Genome sequences of all *Chlamydia psittaci* genotype reference strains

Van Lent S.¹, Piet J^2 ., Beeckman, D.¹, van der Ende A.², Bavoil P.³, Myers G.⁴, Vanrompay D^1 ., Pannekoek Y^2 .

Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium¹; Academic Medical Center, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Amsterdam, the Netherlands²; Department of Microbial Pathogenesis, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA³; Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, Maryland 21201, USA⁴

Chlamydia psittaci is a Gram-negative, obligate intracellular bacterium causing respiratory disease in birds but also in mammals. The infection is transmittable to humans causing pneumonia. Sequencing of the *C. psittaci* major outer membrane protein (*ompA*) gene identified 9 genotypes (A to F, E/B, M56, WC). Genotypes cluster with host species. For instance, genotype A is associated with *Psittaciformes* (cockatoos, parrots, parakeets, lories) while genotype B and D are associated with pigeons and turkeys, respectively. Genotypes A and D are more virulent for birds and humans compared to genotype B. The molecular mechanisms behind these biological differences are not understood.

We sequenced the genomes of all *C. psittaci* genotype reference strains (84/55; genotype A, CP3; genotype B, GR9; genotype C, NJ1; genotype D, MN; genotype E, VS225; genotype F, WS/RT/E30; genotype E/B, M56; genotype M56 and WC; genotype WC). Sequencing was performed using shotgun 454 Titanium (Roche) pyrosequencing according to the manufacturer's recommendations. *De novo* and reference mapping assemblies were performed with Newbler (version 2.3; 454 Life Sciences, Branford, CT). Identification of protein-coding genes and genome annotation has been done using the IGS prokaryotic annotation pipeline.

Table 1 is a summary of the features of the genomes. Comparative genomics analysis of these genomes will give us insight in the differences in pathogenicity, host tropism and tissue specificity.

Genotype	Strain	Host	Length (bp)	Number of putative coding sequences	%GC	Plasmid Y/N
А	84/55	Amazona sp.	1172064	1124	39	Y
В	CP3	Columba livia ^a	1168150	1121	39	Y
С	GR9	Anas platyrhynchos	1147152	1045	39.1	Ν
D	NJ1	Meleagris gallapavo	1161434	1049	39	Y
E	MN	Homo sapiens	1168490	1040	39	Y
F	VS225	Parakeet	1157385	1113	39	Y
E/B	WS/RT/E30	Anas platyrhynchos	1140789	1048	39	Y
M56	M56	Ondatra zibethicus	1161385	1046	38.7	Y
WC	WC	Bos taurus	1172265	1050	39.1	Y

^aIsolated from an urban pigeon