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Abstract

We present a novel parameterized model order reduction
technique applicable to the Partial Element Equivalent Circuit
method that is able to generate parametric reduced order mod-
els, stable and passive by construction, over a user defined de-
sign space. Overall stability and passivity of the parametric re-
duced order model are guaranteed by an efficient and reliable
combination of traditional passivity-preserving model order re-
duction methods and interpolation schemes based on a class of
positive interpolation operators. A pertinent numerical exam-
ple validates the proposed parameterized model order reduction
approach.

1 Introduction

Nowadays, full-wave electromagnetic (EM) methods [1–3]
have become fundamental analysis and design tools for a vari-
ety of complex high-speed systems. Large systems of equations
are usually generated by EM methods and model order reduc-
tion (MOR) techniques are consequently utilized to reduce the
resulting high model complexity and computational cost of the
simulations [4,5]. Over the last years, the development of a re-
duced order model (ROM) of the EM system has become a topic
of intense research. With respect to other full-wave techniques,
the Partial Element Equivalent Circuit (PEEC) method is able
to transform the EM system under examination into a passive
RLC equivalent circuit [2, 6]. However, inclusion of the PEEC
model directly into a circuit simulator may be computationally
intractable for complex structures, because the number of cir-
cuit elements can be in the tens of thousands. MOR techniques
become necessary to reduce the size of a PEEC model [4,5].

Optimization and design space exploration are usually per-
formed during a typical design process that consequently re-
quires multiple simulations for different design parameter val-
ues. Traditional MOR techniques perform model reduction
only with respect to frequency and such design activities call
for parameterized model order reduction (PMOR) methods that
can reduce large systems of equations with respect to frequency
and other design parameters of the circuit, such as geometrical
layout or substrate characteristics.

Different PMOR techniques have been developed over the
last years. The multiparameter moment-matching methods pre-
sented in [7,8] use a subspace projection approach and guaran-
tee the passivity. However, the resulting reduced models usu-
ally suffer from oversize when the number of moments to match
is high, either because high accuracy (order) is required or be-
cause the number of parameters is large. Some PMOR tech-
niques are based on statistical performance analysis [9,10].

This paper proposes a PMOR technique applicable to the

PEEC method that provides parametric reduced order models,
stable and passive by construction, over the design space of in-
terest. It is based on the reliable and efficient combination of
traditional passivity-preserving MOR methods [4, 5] and inter-
polation schemes based on a class of positive interpolation op-
erators [11]. In [12] a parametric macromodeling method has
been recently proposed that exploits the combination of rational
identification and positive interpolation schemes to build pa-
rameterized macromodels, stable and passive by construction,
over the design space of interest, starting from multivariate data
samples of the input-output system behavior and not from sys-
tem equations as in all PMOR techniques previously discussed.

This paper is organized as follows. Section II describes the
modified nodal analysis (MNA) equations of the PEEC method.
Section III describes the proposed PMOR method. Finally, a
pertinent numerical example is presented in Section IV, validat-
ing the proposed PMOR technique.

2 PEEC formulation
The PEEC method [2] is based on the integral equation form

of Maxwell’s equations and is able to provide a circuit interpre-
tation of the Electric Field Integral Equation, thereby allowing
to handle complex problems involving both circuits and elec-
tromagnetic fields [2,6,13,14].

Once the meshing process of conductors and dielectrics has
been performed,ni volume cells where currents flow andnn

surface cells where charge is located are generated. The resul-
tant number of elementary cells of conductors and dielectrics
is nc andnd, respectively and that of electrical nodes isnn. If
the MNA approach [15] is used, an admittance representation
Y(s) is generated withnp output currentsip(t) under voltage
excitationvp(t)

C
dx(t)

dt
= −Gx(t) + Bu(t) (1a)

ip(t) = LT x(t) (1b)

where the global number of unknowns isnu = ni + nd + nn +
np, x(t) ∈ <nu×1, C ∈ <nu×nu , G ∈ <nu×nu andB = L,
B ∈ <nu×np . This is annp-port formulation, whereby the only
sources are the voltage sources at thenp-port nodes.

2.1 Properties of PEEC formulation Stability and passivity
are fundamental properties for a model that is used in a simu-
lator that performs transient analysis. While a passive system
is also stable, the reverse is not necessarily true [16]. Some
properties of the real matricesB, L, C, G are fundamental for
the passivity (or positive-realness) [17] of the PEEC admittance
matrix Y(s) = LT (sC + G)−1B. A first relevant property
guaranteed by construction isB = L. Since the internal block



submatrices of the matricesC, G are symmetric nonnegative
definite matrices by construction [18], it is straightforward to
prove thatC, G satisfy the following properties

C = CT ≥ 0 (2a)

G + GT ≥ 0 (2b)

The properties of the PEEC matricesB = L, C = CT ≥
0, G+GT ≥ 0 guarantee the passivity of the PEEC admittance
model [19].

3 Parameterized model order reduction
In this section we describe a PMOR technique that is able

to generate parametric reduced order models, stable and pas-
sive by construction, over a user defined design space. These
parametric reduced models depend on frequency and N design
parametersg = (g(1), ..., g(N)), such as the layout features of
a circuit or the substrate parameters. The different steps of the
proposed PMOR method are shown by a flowchart in Fig. 1.
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Figure 1: Flowchart of the proposed PMOR method.

3.1 Root ROMs The proposed PMOR technique starts com-
puting a set of stable and passive reduced order models of the
PEEC admittance matrixY(s) using the Laguerre-based MOR
algorithm [5] for different design parameters values in the de-
sign space{gk}Ktot

k=1 . TheS-representation is used to describe
the broadband frequency behavior of microwave systems, since,
at microwave frequencies theY-representation cannot be accu-
rately measured because the required short-circuit tests are diffi-
cult to achieve over a broad range of frequencies. Consequently,
a transformation fromY-representation intoS-representation is
performed, while preserving stability and passivity by the pro-
cedure described in [20]. We recall that the bounded-realness
property represents the passivity property for systems described

by scattering parameters [17]. A systemS(s) is bounded-real
[17] if

1. S(s∗) = S∗(s) for all s, where “∗” is the complex conju-
gate operator.

2. S(s) is analytic in<e(s) > 0.

3. I− ST (s∗)S(s) ≥ 0 ; ∀s : <e(s) > 0.

In this paper we refer to these initialS-reduced order models
as root ROMs. The construction of theroot ROMsresults in
a family of stable and passive univariate reduced models re-
lated to a specific set of points in the design space. The design
spaceD(g) is defined as the parameter spaceP(s, g) without
frequency. The parameter spaceP(s, g) contains all parame-
ters(s, g). If the parameter space is N-dimensional, the design
space is (N-1)-dimensional.

3.2 2-D PMOR First, we discuss the representation of a bi-
variate reduced order model and afterwards the generalization
to more dimensions. Once theroot ROMsare available, the next
step is to find a bivariate reduced modelSr(s, g) that preserves
stability and passivity over the entire design space. The bivari-
ate reduced model we adopt can be written as

Sr(s, g) =
K1∑

k=1

Sr(s, gk)`k(g) (3)

whereK1 is the number of theroot ROMs, and the interpola-
tion kernels̀ k(g) are scalar functions satisfying the following
constraints

0 ≤ `k(g) ≤ 1, (4)

`k(gi) = δk,i, (5)
K1∑

k=1

`k(g) = 1. (6)

A suitable choice is to select the set`k(g) as in piecewise linear
interpolation. The reduced model in (3) is a linear combination
of stable and passive univariate reduced models by means of a
class of positive interpolation kernels [11]. Stability is automat-
ically preserved in (3), since it is a weighted sum of stable ratio-
nal models ofs. The proof of the passivity-preserving property
of the proposed PMOR scheme over the entire design space is
given in Section 3.4.

3.3 (N+1)-D PMOR The bivariate formulation (3) can be
easily generalized to the multivariate case by using multivari-
ate interpolation methods, e.g. by means of tensor product [21].
The parametric reduced model can be written as

Sr(s, g) = (7)

=
K1∑

k1=1

· · ·
KN∑

kN =1

Sr(s, g(1)
k1

, ..., g
(N)
kN

)`k1(g(1)) · · · `kN
(g(N))



where`ki(g
(i)), i = 1, ..., N satisfy all constraints (4)-(6). A

suitable choice is to select each set`ki
(g(i)) as in piecewise

linear interpolation, which yields to an interpolation scheme in
(7) called piecewise multilinear. This multivariate interpolation
method can be also seen as a recursive implementation of1-D
piecewise linear interpolation. We remark that the interpolation
process is local, because the parametric reduced modelSr(s, g)
at a specific point̂g in the design spaceD(g) only depends on
theroot ROMsat the vertices of the hypercube that contains the
point ĝ. An hypercube inRN has2N vertices,2N increases ex-
ponentially with the number of dimensions, but it still remains
much smaller than the number of data pointsK1 ·K2 · ... ·KN

in the fully filled design space grid. This multivariate interpo-
lation method belongs to the general class of positive interpo-
lation schemes [11]. We note that the interpolation kernels we
propose only depend on the design space grid points and their
computation does not require the solution of a linear system to
impose an interpolation constraint.

The proposed PMOR technique is general and any interpola-
tion scheme that leads to a parametric reduced model composed
of a weighted sum ofroot ROMswith weights satisfying (4)-(6)
can be used.

3.4 Passivity-Preserving Interpolation In this section, we
prove that the proposed PMOR method preserves passivity
(bounded-realness) over the entire design space. Concerning
the root ROMs, they are bounded-real by construction. Con-
dition 1) is preserved in (3) and the proposed multivariate ex-
tension (7), since they are weighted sums with real nonnegative
weights of systems respecting this first condition. Condition
2) is preserved in (3),(7), since they are weighted sums of sta-
ble rational reduced models ofs. Condition 3) is equivalent to
‖S(s)‖∞ ≤ 1 (H∞ norm) [22], i.e., the largest singular value
of S(s) does not exceed one in the right-halfs-plane. Using this
equivalent condition, in the bivariate case we can write

‖Sr(s, g)‖∞ ≤
K1∑

k=1

‖Sr(s, gk)‖∞ `k(g) ≤
K1∑

k=1

`k(g) = 1

(8)

Similar results are obtained for the proposed multivariate case
(7), so condition 3) is satisfied by construction using our PMOR
method. We have demonstrated that all three bounded-realness
conditions are preserved in the novel PMOR algorithm, using
the sufficient conditions (4)-(6) related to the interpolation ker-
nels.

4 Numerical example
In this example a microstrip line with a dispersive DriClad di-

electricεr = 4.1 and a length̀ = 2 cm has been modeled. Its
cross section is shown in Fig. 2. The dielectric and conductor
thickness values areh = 600 µm andt = 100 µm, respec-
tively. A bivariate reduced order model is built as a function
of frequency and the width of the stripW . Their corresponding
ranges arefreq ∈ [1 ·103−4 ·109] Hz andW ∈ [50−250] µm,
respectively.

The PEEC method is used to compute theC, G, B, L ma-
trices in (1a)-(1b) for30 values of the width. The order of all

w

t

h

Figure 2: Cross section of the microstrip.

original PEEC models is equal tonu = 2532. Then, reduced
models have been built for12 values of the width by means of
the Laguerre-based MOR algorithm, each with a reduced order
q = 20. A Y − S transformation has been performed choosing
Z0,1 = Z0,2 = 50 Ω, which results in a set of12 root ROMs. A
bivariate reduced modelSr(s,W ) is obtained by piecewise lin-
ear interpolation of theroot ROMs. Fig. 3 shows the magnitude
of the parametric reduced model ofS11(s, W ). Fig. 4 shows
the magnitude of the parametric reduced model ofS21(s, W )
for the width valuesW = {55, 150, 245} µm. These specific
width values have not been used in theroot ROM generation
process, nevertheless an excellent agreement between model
and data can be observed. The maximum absolute error of the
bivariate reduced model of theS matrix over a dense reference
grid composed of200 × 30 (freq, W ) samples is bounded by
−60.57 dB. As clearly seen, the parametric reduced model cap-
tures very accurately the behavior of the system, while guaran-
teeing stability and passivity properties over the entire design
space.
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Figure 3: Magnitude of the bivariate reduced model of
S11(s, W ).

5 Conclusions
We have presented a new parameterized model order reduc-

tion technique applicable to PEEC analysis. The overall stabil-
ity and passivity of the parametric reduced order model is guar-
anteed by an efficient and reliable combination of traditional
passivity-preserving MOR methods and positive interpolation
schemes. The numerical results show the capability of the pro-
posed PMOR approach of generating very accurate parametric
reduced models, while guaranteeing stability and passivity over
the entire design space of interest.
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Figure 4: Magnitude of the bivariate reduced model of
S21(s,W ) (W = {55, 150, 245} µm).
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