the oxidation of cyclohexene and compared to three reference 
catalysts. MIL-47, containing saturated vanadium centres, shows a high catalytic 
conversion.  X-ray diffraction measurements and nitrogen adsorption experiments prove 
the stability of this new catalyst under oxidation reactions. Furthermore MIL-47 
exhibits a very high catalytic activity in successive runs. 
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