
Extending reservoir computing with random
static projections: a hybrid between extreme

learning and RC

John Butcher1, David Verstraeten2, Benjamin Schrauwen2, Charles Day1

and Peter Haycock1 ∗

1- Institute for the Environment, Physical Sciences and Applied Mathematics
(EPSAM) Keele University, Staffordshire, ST5 5BG, United Kingdom

2- Department of Electronics and Information Systems
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Abstract. Reservoir Computing is a relatively new paradigm in the
field of neural networks that has shown promise in applications where
traditional recurrent neural networks have performed poorly. The main
advantage of using reservoirs is that only the output weights are trained,
reducing computational requirements significantly. There is a trade-off,
however, between the amount of memory a reservoir can possess and its
capability of mapping data into a highly non-linear transformation space.
A new, hybrid architecture, combining a reservoir with an extreme learning
machine, is presented which overcomes this trade-off, whose performance
is demonstrated on a 4th order polynomial modelling task and an isolated
spoken digit recognition task.

1 Introduction

A recent addition to the field of Recurrent Artificial Neural Networks (RANNs)
is Reservoir Computing (RC) [1], which is based on using a randomly, sparsely
connected reservoir of neurons combined with a linear readout. RC is a unifi-
cation of several techniques such as Echo State Networks (ESNs), Liquid State
Machines (LSMs) and the back-propagation decorrelation neural network (see
[1] for more details on RC techniques). Recent studies using RC for predicting
and classifying complex time-series data have shown that RC techniques outper-
formed conventional RANNs considerably (see [2] for an overview). This paper
reports on the use of RC for tasks that require both non-linearity and memory,
and in which a novel customised RC architecture is presented to better fulfill
both of these requirements.

Standard reservoir architectures consist of three layers of neurons, an input
layer, a recurrently connected reservoir layer and an output layer. Each neuron
in a layer is randomly connected to every neuron in the next layer. The reservoir
weights are globally scaled by the spectral radius, which is the largest absolute
eigenvalue of the weight matrix. Usually a spectral radius value of less than, but
close to, unity is used to create reservoirs with suitable dynamics [3]. Increasing

∗SciSite Ltd and the UK EPSRC are gratefully acknowledged for supporting this research.
The Department of Electronics and Information Systems from Ghent University are also grate-
fully acknowledged for their very kind and useful feedback.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55870668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the spectral radius leads to the spreading of activation distributions and the
eventual saturation of activations towards +1 and -1. This results in a chaotic
reservoir whose generalisation characteristics disappear. See [4] for a thorough
overview of the effects of different parameters, including the spectral radius, on
the dynamics of the reservoir. The reservoirs presented in the remainder of this
work comprise ESN type networks, which means that the reservoir consists of
tanh-neurons. The activations of reservoir and output neurons at time t are
given by Equations 1 and 2 respectively.

x(t) = f(Winput
res u(t) + Wres

resx(t − 1)) (1)

y(t) = Wres
out(u(t),x(t)) (2)

where t is the current time step, t− 1 is the previous time step, u(t) is the input
activation at time t, x(t− 1) is the vector of activations of the reservoir neurons
at time t−1, and f(x) is the activation function, which is tanh here. W a

b denotes
a weight matrix from a to b.

The main advantage of using RC is that only the reservoir-to-output connec-
tions Wres

out are modified during training which can be done in a one-shot fashion
using linear regression, whereas training traditional RANNs involves modifica-
tion of all weights in the network. This, therefore, makes RC techniques much
faster to train, which is useful for real-world applications where fast, and some-
times real-time training is required. Linear regression training also guarantees
convergence, which is not the case with most other RANN learning rules that
are based on gradient-descent error minimisation algorithms. These two advan-
tages combined overcome the main stumbling blocks of using RANNs within
real-world engineering domains.

2 The need for non-linearity and memory

Reservoirs can be created to have long term memory or to have highly non-
linear mapping capabilities, depending on the task at hand. However, at present,
there is no parameter that allows to tune these properties independently. For
instance, tuning the spectral radius affects the memory of the reservoir, but also
the non-linear mapping. In order to overcome this problem, a new architecture
is outlined which combines the memory capabilities of a reservoir with the non-
linear separation capabilities of traditional ANNs.

2.1 R2SP: a Reservoir with Random Static Projections

The use of a feedforward network where only the output weights are trained has
been previously presented in [5] as the Extreme Learning Machine (ELM) and
was later extended as the Optimally-Pruned Extreme Learning Machine (OP-
ELM) [6]. Both techniques involve two layers of feedforward networks. The
first layer’s weights are chosen at random at network creation, while the second
layer’s weights are trained using a simple linear regression. Therefore, as with

RC, only the readout weighted connections are trained. OP-ELM extends ELM
further by pruning the least significant neurons from the hidden layer, which
regularises the network, improving its generalisation capabilities.

The novel architecture proposed here, named Reservoir with Random Static
Projections (R2SP), contains a standard reservoir and two static hidden layers
of non-recurrent neurons with no within-layer connections, combining the under-
lying principles of ELM with RC. The first static layer receives the same inputs
as the reservoir and has output connections to the output layer, thus giving an
instant non-linear transformation of the dataset at each time step. The second
static layer receives input from the reservoir, giving a non-linear mapping of the
reservoir at each time step. The outputs of the reservoir and the two static layers
are combined, and, as in RC and with the ELM, only the weights connecting
to the output nodes are trained, using linear regression. The activations of the
newly added static layers are calculated as follows:

xsl1(t) = f(Winput
sl1

u(t)) (3)

xsl2(t) = f(Wres
sl2 x(t)) (4)

where xsl1(t), xsl2(t), Winput
sl1

and Wres
sl2 are the activations and input weight

matrices of static layers 1 and 2 respectively. All other symbols are as in Equa-
tions 1 and 2. Figure 1 shows a schematic overview of the R2SP.

Fig. 1: Reservoir with Random Static Projections (R2SP). SL1 and SL2 are the
number of neurons in the respective static layers.

3 Experimental Setup and Datasets

The input scaling, spectral radius and reservoir size are known to influence the
performance of a reservoir for a given task [1]. In order to find the optimal

settings for both reservoir architectures, separate parameter sweeps were carried
out for both architectures for two different datasets. The leak rate (measure of
how a neurons activation decreases over a period of time) of each neuron in the
reservoir was also ranged over to investigate its effect on performance for both
datasets, as it has been shown to improve performance by altering the dynamics
of the reservoir to match the timescale of a given dataset. In order to overcome
the randomness of reservoir weights at creation, 100 reservoirs of each type were
trained1.

3.1 Fourth order polynomial data

This artificial dataset contains random uniform inputs ranging from -1 to +1
and outputs determined by a 4th order polynomial, with coefficients also chosen
from a uniform random sample of -1 to +1. The dataset consisted of 20,000
datapoints and was split into 20 samples of 1,000 datapoints for training and
testing. The output at time t was determined by the following equation:

yt = c1 + c2ut + c3ut−1 + + c15u4
t−1 (5)

where c denotes one of 15 random uniformly distributed coefficients. All other
symbols are as described above. The output weights were calculated using ridge
regression, with the performance of each reservoir calculated using the Nor-
malised Root Mean Squared Error (NRMSE), using ten-fold cross-validation
using a grid search for the optimal regularisation parameter.

3.2 Isolated spoken digits recognition task

The dataset is a subset of the TI46 isolated spoken digits dataset. It consists
of 10 utterances of ten digits spoken by five different female speakers, resulting
in 500 digit samples. Since this task is relatively easy to solve with standard
reservoirs (in simulations not reported here, errors around 0 were obtained), it
was made more challenging by adding babble noise2 to the samples at a signal-to-
noise ratio of 3dB. The samples were then preprocessed using the Lyon cochlear
model with a subsampling factor of 128, resulting in a 77-dimensional time-
varying feature vector. This 77-dimensional vector was used as input to both
architectures. For this task, the error was again determined using ten-fold cross-
validation but without optimization of the regularization parameter because the
noise added to the dataset is enough to avoid overfitting.

4 Results

Both architectures contained 150 neurons (the R2SP architecture consisted of 50
nodes in each layer). Table 1 shows the optimal parameters for both reservoir

1All training and testing was performed using the Opensource Matlab RCToolbox available
from http://www.elis.ugent.be/rct.

2This is available from the NOISEX database from the Rice University:
http://spib.rice.edu/spib/data/signals/noise/babble.html.

approaches and their corresponding error rates for both datasets. Varying the
leak rate of the neurons for the polynomial task led to little improvement in
performance for both architectures and therefore was not investigated further.
Varying the leak rate for the digit recognition task did, however, affect the
performance of both architectures. Figure 2 shows the test error plots of a
standard reservoir and the R2SP on the digit recognition task when varying
over the spectral radius and the leak rate.

0.5 0.7 0.9 1.1 1.31.15132.3026

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Spectral radiuslog(leak rate)

W
or

d
er

ro
r r

at
e

0.5 0.7 0.9 1.1 1.31.1513
2.3026

0.08

0.09

0.1

0.11

0.12

Spectral radiuslog(leak rate)

W
or

d
er

ro
r r

at
e

Fig. 2: Test error plots of the standard reservoir (left) and the R2SP (right)
when applied to the digit recognition task ranging over the leak rate and the
spectral radius. Note the different scaling of the Z (error) axis.

Table 1: Errors obtained from a standard reservoir architecture (Std-Res) and
the R2SP on the polynomial (Poly) and the digit recognition (Speech) datasets.

Type Poly
Error (NRMSE) Input Scale Spec Rad

Std Res 0.73 25.1 1.2
R2SP 0.5 2.5 0.6

Speech (Error in Word Error Rate)
Std Res 0.17 1 1.3
R2SP 0.08 1 1.1

5 Discussion

As the results show, the R2SP outperforms a standard optimal reservoir quite
significantly, particularly on the digit recognition task. Here the standard reser-
voir has a classification error of 17%, while a R2SP achieves a smaller error
of 8%. Analysis of Table 1 and Figure 2 shows that the optimal spectral ra-
dius of the R2SP is lower than a standard reservoir. This indicates that the

static layers perform more of the non-linear mapping in the high dimensional
state space, resulting in a reservoir with longer term memory as indicated by
a lower spectral radius, therefore resulting in a system which has highly non-
linear mapping capabilities and memory at the same time. Similar comments
apply to the standard reservoir when applied to the polynomial dataset, as the
input scaling to the reservoir and spectral radius are high, which results in a
reservoir which has highly saturated states (activations at either +1 or -1 for
the whole dataset). This creates a more non-linear reservoir which, therefore,
has less memory capacity, giving a larger error rate.

6 Conclusion

A novel architecture, Reservoir with Random Static Projections (R2SP), has
been presented which combines the recurrent characteristics of a reservoir with
the instantaneous non-linear separation capabilities of standard feedforward net-
works, enabling a reservoir to have both memory and non-linear mapping capa-
bilities. Such characteristics are required for datasets with short lived non-linear
features which also require memory, such as the polynomial and spoken digit
recognition datasets presented. The ease of training of reservoirs is still present,
as only the output weights of the newly added layers are trained alongside the
reservoir outputs. As a result of the two combined characteristics, the new R2SP
architecture outperforms a standard reservoir approach significantly for the two
tasks considered here.

Future work will include an investigation of applying further techniques used
in the OP-ELM such as different activation functions and pruning of the least
significant neurons to obtain an optimal network size for a given task. Further
investigations will also be conducted on the application of the static reservoir ar-
chitecture to data collected from the real world whose underlying characteristics
are suspected to require highly non-linear mapping as well as short-term memory
and should therefore benefit from the novel R2SP architecture introduced here.

References

[1] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unifica-
tion of reservoir computing methods. Neural Networks, 20:391–403, 2007.

[2] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3):127–149, 2009.

[3] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks.
Technical report, German National Research Institute for Computer Science, 2001.

[4] X. Dutoit. Reservoir Computing for Intelligent Mobile Systems. PhD thesis, Department
of Mechanical Engineering, Katholleke Universiteit Leuven, Belgium, 2009.

[5] G.B. Huang, Q.Y. Zhu, and C.H. Siew. Extreme learning machines: Theory and applica-
tions. Neurocomputing, 70:489–501, 2006.

[6] Y. Miche, A. Sorajamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse. OP-ELM:
Optimally pruned extreme learning machine. IEEE Transactions on Neural Networks,
21(1):158–162, December 2009.

