Passivity-preserving Parameterized Model Order Reduction for PEEC Based Full Wave Analysis
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Abstract PEEC method that provides parametric reduced order models,

We present a novel parameterized model order reductiGiflle and passive by construction, over the design space of in-
technique applicable to the Partial Element Equivalent Circufrest: It is based on the reliable and efficient combination of
method that is able to generate parametric reduced order még@ditional passivity-preserving MOR methods [4, 5] and inter-
els, stable and passive by construction, over a user defined 88lation schemes based on a class of positive interpolation op-
sign space. Overall stability and passivity of the parametric r&/ators [11]. In [12] a parametric macromodeling method has
duced order model are guaranteed by an efficient and reliatf}f§&n recently proposed that exploits the combination of rational
combination of traditional passivity-preserving model order rédentification and positive interpolation schemes to build pa-
duction methods and interpolation schemes based on a clas§@péterized macromodels, stable and passive by construction,
positive interpolation operators. A pertinent numerical exanfVer the design space of interest, starting from multivariate data

ple validates the proposed parameterized model order reductigHMPIes of the input-output system behavior and not from sys-
approach. tem equations as in all PMOR techniques previously discussed.

This paper is organized as follows. Section Il describes the
1 Introduction modified nodal analysis (MNA) equations of the PEEC method.

. ection 1ll describes the proposed PMOR method. Finally, a
Nowadays, full-wave electromagnetic (EM) methods [1_3$ertinent numerical example is presented in Section IV, validat-

have become fupdamental analysis and design tools for av HE the proposed PMOR technique.

ety of complex high-speed systems. Large systems of equation

are usually generated by EM methods and model order redut- PEEC formulation

tion (MOR) techniques are consequently utilized to reduce the The PEEC method [2] is based on the integral equation form

resulting high model complexity and computational cost of thef Maxwell’s equations and is able to provide a circuit interpre-

simulations [4,5]. Over the last years, the development of a reation of the Electric Field Integral Equation, thereby allowing

duced order model (ROM) of the EM system has become a toptie handle complex problems involving both circuits and elec-

of intense research. With respect to other full-wave techniquasomagnetic fields [2, 6,13, 14].

the Partial Element Equivalent Circuit (PEEC) method is able Once the meshing process of conductors and dielectrics has

to transform the EM system under examination into a passigeen performedsy; volume cells where currents flow ang,

RLC equivalent circuit [2,6]. However, inclusion of the PEECsurface cells where charge is located are generated. The resul-

model directly into a circuit simulator may be computationallitant number of elementary cells of conductors and dielectrics

intractable for complex structures, because the number of cign, andngy, respectively and that of electrical nodesuis. If

cuit elements can be in the tens of thousands. MOR techniqug® MNA approach [15] is used, an admittance representation

become necessary to reduce the size of a PEEC model [4,5] (s) is generated wittn,, output currentd, (t) under voltage
Optimization and design space exploration are usually pegxcitationv,,(¢)

formed during a typical design process that consequently re-

quires multiple simulations for different design parameter val- cdx®)  _ _Gx(t) + Bu(t) (1a)
ues. Traditional MOR techniques perform model reduction dt
only with respect to frequency and such design activities call i,(t) = LTx(t) (1b)

for parameterized model order reduction (PMOR) methods that ]
can reduce large systems of equations with respect to frequerféjere the global number of unknownsiis = n; +nq +n, +

and other design parameters of the circuit, such as geometri€at x(t) € 3“3"“ _C € X G € %"X" andB =L,
layout or substrate characteristics. B € R"«*"», This is ann,,-port formulation, whereby the only

Different PMOR techniques have been developed over t9Urces are the voltage sources attheport nodes.

last years. The multiparameter moment-matching methods pig4  Properties of PEEC formulation Stability and passivity
sented in [7, 8] use a subspace projection approach and guarare fundamental properties for a model that is used in a simu-
tee the passivity. However, the resulting reduced models udator that performs transient analysis. While a passive system
ally suffer from oversize when the number of moments to matal also stable, the reverse is not necessarily true [16]. Some
is high, either because high accuracy (order) is required or bgroperties of the real matricd, L, C, G are fundamental for
cause the number of parameters is large. Some PMOR teche passivity (or positive-realness) [17] of the PEEC admittance
niques are based on statistical performance analysis [9,10]. matrix Y(s) = L7 (sC + G)~'B. A first relevant property
This paper proposes a PMOR technique applicable to tlyuaranteed by construction’ = L. Since the internal block



submatrices of the matricds, G are symmetric nonnegative by scattering parameters [17]. A syst&fts) is bounded-real
definite matrices by construction [18], it is straightforward td17] if
prove thatC, G satisfy the following properties
1. S(s*) = S*(s) for all s, where *%” is the complex conju-
gate operator.
c=Cc">0 (2a) _ o
G+GT >0 (2b) 2. S(s) is analytic inRe(s) > 0.
_ T * > . .

The properties of the PEEC matricBs = L, C = CT > 3. I=87(s7)S(s) 2 0; s : Re(s) > 0.
0, G+GT > 0 guarantee the passivity of the PEEC admittanc

model [19]. fh this paper we refer to these initigtreduced order models

asroot ROMs The construction of theoot ROMsresults in

3 Parameterized model order reduction a family of stable and passive univariate reduced models re-
In this section we describe a PMOR technique that is ablated to a specific set of points in the design space. The design

to generate parametric reduced order models, stable and p&gaceD(g) is defined as the parameter spafs, g) without

sive by construction, over a user defined design space. Thdeguency. The parameter spa@gs, g) contains all parame-

parametric reduced models depend on frequency and N dest§fs(s; ). If the parameter space is N-dimensional, the design

parameterg = (g1, ..., ¢™), such as the layout features ofspace is (N-1)-dimensional.

a circuit or the substrate parameters. The different steps of the& >.p PMOR First. we discuss the representation of a bi-

proposed PMOR method are shown by a flowchartin Fig. 1. y4riate reduced order model and afterwards the generalization
to more dimensions. Once theot ROMsare available, the next

Compute Y (s,g", ..., gt"') models by PEEC step is to find a bivariate reduced moégls, ) that preserves
for different design parameters values stability and passivity over the entire design space. The bivari-
ate reduced model we adopt can be written as

k.

K1
MOR step Y (5,9, .., ™) — Yo(5,0, .., o) Sr(s,g) = Z Sr(s, gk)lk(9) ®3)
k=1

PRERTITE /o 839k, 5 gy
for different design parameters values by means of

the Laguerre-based MOR algorithm where K is the number of theoot ROMs and the interpola-
tion kernelst,(g) are scalar functions satisfying the following
constraints

k.

Y (5,95, 000 g5V) — Sp(s, 957, ., V) transformation 0< l(g) <1, @)
ST(s,g,(cll),...,gg)) called root ROMs 0 (gl) — 5]”’ (5)

Ky
‘ > () =1. (6)

k=1

Parametric ROM S.,.(s, g) obtained by
(N

multivariate interpolation of root ROMs S,(s, gt ..., gV) A suitable choice is to select the $gtg) as in piecewise linear
interpolation. The reduced model in (3) is a linear combination
of stable and passive univariate reduced models by means of a
class of positive interpolation kernels [11]. Stability is automat-
ically preserved in (3), since it is a weighted sum of stable ratio-
nal models ofs. The proof of the passivity-preserving property

3.1 Root ROMs The proposed PMOR technique starts compf the proposed PMOR scheme over the entire design space is
puting a set of stable and passive reduced order models of {§igen in Section 3.4.

PEEC admittance matriX (s) using the Laguerre-based MOR o )

algorithm [5] for different design parameters values in the de3-3 (N+1)-D PMOR The bivariate formulation (3) can be
sign space{gk}f;“f. The S-representation is used to describeeasfly genera_llzed to the multivariate case by using multivari-
the broadband frequency behavior of microwave systems, sin@€ interpolation methods, e.g. by means of tensor product [21].
at microwave frequencies thé-representation cannot be accu-1ne parametric reduced model can be written as

rately measured because the required short-circuit tests are diffi-

cult to achieve over a broad range of frequencies. Consequently,

a transformation fronY -representation int8-representation is r\$:9) = )
performed, while preserving stability and passivity by the pro- K1 Kn

cedure described in [20]. We recall that the bounded-realness= > =+ D Sr(5,05)s oo )y (90) -+ iy (9™)
property represents the passivity property for systems described k=1 kn=1

Figure 1: Flowchart of the proposed PMOR method.



where/y, (¢7), i = 1,...,N satisfy all constraints (4)-(6). A B
suitable choice is to select each ggt(¢(")) as in piecewise
linear interpolation, which yields to an interpolation scheme in
(7) called piecewise multilinear. This multivariate interpolation
method can be also seen as a recursive implementatipof
piecewise linear interpolation. We remark that the interpolation
process is local, because the parametric reduced r8odelg)

at a specific poing in the design spacP(g) only depends on
theroot ROMsat the vertices of the hypercube that contains the
pointg. An hypercube iRN has2N vertices,2N increases ex-

ponentially with the number of dimensions, but it still remains_ . . . B
much smaller than the number of data poifts- Ks - ... - Ky original PEEC models is equal to, = 2532. Then, reduced

in the fully filled design space grid. This multivariate inter O_models have been built far2 values of the width by means of
y gn sp gna. P the Laguerre-based MOR algorithm, each with a reduced order

e i a5 o oSt T~ 0 A — S vansiomaton has been perfomed choosi
’ P §1 = Zy 2 = 50 €2, which results in a set df2 root ROMs A

propose only depend on the design space grid points and th Ivariate reduced mod8l,.(s, W) is obtained by piecewise lin-

computation does not require the solution of & linear system car interpolation of theoot ROMs Fig. 3 shows the magnitude
impose an interpolation constraint.

of the parametric reduced model 8f; (s, W). Fig. 4 shows

The proposed PMOR technique is general and any interpolﬁ]-e magnitude of the parametric reduced modeBaf(s, V)

tion scheme that leads to a parametric reduced model compo§8ldthe width valuesV — {55,150, 245} um. These specific
of aweighted sum abot ROMswith weights satisfying (4)-(6) width values have not been 7used7 in tio®t ROM generation

can be used. process, nevertheless an excellent agreement between model
3.4 Passivity-Preserving Interpolation In this section, we and data can be observed. The maximum absolute error of the
prove that the proposed PMOR method preserves passiviivariate reduced model of tfematrix over a dense reference
(bounded-realness) over the entire design space. Concerngrg composed 0200 x 30 (freg, W) samples is bounded by

the root ROMs they are bounded-real by construction. Con-60.57 dB. As clearly seen, the parametric reduced model cap-
dition 1) is preserved in (3) and the proposed multivariate exures very accurately the behavior of the system, while guaran-
tension (7), since they are weighted sums with real nonnegatiteeing stability and passivity properties over the entire design
weights of systems respecting this first condition. Conditiospace.

2) is preserved in (3),(7), since they are weighted sums of sta-

ble rational reduced models ef Condition 3) is equivalent to

Figure 2: Cross section of the microstrip.

IS(s)]|ec < 1 (Hs norm) [22], i.e., the largest singular value 04 \\“\\\\“‘\\\\\\Q\
of S(s) does not exceed one in the right-hadplane. Using this U § A
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Similar results are obtained for the proposed multivariate case  widin fum S
- . . e . . 250
(7), so condition 3) is satisfied by construction using our PMOR 0 Frequency [GHz]

method. We have demonstrated that all three bounded-realness
conditions are preserved in the novel PMOR algorithm, usingigure 3:
the sufficient conditions (4)-(6) related to the interpolation kers, , (s, ).
nels.

Magnitude of the bivariate reduced model of

4 Numerical example
In this example a microstrip line with a dispersive DriClad di5 Conclusions

electrice, = 4.1 and a lengtif = 2 cm has been modeled. Its  We have presented a new parameterized model order reduc-
cross section is shown in Fig. 2. The dielectric and conduct@bn technique applicable to PEEC analysis. The overall stabil-

thickness values are = 600 ym and¢ = 100 pm, respec-

ity and passivity of the parametric reduced order model is guar-

tively. A bivariate reduced order model is built as a functioranteed by an efficient and reliable combination of traditional

of frequency and the width of the strify. Their corresponding
ranges argreq € [1-103—4-10° Hz andW € [50 —250] um,
respectively.

The PEEC method is used to compute teG, B, L ma-

passivity-preserving MOR methods and positive interpolation

schemes. The numerical results show the capability of the pro-
posed PMOR approach of generating very accurate parametric
reduced models, while guaranteeing stability and passivity over

trices in (1a)-(1b) foi30 values of the width. The order of all the entire design space of interest.
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Figure 4: Magnitude of the bivariate reduced model of

Sa1(s, W) (W = {55,150,245} um).
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