
HEURISTIC IDEAS OF USING GENETIC ALGORITHM FOR SOLVING
LOT-SIZE PRODUCTION SCHEDULING PROBLEMS

By Viktor GORELIK1, Wim DE BRUYN2 and Dmitriy BORODIN2

1 Dorodnicyn Computing Centre of Russian Academy of Sciences, Moscow
2 University College of Ghent, Belgium

dk.borodin@gmail.com

Genetic algorithms need special representation of solutions to be efficient
in this or that problem case. This paper analyzes some particular cases of
the lot-size production scheduling problems where solutions may be
represented as binary variables, and, moreover, on each solution string one
and only one component is ‘true’. This gives two heuristic ideas to apply the
genetic algorithm.

Introduction
The lot-size production scheduling problem addresses the problem of cyclic

scheduling and lot sizing of multi-products in one facility as to minimizing the
production duration, setup costs, fulfil customer time demands, etc. This problem is
practically important and has been investigated since 1950s. A number of good reviews
on the problem was provided by international researchers [eg Rogers, 1958;
Elmaghraby, 1978; Lopez and Kingsman, 1991; Yao, 1999].

In this paper we assume that that the scheduling problem is formulated in a very
generic way: Minizime an Objective function, subject to production capacity, resource
and other constraints, formulated as equations and inequalities.

We also assume that decision variables are binary, ie , , {0,1}i j kx ∈ .
There are many techniques developed for solving such problems, including

analytical algorithms (eg Branch-and-Bound [Theo C. Ruys, 2001]) and
heuristic/Metaheuristic algorithms (eg local search, tabu search, ant colony
optimization, evolutionary algorithms etc). The time cost of analytical algorithms
growth significantly with the size of the problem and it becomes practically impossible
and unreasonable to use them for real-life problems. To avoid this, more and more
heuristic ideas are being developed trying to reduce the computation time.

Here we explain the heuristic ideas for using genetic algorithm (GA) to solve
some of the above mentioned problems.

Genetic Algorithm
A population of abstract representations (called chromosomes or the genotype of

the genome) of candidate solutions (called individuals, creatures, or phenotypes) to an
optimization problem evolves toward better solutions. Traditionally, solutions are
represented in binary as strings of 0s and 1s, but other encodings are also possible. The
evolution usually starts from a population of randomly generated individuals and
happens in generations. In each generation, the fitness of every individual in the
population is evaluated, multiple individuals are stochastically selected from the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55870003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

current population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new population is then used in the
next iteration of the algorithm. Commonly, the algorithm terminates when either a
maximum number of generations has been produced, or a satisfactory fitness level has
been reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.

Heuristic Ideas
Two ideas are offered within the mentioned above problem.

Idea 1: Use vectors of binary solutions as chromosomes without encoding
We have a matrix of binary variables like , , {0,1}i j kx ∈ , it is possible to represent it

as a set of vectors. Such a vector looks as following:
(), 0,0,0,1,0...,0,0,0,1,0,0,0,0,0i jx =

Each vector is a chromosome, and set of chromosomes is a solution in the terms of
GA, and, in this case, respectively a solution of the mentioned above problem.

Thus, it is possible to save computation time by excluding from GA encoding and
decoding of solutions.

In order to handle the constraints [P.-T. Chang et al., 2006], it is possible to
discard strings on the generation step of GA: once the string is generated, it is checked
whether the string is feasible or not; if not, the string is discarded, and new one is
generated.

The reproduction process produces offspring or children to the next generation. It
may be executed by using the classic roulette wheel technique with the respective
probabilities of the strings to be reproduced.

The classic one-point crossover may be illustrated by the following example [P.-
T. Chang et al., 2006]: with the respective probability for crossover of two strings
randomly selected in which the genes of the products in the two strings after a
randomly selected product are swapped, is used.

For mutation with the respective mutation probability, the procedure of randomly

selecting a product, from which randomly selecting a gene, changing the value to one
and reassigning zero to all the other genes of this product, is used.

Moreover, after crossover and mutation operators infeasible strings may also be
created. This problem can be resolved by replacing the infeasible one(s) with the
highest total-cost one(s) in the last population instead of the lowest total-cost one(s) as
to maintaining the diversity of chromosomes.

Idea 2: Use vectors of binary solutions as chromosomes without encoding
The decision variables of the problem described above may be represented as a

matrix, let it be a three-dimensional matrix , , {0,1}i j kx ∈ . In many cases the problem is
in finding the values of decision variables equal to 1, in other words, to determine
places of 1s in matrix sub vectors. So, we are interested only in indexes of our
variables where the values are equal to 1.

Instead of searching the space of 0s and 1s, we search the vectors of integer
numbers, each giving the respective place (index) of 1 for the original formulation. For
this, we can use standard GA and define boundaries of our index variables, and for the
evaluation of generated solutions on each stage we assume the objective function and
the constraints to be dependent on the index variable(s).

Tools for Computational Experiments
There are a number of tools which help perform computation experiments to

check the algorithm and/or solve the real-life problem.
For the case of this paper it is reasonable to use either Mathcad

(www.ptc.com/products/mathcad/) [Dyakonov, 2007] for small and average sized
problems or Matlab (www.mathworks.com/products/matlab/) [Dyakonov, 2008] for
the problems of bigger (ie industrial) size.

Moreover, Matlab has a special GA toolbox which can help solve implement the
described heuristic ideas.

Authors use Mathcad to test their heuristic ideas; it gives the solution within the
reasonable time period for test instances of the problem under study.

Special Thanks
Authors want to thank Professor Vladimir DYAKONOV for the help with

implementation of GA in Mathcad and for the fruitful cooperation.

References
Rogers, J. (1958) A computational approach to the economic lot scheduling problem.
Management Science 4, 264–291.
Elmaghraby, S.E. (1978) The economic lot scheduling problem (ELSP): Review and
extensions. Management Science 24, 587–598.
Lopez, M.A., Kingsman, B.G. (1991). The economic lot scheduling problem: Theory
and practice. International Journal of Production Economics 23, 147–164.
Yao, M.-J. (1999) The economic lot scheduling problem with extension to multiple
resource constraints. Ph.D. Dissertation, North Carolina State University, Raleigh, NC,
USA.
Theo C. Ruys (2001). Optimal Scheduling using Branch and Bound with SPIN 4.0, 16
p.

http://www.ptc.com/products/mathcad/�
http://www.mathworks.com/products/matlab/�

P.-T. Chang et al. (2006) A genetic algorithm for solving a fuzzy economic lot-size
scheduling problem / Int. J. Production Economics vol. 102, pp. 265–288.
Dyakonov, V. (2007) Mathcad 11/12/13 in Mathematics. Guide. Published in Moscow
by Goryachaya Liniya. Telecom (in Russian).
Dyakonov, V. (2008) MATLAB R2006/2007/2008+Simulink 5/6/7. Implementation
Guide. Second edition. Published in Moscow by SOLON-Press, 800 pages (in
Russian).

	By Viktor GORELIK1, Wim DE BRUYN2 and Dmitriy BORODIN2

