1	Greenhouse gas emissions from rice paddy soils amended with a plant microbial fuel cell.
2	
3	Jan B. A. Arends ¹ , Evelyne Blondeel ¹ , Pascal Boeckx ² , Willy Verstraete ¹ , Korneel Rabaey ¹ , Nico Boon ¹ *
4	
5	¹ Laboratory of Microbial Ecology and Technology (LabMET),
6	² Isotope Bioscience Laboratory (ISOFYS),
7	Ghent University, Coupure Links 653, B-9000 Gent, Belgium
8	*) Email: Nico.Boon@ugent.be
9	Microbiol metabolism in a mixed sulture anode of microbiol fuel call fed with mixed courses of
10	Microbial metabolism in a mixed culture anode of microbial fuel cell fed with mixed sources of
11	organic carbon largely resembles the metabolism found in anaerobic environments (digesters,
12	sediments) where CH_4 is the end product instead of electrical current. It is hypothesized that current
13 14	generation is a viable competitor to steer or control CH_4 emissions from (cultivated) wetlands. It has
14 15	already been shown that a plant-MFC is capable of efficiently converting organic carbon derived from rhizodeposition into an electrical current. To understand the interaction between methanogenic
16	metabolism and current generation in waterlogged sediments, several microcosm studies have been
10	carried out.
18	carried out.
19	Firstly, it was determined that granular conductive carbon mixed in a 3/3 volume ratio in the sediment
20	yielded the best current production in planted sediment-MFCs. Secondly, microcosms with and
21	without rice plants, that contained various amounts of exogeneous organic carbon, were operated
22	with or without external electrical circuit. Current and power production, electrode potentials, N ₂ O
23	and CH_4 emissions, plant growth, soil organic carbon and microbial community structure were
24	examined.
25	
26	The results showed that current generating metabolism can compete with methanogenic
27	metabolism when the former has a 'head-start'. Indicating that when the soil contains a low
28	concentration of organic carbon or has recently experienced a period with a high redox potential but
29	the electrical circuit is in place with the correct microorganisms, current generation is able to
30	outcompete biological methanogenisis. However, when interrupting the electrical circuit or supplying
31	an excess of organic carbon, methanogenic metabolism is able to win the competition.
32	
33	Hydrogen was the most important intermediate as obligate hydrogenotrophic methanogens were
34	abundantly present while mixotrophic or acetotrophic methanogens were hardly detected in the
35	bulk soil or on the electrodes.
36	
37	Overall, current generation with plant-MFCs is an interesting option to control CH ₄ emissions from
38	wetlands but needs to be applied in combination with other strategies.