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Genetic algorithms need special representation of solutions to be efficient 
in this or that problem case. This paper analyzes some particular cases of 
the lot-size production scheduling problems where solutions may be 
represented as binary variables, and, moreover, on each solution string one 
and only one component is ‘true’. This gives two heuristic ideas to apply the 
genetic algorithm.  

 
Introduction 
The lot-size production scheduling problem addresses the problem of cyclic 

scheduling and lot sizing of multi-products in one facility as to minimizing the 
production duration, setup costs, fulfil customer time demands, etc. This problem is 
practically important and has been investigated since 1950s. A number of good reviews 
on the problem was provided by international researchers [eg Rogers, 1958; 
Elmaghraby, 1978; Lopez and Kingsman, 1991; Yao, 1999]. 

In this paper we assume that that the scheduling problem is formulated in a very 
generic way: Minizime an Objective function, subject to production capacity, resource 
and other constraints, formulated as equations and inequalities. 

We also assume that decision variables are binary, ie , , {0,1}i j kx ∈ . 
There are many techniques developed for solving such problems, including 

analytical algorithms (eg Branch-and-Bound [Theo C. Ruys, 2001]) and 
heuristic/Metaheuristic algorithms (eg local search, tabu search, ant colony 
optimization, evolutionary algorithms etc). The time cost of analytical algorithms 
growth significantly with the size of the problem and it becomes practically impossible 
and unreasonable to use them for real-life problems. To avoid this, more and more 
heuristic ideas are being developed trying to reduce the computation time.  

Here we explain the heuristic ideas for using genetic algorithm (GA) to solve 
some of the above mentioned problems.  

 
Genetic Algorithm 
A population of abstract representations (called chromosomes or the genotype of 

the genome) of candidate solutions (called individuals, creatures, or phenotypes) to an 
optimization problem evolves toward better solutions. Traditionally, solutions are 
represented in binary as strings of 0s and 1s, but other encodings are also possible. The 
evolution usually starts from a population of randomly generated individuals and 
happens in generations. In each generation, the fitness of every individual in the 
population is evaluated, multiple individuals are stochastically selected from the 
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current population (based on their fitness), and modified (recombined and possibly 
randomly mutated) to form a new population. The new population is then used in the 
next iteration of the algorithm. Commonly, the algorithm terminates when either a 
maximum number of generations has been produced, or a satisfactory fitness level has 
been reached for the population. If the algorithm has terminated due to a maximum 
number of generations, a satisfactory solution may or may not have been reached. 

 
Heuristic Ideas 
Two ideas are offered within the mentioned above problem. 
 
Idea 1: Use vectors of binary solutions as chromosomes without encoding 
We have a matrix of binary variables like , , {0,1}i j kx ∈ , it is possible to represent it 

as a set of vectors. Such a vector looks as following:  
( ), 0,0,0,1,0...,0,0,0,1,0,0,0,0,0i jx =  

Each vector is a chromosome, and set of chromosomes is a solution in the terms of 
GA, and, in this case, respectively a solution of the mentioned above problem.  

Thus, it is possible to save computation time by excluding from GA encoding and 
decoding of solutions. 

In order to handle the constraints [P.-T. Chang et al., 2006], it is possible to 
discard strings on the generation step of GA: once the string is generated, it is checked 
whether the string is feasible or not; if not, the string is discarded, and new one is 
generated. 

The reproduction process produces offspring or children to the next generation. It 
may be executed by using the classic roulette wheel technique with the respective 
probabilities of the strings to be reproduced.  

The classic one-point crossover may be illustrated by the following example [P.-
T. Chang et al., 2006]: with the respective probability for crossover of two strings 
randomly selected in which the genes of the products in the two strings after a 
randomly selected product are swapped, is used. 

 
For mutation with the respective mutation probability, the procedure of randomly 

selecting a product, from which randomly selecting a gene, changing the value to one 
and reassigning zero to all the other genes of this product, is used.  

 



Moreover, after crossover and mutation operators infeasible strings may also be 
created. This problem can be resolved by replacing the infeasible one(s) with the 
highest total-cost one(s) in the last population instead of the lowest total-cost one(s) as 
to maintaining the diversity of chromosomes. 

Idea 2: Use vectors of binary solutions as chromosomes without encoding 
The decision variables of the problem described above may be represented as a 

matrix, let it be a three-dimensional matrix , , {0,1}i j kx ∈ . In many cases the problem is 
in finding the values of decision variables equal to 1, in other words, to determine 
places of 1s in matrix sub vectors. So, we are interested only in indexes of our 
variables where the values are equal to 1.  

Instead of searching the space of 0s and 1s, we search the vectors of integer 
numbers, each giving the respective place (index) of 1 for the original formulation. For 
this, we can use standard GA and define boundaries of our index variables, and for the 
evaluation of generated solutions on each stage we assume the objective function and 
the constraints to be dependent on the index variable(s).  

 
Tools for Computational Experiments 
There are a number of tools which help perform computation experiments to 

check the algorithm and/or solve the real-life problem. 
For the case of this paper it is reasonable to use either Mathcad 

(www.ptc.com/products/mathcad/) [Dyakonov, 2007] for small and average sized 
problems or Matlab (www.mathworks.com/products/matlab/) [Dyakonov, 2008] for 
the problems of bigger (ie industrial) size.  

Moreover, Matlab has a special GA toolbox which can help solve implement the 
described heuristic ideas.  

Authors use Mathcad to test their heuristic ideas; it gives the solution within the 
reasonable time period for test instances of the problem under study.  
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