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Abstract resenting such data [5]. For example, if spa-

In this paper a constraint-based
generalised object-oriented database
model is adapted to manage spatio-
temporal information. This adapta-
tion is based on the definition of a
new data type, which is suited to
handle both temporal and spatial in-
formation. Generalised constraints
are used to describe spatio-temporal
data, to enforce integrity rules on
databases, to specify the formal se-
mantics of a database scheme and to
impose selection criteria for informa-
tion retrieval.

Keywords: Spatio-temporal infor-
mation modelling, object-oriented
database model, constraints.

1 Introduction

A constraint can formally be seen as a re-
lationship, which has to be satisfied. With
respect to information and knowledge-based
systems, constraints are considered to be
an important and adequate means to define
the semantics and the integrity of the data
[1, 2, 3, 4, 5]. This is especially true for spa-
tial data and for temporal data. An instance
then belongs to the information or knowledge
base in as far as it satisfies all of its defining
constraints.

In practice, spatial data usually consist of line
segments, and therefore linear arithmetic con-
straints are particularly appropriate for rep-

tial geographical information is handled, con-
straints can be used to define the borders of
a country, a city, a region, to define a river,
a highway, etc. This is illustrated in Figure 1
and in Table 1, which respectively represent
a map of France (a real map will be defined
by many more constraints, but the basic ideas
are the same) and some geometrical descrip-
tions.
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Figure 1: Spatial information: map of France

Constraints can also be used to impose se-
lection criteria for information retrieval. In
this case, each constraint defines a condition
for the instances to belong to the result of
the retrieval [6, 7]. Every instance belongs
to the result in as far as it satisfies all the im-
posed criteria. For example, if someone wants
to retrieve all the young persons who live in
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Table 1: Geometrical descriptions.
Annecy:

(x> 10.9) A (z < 11.1) A (y > 6)

Ny <6.2)
Seine:
(y 1) A (y+0.72 =15.2) A (y = 9.6))
V((y <9.7)A(y— 0.2z =8) A (y = 9.6))
V((y <8)A(y+ 1.2z =—20) A (y >9.7))

Haute-Savoie:

(y— 0.1z < 8) A (y+ Tz < 89.6) A
(y— 0.4z <1.5)A(y+0.20 > 8.2) A
(y —4x > 36.7)

Annecy, two constraints can be imposed: one
that selects all the young persons and another
that selects all persons living in Annecy.

Spatio-temporal information can be fuzzy
and/or uncertain [8, 9]. There has been a con-
siderable amount of research regarding fuzzi-
ness in spatio-temporal databases [8, 10, 11,
12]. In this paper an extension of a constraint-
based fuzzy object-oriented database model
[3] is presented. This extension is based on
the introduction of a new data type and on the
generalisation of linear arithmetic constraints.

In the following section, the main concepts of
the fuzzy object-oriented database model are
introduced. The modelling of fuzzy spatio-
temporal information, by means of gener-
alised linear arithmetic constraints, is dis-
cussed in Section 3. Finally, the achieved
results and future developments are summa-
rized in the concluding section.

2 Generalised object-oriented
database model

The employed fuzzy object-oriented database
model [3, 14] has been obtained as a gener-
alisation of a crisp object-oriented database
model that is consistent with the ODMG
de facto standard [13]. The model is build
upon a generalised algebraic type system
and a generalised constraint system, which
are both used for the definition of so-called
generalised object schemes and generalised
database schemes.

2.1 Type system

To support the definition of types, a (gener-
alised) type system GT'S has been built [3]. In
order to be consistent with the ODMG data
model, the type system supports the gener-
alised definitions of literal types, object types
and reference types (which enable to refer to
the instances of object types and are used to
formalize the binary relationships between the
object types in the database scheme).

The semantic definitions of a type ¢ are based
on domains, sets of domains and sets of oper-
ators (cf. [15]) and are determined by:

a set of domains Dy

a designated domain dom; € D;

a set of operators O; and

a set of axioms A;

The designated domain dom; is called the do-
main of the type ¢ and consists of the set of
all the possible values for £. Every domain
value is represented by a fuzzy set, which is
defined over the domain of the corresponding
ordinary type t. In order to deal with “unde-
fined” values, a type specific bottom value L,
has been added to the domain of every ordi-
nary type t. The set of operators O; contains
all the operators that are defined on the do-
main dom;. The set of domains Dj; consists of
all the domains that are involved in the defi-
nition of the operators of O;, whereas the set
of axioms A; contains all the axioms that are
involved in the definition of the semantics of
O;.

The instances of a literal type, an object type
and a reference type are respectively called lit-
erals, objects and reference instances. Every
instance is characterised by its type and a do-
main value of this type (also called the state of
the instance). Objects either have a transient
or a persistent lifetime. Persistent objects are
additionally characterised by a unique object
identifier and a set of object names.



2.2 Constraint system

Constraints are used to enforce integrity rules
on databases (e.g. domain rules, referential in-
tegrity rules, etc.) and to specify the formal
semantics of the database scheme (e.g. the ap-
plicability of null values, the definition of keys,
etc.). To support the definition of constraints,
a (generalised) constraint system GCS has
been built. The set of generalised constraint
definitions supported by the constraint sys-
tem can be partitioned into the subset of con-
straints which can be applied to objects inde-
pendent of any existing database (e.g. domain
constraints) and the subset of “database” con-
straints which are defined for database objects
(e.g. referential integrity constraints) [3, 4].

The semantics of a constraint are defined by
means of a function p, which associates with
every object 0 a fuzzy set

{(True, rrue), (False, iparse)s
(—LBoolecma K1 Bootean ) }

which represents the extended possibilistic
truth value [16] of the proposition

“the object 0 satisfies the constraint p”

The membership degrees piryye and ppgise in-
dicate to which degree this proposition is re-
spectively true and false. The membership
degree 11| ..., denotes to which degree the
proposition is not applicable and is used to
model those cases where the constraint p is
(partially) not applicable to o.

2.3 Object schemes

The full semantics of an object are described
by an object scheme 0s. This scheme “in fine”
completely defines the object, now including
the definitions of the constraints that apply
to it. Each object scheme is defined by an
identifier id, an object type t, a “meaning”
M and a conjunctive fuzzy set of constraints
C’g, which all have to be applied onto the ob-
jects of type t independently of any existing
database

ds = [id, t, M, Cy]

The “meaning” M is provided to add com-
ments and is usually described in a natural
language. The membership degree of an ele-
ment of C’g indicates to which degree the con-
straint applies to the object type t.

An instance 6 of the object type f is defined
to be an instance of the object scheme os, if
it satisfies (with a truth value which differs
from {(False,1)}) all the constraints of C;
and all the constraints of the sets @E of the
object schemes, which have been defined for

the supertypes t of t.

2.4 Database schemes

A database scheme ds describes the full se-
mantics of the objects which are stored in
a generalised database and is defined by the
quadruple

ds = [id,B,M, OD]
in which id is the identifier of the database
scheme,

D = {osi|1 <i<mn,i,neNy}

is a finite set of object schemes, M is pro-
vided to add comments, and C p 18 a conjunc-
tive fuzzy set of “database” constraints, which
imposes extra conditions on the instances of
the object schemes of D (e.g. referential con-
straints between two object schemes). Again,
the membership degrees denote the relevance
of the constraints. Every generalized object
scheme in D has a different object type. If an
object scheme 65 € D is defined for an object
type t and ¢’ is a supertype of ¢, or ¢ is an ob-
ject type for which a binary relationship with
{ is defined, then an object scheme 65’ € D
has to be defined for ¢.

Every persistent instance 6 of an object
scheme 0s € D of a database scheme ds has to
satisfy all the constraints of C > with a truth
value which differs from {(False,1)}.

2.5 Database Model

The generalised database model is finally ob-
tained by extending the formalism with data
definition (DDL) and data manipulation op-
erators (DML) [14] (see Figure 2).
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Figure 2: Generalised object-oriented

database model: an overview

3 Modelling of spatio-temporal
information

The generalised object-oriented database
model presented in the previous section is ex-
tended in order to support the modelling of
both temporal and spatial information. This
is done by adding a new generic literal type
SpaceTime to the type system. The domain
of this new type consists of all the fuzzy sets
which are defined over the points of a given
geometrical space, which on its turn is defined
by a finite number of axes, which all have only
one point in common. Each axis either repre-
sents a time dimension or a spatial dimension.
Generalised linear arithmetic constraints are
defined and are used to describe the domain
values of the SpaceTime type.

In the next subsection the focus is on the
modelling of one-dimensional temporal infor-
mation. In this special case, the literal type
SpaceTime has to describe a temporal space,
which is defined by one time axis. The mod-
elling of spatial information is discussed in
Subsection 3.2. The cases of one-dimensional,
two-dimensional and n-dimensional spaces are
handled. The formal definition of the Space-
Time type is given in Subsection 3.3.

3.1 Modelling of temporal
information

In order to model temporal information, a
new data type TimeDim is defined. This
data type will not be included directly in the
database model, but is necessary for the defi-
nition of the type SpaceTime.

The domain of TimeDim is defined by

domTimeDim =RU {J—TimeDim}

where R denotes the set of real numbers and
L7imeDim represents an ‘“undefined” domain
value.

The considered operators are the binary op-
erators =, #, <, >, <, > +, —, * and / and
a null-ary operator 1, which always results
in an “undefined” domain value. When re-
stricted to the set domrimepim \ { LTimeDim },
all binary operators have the same semantics
as their counterparts within R?. For the bot-
tom value L7jmepim, the semantics are:

Vaoe domTimeDim - op (.73, J—Tz'meDim) =

op (J—TimeDima «T) = J—TimeDim

where “op” is a variable copula whose succes-
sive values are respectively the symbols =, #,
<, >, Sa 27 +7 _7*and/'

The type TitmeDim can be employed to model
time, hereby using the set R of real numbers
as a representation of the continuum of phys-
ical time points [8]. However, in prospect of
the generalisation discussed in Subsections 3.2
and 3.3, the type SpaceTime is introduced.

The type SpaceTime is structured and con-
sists of a finite number of components. Each
component either represents a temporal di-
mension or a spatial dimension. In this sub-
section only one (temporal) component is con-
sidered, so that the specification of SpaceTime
is defined as:

SpaceTime id(idy : TimeDim)

where id is the identifier of the type and id;
is the identifier of the component.

The domain of type
SpaceTime id(idy : TimeDim)

(shortly written as dom;q) is defined by

dom;g = ({(x)|z € dompimepim})
U {J—SpaceTime}

where ©(U) denotes the set of all fuzzy sets,
which can be defined over the universe U and



1 SpaceTime Tepresents an “undefined” domain
value.

With the previous definition, every regular
value of dom;q is a fuzzy set, which is defined
over the continuum of physical time points. In
order to describe the values of dom;y, linear
arithmetic constraints are generalised. This
is done by generalising the comparison oper-
ators =, < and >.

Traditionally, these operators allow to de-
scribe crisp subsets of dom,q, e.g. V t € dom,q,
x =t is a description of the fuzzy set {(t,1)},
x < t represents the set {(z,1)|z < ¢} and
x >t describes the set {(z,1)|x > t}.

For the generalisation, a normalised fuzzy set
V has been associated with each operator.
This fuzzy set is defined over the universe
of valid distances —the set R* of positive
real numbers— and the boundary condition
7 (0) = 1 must hold for it.

If d(z,2’) denotes the Euclidean distance
between the defined elements z and z’ of
dompimepim —i-e. d(z,z’) = |z — 2'|— then
the membership functions of the fuzzy sets
described by the generalised operators =g,
<y and >y are defined as follows:

YV x,t € domrimeDim \ {J—TimeDim} :
o o yl(@) = g (@), with

d' = min{d(z,z)|2’ € dompimeDim
A o' =t}

o tocyil(@)) = pp(d), with

d' = min{d(z,z)|2’ € dompimeDim
A o' <t}

o oz i((@)) = pp(d), with

d' = min{d(z,z)|2’ € dompimeDim
A o' >t}

Figure 3 illustrates the membership functions
that result from the application of the gener-
alised comparison operators <, > and =y,
to a given fuzzy set V.

Y x <. 60
XSG

oL———»id,
60 60 + t

A x=560

9 id,
60 -t 60 60 + ¢

Figure 3: Application of the generalised com-
parison operators

Linear arithmetic constraints have been gen-
eralised by replacing all regular comparison
operators by (adequate) generalised compar-
ison operators and by replacing the regular
logical operators A, V and — by their fuzzy
counterparts A, V and =, which semantics
have been defined as follows:

e the impact of the A operator is reflected
by applying Zadeh’s (standard) intersec-
tion operator [17] onto the fuzzy sets de-
scribed by the arguments of the operator,
i.e. with arguments U and V, the mem-
bership degree of (), x € domrpimepim
in the resulting fuzzy set equals

min(ug (), py ()

e the impact of the V operator is reflected
by applying Zadeh’s (standard) union op-
erator [17], i.e. with arguments U and
V, the membership degree of (z), = €
dompimeDim 1N the resulting fuzzy set
equals

max(ug (), py (7))

e the impact of the = operator is reflected
by applying Zadeh’s (standard) comple-
ment operator [17], i.e. with argument
U, the membership degree of (x), z €
dompimenim 1n the resulting fuzzy set
equals

1= pg(x)



For example, with appropriate fuzzy sets U,
V and W, the fuzzy temporal information
“around time point 60 and from time point
about 100 until time point about 120” can be
described as:

(z =g 60) V ((x > 100) A (x <y 120))

3.2 Modelling of spatial information

The data type SpaceTime can be adapted
to model spatial information. A distinc-
tion is made between one-dimensional, two-
dimensional and n-dimensional data.

In order to model spatial information a new
data type SpaceDim is defined. The defini-
tion of this type is similar to the definition of
the type TimeDim, introduced in the previous
section: the domain of SpaceDim is defined by

domSpaceDim =RU {J—SpaceDim}

where L gpecepim represents an “undefined”
domain value; furthermore, the same opera-
tors =, #, <, >, <, >, 4, —, %, / and L have
been defined.

3.2.1 One-dimensional spatial data

The type SpaceTime is also suited for the
modelling of spatial data. One-dimensional
spatial data can be handled by considering
one (spatial) component. The specification of
SpaceTime then becomes:

Space Time id(id; : SpaceDim)

where id remains the identifier of the type and
id; remains the identifier of the component.
In the one-dimensional case, the modelling of
spatial information is then completely anal-
ogous to the temporal case discussed in the
previous subsection.

3.2.2 Two-dimensional spatial data

Two-dimensional spatial data can be mod-
elled by considering two (spatial) components
for the type SpaceTime, i.e. by considering the
specification:

SpaceTime id(idy : SpaceDim,idsy : SpaceDim)

In this case, the domain dom;y is defined by

domid = @({(1}7 y)\a:, RS domSpaceDim})
U {J—SpaceTime}

With this definition, each regular value of
dom;g is a fuzzy set, which is defined over the
continuum of points in the plane defined by
the two spatial axes with identifiers id; and
ids.

The generalisation of the comparison opera-
tors =, < and > is obtained analogously as in
the one-dimensional case. A normalised fuzzy
set V, which is defined over the universe of
valid distances and for which the boundary
condition py (0) = 1 holds, is associated with
each operator.

If d((x,y), (2',y")) denotes the Euclidean dis-
tance between the defined elements (z,y) and
(mlay/) of domSpaceDim X domSpaceDim —i.e.
d((z,y), (=" y) = V&2 +y—y)—
then the membership functions of the fuzzy
sets described by the generalised operators
=y, <y and >y are defined as follows:

v (I‘, y) € (domSpaceDim \ {J—SpaceDim})2a
Vm,leR:

° 'U'I‘H’”Z/ZVZ((xay)) = ,Uaf/(d/), with

d' = min{d((z,y), (z',y))|(=",y) €
(dOTnSpOLceD'L'm)2 A x/ + my/ = l}
° /~L27+my§(/l((x7y)) = :uf/(d/)’ with

d' = min{d((z,y), (z',y)|(2",y/) €
(domSpaceDim)2 A ! + my/ < l}

o :u:(:-‘r’myZ(/l((x’y)) = Mf/(d/)a with

d’ = min{d((z,y)., (2',y"))|(2",y') €
(domSpaceDim)2 A o'+ my/ 2 l}

For example, with the fuzzy set V of Figure 3
and the fuzzy set W = {(0,1)}, “the environ-
ment of Annecy” can be modelled by

(z =y 11) V (y = 6.1)



and “the neighbourhood of the Lake of Geneva
in Haute-Savoie” can be modelled by

(y >y 6.7) A (y—x >y =3.7) A (y <y 6.7) A

(y—zx > =3.7) A (x <y 11.9) A (z > 11)

Both examples are illustrated in Figure 4
(drawn to scale).
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Figure 4: Tllustration of the modelling of two-
dimensional spatial data

3.2.3 n-dimensional spatial data

In order to model n-dimensional spatial data,
the type Space Time can be constructed with n
spatial components. In this case, the domain
dom;q is defined by

dom;qg = p({(z1,z2,...,20) |21, 22,. ..,

Ty € domSpaceDim}) U {J—SpaceTime}

The comparison operators =, < and > can be
generalised straightforwardly and analogously
to previous cases by considering the Euclidean
distance

axn)a (xllvx/% s ,33;1)) =

d((%l, Loy ...

V(@ —2)? 4 (22— 2h)? -+ (0 — 2)?

and an associated, normalised fuzzy set f/,
which is defined over the universe of valid dis-
tances and for which the boundary condition
t+i7(0) = 1 holds.

3.3 Literal type SpaceTime

In general the literal type Space Time can have
both spatial and temporal components. This

allows to model spatio-temporal information
in its most general form. The type specifica-
tion then becomes:

SpaceTime id(idy : t1,ids : to,. .., idy : ty)

where ¢d remains the identifier of the type,
id;, i = 1,2,...,n remain the identifiers of
the axes represented by the components and
t; € {TimeDim, SpaceDim}, i = 1,2,...,n
denote the nature of the axes.

The domain of SpaceTime is defined by

dom;qg = p({(x1,z2,...,x,)|x; € domy,,

1= 1, 2, R ,n}) U {J—SpaceTime}

where L gpeceTime represents an “undefined”
domain value.

Because by definition all the elements of
the domain are fuzzy sets, operators have
been provided for the handling of fuzzy sets.
Among the considered operators are: U, N, co,
normalise, support, core, a— cut and & — cut.
Each operator preserves its usual semantics.
Additionally, a null-ary operator L, which al-
ways results in an “undefined” domain value,

is added.

4 Conclusion

A new approach for the handling of spatio-
temporal information is presented. The ratio-
nale behind this approach is the assumption
that linear arithmetic constraints are particu-
larly appropriate for representing such infor-
mation.

The approach is presented as an extension
of a constraint-based fuzzy object-oriented
database model, but its application is defi-
nitely not restricted to database models. Cen-
tral to the approach is the introduction of a
new generic type SpaceTime, which is suited
to handle fuzzy multi-dimensional temporal
and/or spatial information. The description
of domain values of SpaceTime by means of
so-called generalised linear arithmetic con-
straints, which have been obtained by gener-
alising the definition of the comparison oper-
ators =, < and >, is typical. Future work in-
cludes the definition of appropriate data def-
inition and data manipulation operators.
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