
Unreliable inter process communication in Ethernet:
migrating to RINA with the shim DIF

Sander Vrijders1, Eleni Trouva2, John Day3, Eduard Grasa2, Dimitri Staessens1,
Didier Colle1, Mario Pickavet1, Lou Chitkushev3

1Ghent University - iMinds, INTEC, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
E-mail: firstname.lastname@intec.ugent.be

2i2CAT Foundation, Jordi Girona, Barcelona, Spain
E-mail: firstname.lastname@i2cat.net

3Computer Science, Metropolitan College, Boston University, Massachusetts, USA
E-mail: day@bu.edu, ltc@bu.edu

Abstract—There is often a requirement to interface a new
model to a legacy implementation by creating a shim between
them to make the legacy appear as close to the new model
as possible. This is a common exercise, usually fraught with
frustrations, but here we find the exercise reveals fundamental
aspects about nature of layers that were previously not well
understood. Here we will be primarily concerned with creating a
shim between RINA and IEEE 802.1q (VLANs). The Recursive
InterNet Architecture (RINA) proposes a network architecture
derived from the fundamentals of InterProcess Communication
(IPC). This yields a recursively layered architecture of Dis-
tributed IPC Facilities (DIFs).

I. I NTRODUCTION

There is often a requirement to interface a new model to
a legacy implementation by creating a shim between them to
make the legacy appear as close to the new model as possible.
This is a common exercise, usually fraught with frustrations,
but here we find the exercise reveals fundamental aspects about
nature of layers that were previously not well understood. Here
we will be primarily concerned with creating a shim between
RINA and IEEE 802.1q (VLANs) [1]. The Recursive InterNet
Architecture (RINA) proposes a network architecture derived
from the fundamentals of InterProcess Communication (IPC).
This yields a recursively layered architecture of Distributed
IPC Facilities (DIFs).

RINA provides explicit mechanisms for enrollment of pro-
cesses in a layer/DIF, flow allocation and data transfer between
processes. Unlike the Internet, the mode of operation of the
data transfer, whether connection or connectionless is internal
to the layer and not visible to the user. The user characterizes
the kind of flow desired and the layer determines how to
best provide it using connection-like or connectionless mech-
anisms. Applications request flows by naming the destination
and never see addresses and there are no well-known ports.

For migrating from current TCP/IP over Ethernet networks
to RINA, the concept of a shim DIF was introduced. The task
of a shim DIF is to put as small as possible veneer over a
legacy protocol to allow a RINA DIF to use it unchanged.
To minimize the impact of the transition, a shim DIF only
provides the capability of the legacy layer. It does not try to
enhance it to be a fully functionally RINA DIF. Applications

in the current internet model can keep on using the existing
layers in this way, while applications using the RINA API can
use the advantages RINA has to offer. A shim DIF allows a
current layer in the current internet model to appear as if it
was a regular DIF.

The rest of the paper is organized as follows. After a quick
review of the Ethernet frame formats in Section II, we will
describe the Recursive InterNet Architecture in more detail
in Section III. Inter process communication in Ethernet will
be discussed in Section IV. Next, we will describe how flow
allocation is performed in the upper layer, in Section V. In
Section VI, we present the shim DIF over Ethernet. We will
explain the migration strategy of RINA in Section VII, form
a conclusion in Section VIII and finally present some future
work in Section IX.

II. ETHERNET FRAME FORMAT

Following the OSI model, IEEE 802.3 [2] describes the
physical and data link layer’s medium access control mecha-
nism of wired Ethernet. Ethernet does not provide a reliable
service. This is not required. While the purpose of any layer
should be to meet the requirements of its users, the purpose
of the traditional Data Link Layer, in particular, is to provide
sufficient error control that end-to-end error control (at the
Transport Layer) is cost-effective. Generally, this meansthat
the rate of loss at the data link layer should be no worse and
less than the loss due to congestion at the Network Layer.
For Ethernet, this requirement is easily met by the nature of
the media, the Manchester encoding, and the checksum on the
frames. (Some media may require more robust mechanisms.)
Ethernet was first published in 1985. Since then, it has had
several revisions, mostly focused on the physical layer. Before
the standard was created, there was already a specification
released by DEC, Intel, and Xerox, called Ethernet II framing.
The structure of an Ethernet II frame can be seen in Table I.
It is the most common frame structure used today. Recently,
an optional IEEE 802.1q tag [1] has been included to support
VLANs, and is in widespread use. The tag consists of the
Ethertype 0x8100 (2 bytes), and Tag Control Information (also
2 bytes), which holds the VLAN identifier among other fields.



TABLE I
ETHERNET II FRAME FORMAT

Preamble MAC dest MAC src 802.1Q tag (optional) Ethertype Payload FCS Interframe gap
7 bytes 6 bytes 6 bytes 4 bytes 2 bytes 42-1500 bytes 4 bytes 12 bytes

TABLE II
802.3 FRAME FORMAT

Preamble SOF delimiter MAC dest MAC src 802.1Q tag (optional) Length Payload FCS Interframe gap
7 bytes 1 byte 6 bytes 6 bytes 4 bytes 2 bytes 42-1500 bytes 4 bytes 12 bytes

The other Ethernet frame structure that is used today is
the IEEE 802.3 frame structure, followed by a Logical Link
Control (LLC) frame, standardized as IEEE 802.2 [3]. LLC
is the upper sublayer of the data link layer in the OSI model.
The structure of the IEEE 802.3 frame resembles the structure
of the Ethernet II frame with the difference that the Ethertype
field now represents the frame length, and a start of frame
delimiter is added (see Table II). The IEEE 802.3 frame
doesn’t need a type field, because an LLC header provides
Source and Destination Service Access Points (SSAP and
DSAP, respectively (see Table III)). A Service Access Pointis
a generic OSI Reference Model term, i.e. applies to all layers,
for the entity named by a connection-end-point-identifier at
the layer boundary.

TABLE III
LOGICAL L INK CONTROL FORMAT

DSAP SSAP Control Information
1 byte 1 byte 1-2 bytes M bytes (M ≥ 0)

III. A SHORT DESCRIPTION OF THERECURSIVE INTERNET

ARCHITECTURE

The Recursive Internet Architecture (RINA) described by
John Day in 2008 [4] [5] is a unified theory of networking.
RINA starts from the premise that networking is inter process
communication (IPC) and only IPC. From this premise, a
model of repeating layers of IPC arises. Here a layer is
a distributed application that provides IPC, called a DIF
(Distributed IPC Facility), to other distributed applications
(including other DIFs) over a certain scope. In other words,
DIFs recurse and provide IPC to one another. A DIF is
configured by a set of policies, so it operates well for a
given range of bandwidth and QoS. In the current internet
architecture, protocols were designed for a specific situation,
usually wired networks, which means a new protocol is needed
for each new situation, even though there is considerable
commonality in the functions/mechanisms used. This is one
of the main advantages of RINA. In RINA, there is separation
of mechanism (e.g. function) and policy. As a consequence,
this IPC model recognizes the 3 phases all communication
must progress through, is more secure than the current net-
working model, has inherent support for QoS, multihoming
and mobility without the need for extra protocols. In Figure1
an example with two DIFs is depicted.

A DIF consists of one or more IPC processes. As seen
in Figure 1, an IPC process consists of different components
that offer a different functionality (configurable by a certain
policy). These components are divided in three groups that
increase in complexity and decrease in frequency of use: Data
Transfer, Data Transfer Control, and Layer Management. The
functionality of a DIF is offered through the IPC API. This API
allows applications (an IPC process is also an application)to
allocate new flows with a certain Quality of Service (QoS),
Read/write data from/to these flows, and deallocate them
again. Applications can also register with a DIF so that they
are reachable and unregister when they should no longer be
reached.

All inter process communication (not only in RINA) goes
through three phases: Enrollment, allocation (or establish-
ment), and actual data transfer.

The enrollment phase creates, maintains, distributes and
deletes the information within a layer that is necessary to
create instances of communication. This includes setting ad-
dressing information into the appropriate directories androut-
ing tables, access-control rules are established. The enrollment
phase in the current internet architecture is there but has
often been ignored because this has to be performed as
configuration, or setup, often manually. Certain applications
are currently used for some aspects of this, such as DHCP.
More well-formed enrollment phases, similar to that found in
RINA, can be found in the IEEE 802.11 (WiFi) [6] and 802.1q
(VLAN) [1] environments. Enrollment in RINA is used by
an IPC Process when it wishes to join a DIF, or if it is the
first member, to create a new DIF. During enrollment in a
DIF, information specific for this DIF, such as the maximum
packet size, is exchanged between a member of the DIF and
the member that wants to join.

The allocation phase creates, maintains and deletes the
shared state necessary to support the functions of the data
transfer phase for a particular instance of communication.
This creates initial shared state in the communicating protocol
machines in order to support the functions of the protocol.
In RINA, the allocation phase is performed by the Flow
Allocator. Flow allocation is responsible for creating and
managing an instance of IPC, also known as aflow. In RINA,
the term flow is used to designate the construct seen by the user
of the DIF; within the DIF a connection exists between EFCP-
entities that may use connectionless or traditional connection
mechanisms. A flow allocation request is sent to an IPC



Fig. 1. The RINA Architecture.

process when an application requests a new flow. The receiving
application (or IPC process, which is also an application) can
decide to accept or reject the request for a new flow. The
application requesting the flow is notified of this result. Ifthe
flow allocation was successful, a port-id is assigned to the
application requesting the flow, which it can use for future
API calls. Flow Allocation also allocates an EFCP-instance
(Error and Flow Control Protocol instance) in the N-1 DIF,
which provides the actual data transfer. Each EFCP-instance
is identified by a connection-endpoint-id (CEP-id), which is
unique in the IPC process. Figure 2 shows the state after flow
allocation.

IPC 
Process 

IPC 
Process 

DIF N-1 

 

 

DIF N 

 

 

IPC 
Process 

IPC 
Process 

Port-id 

Data transfer 

N flow 

Fig. 2. After flow allocation.

Finally actual data transfer can happen. To achieve this,
RINA uses an Error and Flow Control Protocol (EFCP),
based on delta-t [7]. The Error and Flow Control Protocol
(EFCP) provides the necessary synchronization between two
IPC processes with each flow N. Delta-t is based on the
result that, for synchronization it is necessary and sufficient

to bound three timers: Maximum Packet Lifetime, Maximum
Delay on ACK, and Time to Complete Maximum Retries. It
encompasses Data Transfer, and Data Transfer Control, which
are connected to each other through a State Vector (SV).

Our investigation of the separating mechanism and policy
in this class of protocols revealed a natural cleavage between
control and data. Consequently, EFCP is really two simple
state machines coordinated through a state vector: Data Trans-
fer, which only does sequencing and fragmentation/reassembly
and Data Transfer Control for the feedback mechanisms, flow
and retransmission control. In RINA, a service like UDP is
merely Data Transfer without Data Transfer Control.

SDU Delimiting performs delimiting of SDUs (Service Data
Units). Delimiting is necessary so the identity of the SDU is
preserved, because the IPC process may find it necessary to
concatenate it with other SDUs, or fragment it.

SDU Protection protects the SDUs before transmitting them.
A variety of techniques can be used here, ranging from a
simple checksum to encryption, again, depending on the policy
enforced in the DIF, and exchanged during enrollment.

Protocol Data Units (PDUs) are sent between communi-
cating IPC processes and can be viewed as SDUs wrapped
by Protocol Control Information (PCI). PDUs that are ready
for transmission are sent to the Relaying and Multiplexing
component (RMT). The primary job of the RMT is to pass
PDUs to the correct DIF via an (N-1)-port-id based on the
information in the Forwarding Table, which is generated by
the Forwarding Table Generator. The Forwarding Table holds
entries mapping an address in this DIF (N) to a certain QoS



and one or more (N-1) port-ids. (Note how the port-id provides
isolation between layers.) If a PDU arrives on a (N-1) port
with an address that does not belong to this IPC process, it is
forwarded based on information in the forwarding table.

The remaining components are all layer management func-
tions. The Common Distributed Application Protocol (CDAP)
is used for this, which is a platform for building distributed
applications. CDAP consists of three parts: Common Applica-
tion Connection Establishment (CACEP), for initializing the
application connection. Auth for authenticating the correspon-
dent(s), and a protocol for performing fundamental operations
like create, delete, start, stop, write, read.

The Resource Information Base (RIB) is the local rep-
resentation of the view of the DIF in the IPC Process. It
can logically be viewed as a partially replicated distributed
database. For instance, information such as all state infor-
mation maintained by the IPC Tasks, the Flow Allocator,
Resource Allocator is maintained and stored here. Access to
the RIB is controlled by the RIB Daemon.

Resource Allocation uses information in the RIB to de-
termine the resource allocations for this IPC Process. Each
system also has a DIF Management System (DMS) that is
responsible for network management functions.

IV. I NTER PROCESS COMMUNICATION INETHERNET

In this section we will discuss inter process communication
in Ethernet. In the Recursive InterNet Architecture, the two
lowest (packet) layers of the current internet architecture
(Ethernet), the physical and data link layer, can be viewed
as one DIF. The same applies to the two layers above (IP and
TCP/UDP/RTP/...).

In Ethernet, there is no explicit enrollment phase. The ad-
dress is assigned to the network interface card at manufacture.
In RINA, an address is obtained when enrolling to a DIF. The
length of the address in the DIF is a matter of policy, and
will depend on the scope of the DIF. Also, the address only
has to be unique in the namespace of the DIF. By being a
globally unique ID, MAC addresses have often been used for
other purposes. Some which could compromise privacy.

In Ethernet II framing, an Ethertype is used [8]. The
Ethertype identifies the syntax of the encapsulated protocol.
Because the layer below needs to know the protocol of the
layer above, fields like this both here and in protocols like
IP have always been controversial as whether they are a layer
violation. Having an Ethertype per protocol assumes there is a
single flow between an address pair. There is no other field to
identify the connection-endpoint-id (CEP-id) of the flow. The
MAC address doubles as the one CEP-id.

When there is no explicit flow allocation phase, there is
an implicit agreement between nodes that all Protocol Data
Units (PDUs) will be accepted, and that the CEP-ids are fixed
and implicit. In Ethernet there are no dynamically assigned
port-ids that are assigned upon accepting a new flow.

With LLC (IEEE 802.2), the Ethertype field is unnecessary
and is used as a length field. Here, the Source and Destination
SAP are the CEP-ids. They are still fixed CEP-ids, and all

traffic that arrives will be accepted, but they allow more than
one flow between two communicating nodes to be differen-
tiated. Hence there is reason to suspect that a layer without
port-ids or its equivalent is a false layer boundary.

V. FLOW ALLOCATION IN THE UPPER LAYERS

In this section we will very briefly discuss how flow
allocation is performed in the transport layer.

UDP has the same problem as Ethernet. There is no flow
allocation phase, with no feedback mechanisms. There is
minimal requirement for synchronization of state. UDP should
have a flow allocation phase to allocate ports, but with UDP
the user of the layer has to know the UDP port number of
the application it wishes to communicate with. UDP requires
either manual configuration or some other protocol to allocate
a flow. The fact that UDP doesn’t have flow allocation allows
for a variety of possible attacks, since an attacker most
likely also knows the port number and no access control is
performed. Even if the attacker doesn’t know the port number,
there are only216 ports, and the ports can be scanned.

The problem with TCP is that it overloads the uses of the
TCP port, both as a port-id and as a CEP-id. This results
in the server having to rely on client generated identifiers to
distinguish flows rather than identifiers the server generated.

This means the port numbers are known up front, which
as said before, allows a variety of attacks. TCP does have
a synchronization phase, but there is no decoupling of the
flow allocation and the data transfer phase, which could
mean a TCP connection is ended during long times of no
traffic, although more traffic may follow, which would require
setting up a new TCP connection. This also introduces another
security risk, since there is no way to verify if the new
connection for the same “flow” was established by the same
user.

VI. T HE SHIM DIF OVER ETHERNET

In the case of the shim DIF over Ethernet, the shim IPC
process wraps the Ethernet layer with the IPC process API.
The goal is not to make legacy protocols provide full support
for RINA and so the shim DIF should provide no more
service or capability than the Ethernet layer provides. An
Ethernet shim DIF spans a single Ethernet segment. This
means relaying is done only on the MAC addresses. This also
means we assume the number of users of the same shim DIF is
small. It is not the case that all stations on an Ethernet segment
are by default members of the same shim DIF. Each shim DIF
is identified by a VLAN (IEEE 802.1Q) id, which is in fact
the shim DIF name. Each VLAN is a separate Ethernet Shim
DIF. All the traffic in the VLAN is assumed to be shim DIF
traffic. All members of a VLAN are assumed to be members
of the same shim DIF. Thus joining the VLAN is considered
enrolling in the shim DIF.

Because this Ethernet shim DIF does not use LLC, there
can only be a single user of the Ethernet shim DIF. Other
shim DIFs that use LLC may be defined later on. Therefore,
the only applications that can register in an Ethernet shim DIF



are IPC Processes. Moreover, since Ethernet doesn’t provide
explicit flow allocation, there can only be one instance of an
IPC Process registered at each Ethernet shim IPC Process.
There is also only one QoS cube, namely the unreliable QoS
cube.

The fields in the Ethernet header (see Table I) are translated
as follows in the shim DIF:

• Destination MAC address: The MAC address assigned to
the Ethernet interface the destination shim IPC Process
is bound to.

• Source MAC address: The MAC address assigned to the
Ethernet interface the source shim IPC Process is bound
to.

• 802.1q tag: The DIF name.
• Ethertype: Although it is not strictly required to have a

special Ethertype for the correct operation of the shim
DIF (since all the traffic in the VLAN is assumed to be
shim DIF traffic), it is handy to define an Ethertype for
RINA (if, for no other reasons, to facilitate debugging).
Therefore the Ethernet frames used within the shim
Ethernet DIF will use the 0xD1F0 value for the Ethertype
field.

• Payload: Carries the upper DIF SDUs. The maximum
length of the SDU must be enforced by the upper DIF,
since the Ethernet shim DIF doesn’t perform fragmenta-
tion and reassembly functions. The maximum length can
be higher if Jumbo frames are used.

Each shim IPC Process is assigned to an Ethernet interface.
The shim IPC Process will receive all the Ethernet frames
belonging to the VLAN of the DIF addressed to the MAC
address of that interface. The shim IPC Process needs the shim
IPC process AP name, the OS specific name of the Ethernet
interface to be bound to, and the shim DIF name, which is in
fact the VLAN id, in order to operate effectively.

Instead of implementing its own directory mechanism, the
Ethernet shim DIF reuses ARP in request/response mode to
perform this function. ARP resolves a network layer address
into a link layer address; that is, in the context of the shim
DIF, mapping the application process (AP) name to a shim
IPC Process address, exactly the function that the directory in
RINA provides. Figure 3 shows where the shim IPC process is
located with respect to the ARP protocol machine and Ethernet
layer.

When an IPC Process registers (“register”) with the shim
IPC process, it will pass its naming information to the shim
IPC process. Depending on the configuration the operation
is accepted or denied. When the application is registered
the shim IPC processs ARP cache gets populated with a
static entry, mapping the AP name to the MAC address of
the interface the shim IPC Process is bound to. When an
application unregisters (“unregister”), the shim IPC process
removes the corresponding static entry from the ARP cache,
so future queries of the application name are ignored.

For IPC communication, the state diagram in Figure 4 is
used. When an IPC process (source, A in Figure 4) wants
to communicate with another IPC process (destination, B in

Fig. 3. The shim IPC process location

Figure 4), it uses the allocateRequest primitive. If there is
already a flow established to the destination application (there
is already a port-id, in the ALLOCATED state), or we are
currently trying to setup a flow (there is also already a port-id
and the port-id is in the INITIATOR ALLOCATE PENDING
state), a negative reply is returned to the top IPC process.
If there is an entry in the ARP table for the destination
application, the shim IPC process creates a new port-id, not
currently in use in the namespace of the shim IPC process and
a positive reply is returned to the top IPC process. The port-id
transitions to the ALLOCATED state. If there isn’t one, again
the shim IPC process creates a new port-id, not currently in
use in the namespace of the shim IPC process and an ARP
request is generated. The port-id transitions to the INITIATOR
ALLOCATE PENDING state.

Fig. 4. The shim IPC process state diagram

If the port-id is in the INITIATOR ALLOCATE PENDING
state, and an ARP response arrives, a positive reply is gen-
erated, which returns the port-id to the top IPC process. The
directory is populated with a new entry, mapping destination
application to MAC address. In this case the port-id transitions
to the ALLOCATED state. If the port-id is in the ALLO-
CATED state, and an ARP response arrives, the directory gets
updated with the new mapping of application name to MAC



address.
If the port-id is in the INITIATOR ALLOCATE PENDING

state, and an ARP request arrives from the application that we
are trying to reach, the port-id transitions to the ALLOCATED
state. This solves the race condition where both applications
are trying to reach each other at the same time.

When the shim IPC Process receives an Ethernet frame, it
checks if it has seen a frame from the sender before. If this is
the case, and the corresponding port-id is in the ALLOCATED
state, the SDU is delivered on the port-id corresponding to this
flow. If this is not the case, the packet is queued and a port-id
is created and it transitions to the RECIPIENT ALLOCATE
PENDING state. A message requesting the creation of a new
flow is sent to the top IPC process, with the newly created
available port-id.

If the top IPC process accepts the new flow, it calls allo-
cateResponse; any queued frames are delivered to the destina-
tion application. The port-id transitions to the ALLOCATED
state. If the allocateResponse is negative the flow creation
has failed and reason indicates the failure reason, all future
Ethernet frames from this source MAC address are dropped,
until the source application deallocates the flow for this port-
id. The port-id transitions to the NULL state in this case.

When a port-id transitions to NULL (because of a deallo-
cation call or the shim IPC process wishes to deallocate all
resources concerning the port-id), all corresponding datais
removed. This includes the port-id and corresponding state, a
queue if there is one.

When the top IPC process calls write on a port-id and the
port-id is in the ALLOCATED state, the shim IPC process will
create an Ethernet frame and send the SDU. Likewise, when
the top IPC process wants to read an SDU from a port-id, and
the port-id in the ALLOCATED state, the shim IPC process
will wait for the next Ethernet frame to arrive and deliver it.

VII. RINA MIGRATION STRATEGY

RINA can only be of practical use when there is a migration
strategy available. Migrating from IPv4 to RINA is easier than
migrating from IPv4 to IPv6 using the IETF recommendations.
IPv6 was not designed for backward compatibility with IPv4.
IPv4 and IPv6 occupy the same place in a fixed protocol stack.
Since DIFs are not in a fixed place in the protocol stack,
more options are available for a phased adoption. As shown
before, Ethernet can be seen as a DIF in RINA with limited
capabilities. RINA can be used above Ethernet to allow RINA
applications to communicate seamlessly over Ethernet, using
the shim DIF, while allowing existing applications that make
use of Ethernet to keep on communicating. This also allows
reuse of existing hardware.

There is also a shim DIF available for TCP/IP. As with
Ethernet, this allows users to run RINA on top of TCP/IP,
which allows using existing IP links as a transport medium. It
also allows using RINA below TCP/IP, where it can provide
network services to TCP/IP hosts, or to connect IP networks.
Internet applications on a RINA DIF can be accessed trans-
parently from the Internet and vice-versa with this shim DIF.

A backbone network could be built using RINA, supporting
both types of upper layers. Since RINA does not depend
on globally-unique IP addresses, a single IP address could
function as a gateway to a RINA network in which applications
communicate using names.

More importantly, RINA offers the faux sockets API. This
API is a wrapper around the existing socket API, which means
that applications can be recompiled using the faux sockets
API, which makes then RINA enabled. Of course, since the
application still uses the old socket API, it cannot make
use of the advantages RINA has to offer. That’s why RINA
native applications should be developed and used, or existing
applications should be modified, which offer better security,
QoS, ... This way, applications can move away from TCP/IP,
and an easier migration is possible than transitioning from
IPv4 to IPv6.

VIII. C ONCLUSION

We discussed RINA, the Recursive InterNetwork Architec-
ture, which is a clean slate architecture with a layered design.
In this design, the two lowest layers of the current architecture,
commonly referred to as Ethernet, can be viewed as a DIF in
RINA. Although Ethernet can be viewed as a layer in the
current internet architecture, as a DIF in RINA it would be
incomplete because it lacks port-ids. Without port-ids, a layer
requires a protocol-id field to identify the syntax of the proto-
col in the layer above. This choice also limits configurations
to a single instance of a given protocol, i.e. only one IP above
Ethernet. This complicates so-called virtualization schemes
and compromises security. Interestingly, Ethernet with LLC
does form a complete layer, minimizing the information shared
and not requiring central assignment of port-id values. This
would seem to indicate that a complete layer that minimizes
the knowledge that one layer must know about the layer above
requires the port-id concept for isolation. This would imply
that IP and Ethernet without LLC are ill-formed layers in an
architecture, while Ethernet with LLC and TCP are at least
better-formed layers. (Note that TCP’s overloading of the port-
ids does compromise security.)

In this paper, we presented the shim DIF over Ethernet. This
shim DIF emulates flow allocation, presenting the RINA API
to other IPC processes, which makes for transparent use. With
the shim DIF in place, migration from the current internet
architecture can happen gradually to the recursive internet
architecture, which offers reliable data transfer with explicit
flow allocation, and access control. Applications can make
use of RINA to extend their capabilities, and make use of
the inherent QoS, security, multihoming, ...

IX. FUTURE WORK

We are currently developing a prototype in the IRATI
project, part of the Future Internet Research and Experimenta-
tion (FIRE) objective of the Seventh Framework Programme
(FP7). This prototype will use the shim DIF over Ethernet.
This prototype will allow us to test the functionality of the
shim DIF, and perform experimentation with RINA.



If the current shim DIF over Ethernet proves to be too
limiting, other shim DIFs over Ethernet might be defined
that make use of LLC, and other IEEE legacy protocols. We
will also develop a shim DIF over 802.11, to allow as many
applications as possible to make use of the RINA protocol
stack.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the IRATI project (Grant 317814), part of the Future
Internet Research and Experimentation (FIRE) objective ofthe
Seventh Framework Programme (FP7).

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks: Media Access
Control (MAC) Bridges and Virtual Bridged Local Area Networks,” IEEE
Std. 802.1Q-2011, 2011.

[2] “Part 2: Logical Link Control,” IEEE Std. 802.3-2008, 1998.
[3] “Part 3: Carrier sense multiple access with collision detection

(CSMA/CD) access method and physical layer specifications,” IEEE Std.
802.2-1998, 2008.

[4] J. Day, Patterns in network architecture: a return to fundamentals.
Prentice Hall, 2008.

[5] E. Trouva, E. Grasa, J. Day, I. Matta, L. T. Chitkushev, P.Phelan, M. P.
de Leon, and S. Bunch, “Is the internet an unfinished demo? meet rina!”
2010.

[6] “IEEE Standard for Information technology: Telecommunications and
information exchange between systems Local and metropolitan area
networks–Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,”IEEE Std.
802.11-2012, 2012.

[7] R. W. Watson, “Timer-based mechanisms in reliable transport protocol
connection management,”Computer Networks (1976), vol. 5, no. 1, pp.
47–56, 1981.

[8] IEEE, “Registration authority programs,” 2013. [Online]. Available:
https://standards.ieee.org/develop/regauth/ethertype/


