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Abstract—In recent years, telecom operators have been moving
away from traditional, broadcast-driven, television towards IP-
based, interactive and on-demand services. Consequently, mul-
ticast is no longer a viable solution to limit the amount of
traffic in the IP-TV network. In order to counter an explosion in
generated traffic, caches can be strategically placed throughout
the content delivery infrastructure. As the size of caches is
usually limited to only a small fraction of the total size of all
content items, it is important to accurately predict future content
popularity. Classical caching strategies only take into account
the past when deciding what content to cache. Recently, a trend
towards novel strategies that actually try to predict future content
popularity has arisen. In this paper, we ascertain the viability
of using popularity prediction in realistic multimedia content
caching scenarios. The use of popularity prediction is compared
to classical strategies using trace files from an actual deployed
Video on Demand service. Additionally, the synergy between
several parameters, such as cache size and prediction window, is
investigated.

I. INTRODUCTION

The proliferation of interactive, personalized and on-demand
television services is causing an increasing need for bandwidth
in telecom operator networks. As broadcasting or multicasting
such content is no longer a viable approach to limiting band-
width consumption, novel techniques need to be considered.
Proxy caching, which had already been widely employed in
the delivery of web content, has been proposed as a way of
offloading bottleneck links [1]. Caches are strategically placed
throughout the network and store a subset of the available
content. However, the size of such caches is usually limited, so
they are only capable of storing a fraction of available content.
Therefore, it is very important to accurately predict the future
popularity of content, so that the most popular items, or item
segments, can be offered closer to the end-users.

Over the years, many caching strategies have been proposed.
Classical strategies, such as Least Recently Used (LRU) and
Least Frequently Used (LFU), assume that what was most
popular in the past, will also be most popular in the future.
However, the popularity of multimedia content is known to be
highly dynamic [2]. Consequently, caching efficiency can be
further increased by taking these dynamics into account and
actually try to predict future popularity instead of only using
historical information.

The prediction of time series has been a topic of great
academic interest for a long time [3]. In the context of
multimedia caching, some early work exists on predicting
content popularities [4], [5]. However, little work exists that
actually links these predictions to the actual caching strategies.
Additionally, the effect of important parameters, such as the
prediction window size, has not yet been thoroughly evaluated.

In this paper, we contribute to the field of popularity
prediction in the context of multimedia content caching in
several ways. First, we propose two alternative approaches
to popularity prediction, respectively based on recency and
frequency principles. Second, we study the theoretical gain
that can be achieved by these two popularity predicting
caching strategies. This optimum is compared to both the
efficiency of classical caching strategies and to the global
optimal caching strategy. Third, the effect of the prediction
window size parameter on caching efficiency is determined.
This parameter is influenced by the cache size. Therefore,
the synergy between these parameters is thoroughly evaluated.
Fourth, in order to increase the applicability and validity of the
presented results, all evaluations are performed using a trace
of an actual deployed Video on Demand (VoD) service. This
gives our evaluations more leverage and credibility than those
performed on synthetically generated datasets. The ultimate
goal of this work is to show that popularity prediction indeed
improves caching efficiency and to determine under what
parameter combinations it achieves the most optimal result.

The rest of this paper is structured as follows. Section II
gives a more in depth description of existing work on caching
and time series prediction in the context of multimedia content
caching. Subsequently, an overview of the employed evalu-
ation methodology is given in Section III. We describe the
used VoD trace file, the evaluated caching strategies and the
evaluation metrics. In Section IV, the simulation results are
discussed. Finally, the paper is concluded in Section V.

II. RELATED WORK

The large size and stringent sequential delivery demands of
multimedia content have caused a push towards novel caching
strategies. Classical caching algorithms have been adapted to
operate on individual content segments instead of entire items
[6], [7]. This allows the caches to better utilize the sequential
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nature of multimedia content demand patterns. Additionally,
such techniques better map to the skewed internal popularity
of multimedia content. Yu et al. argue that selecting a suitable
segment size is a complex problem and therefore propose
an alternative solution that models the internal popularity of
multimedia streams independent of segment size [8]. Certain
IP-TV services have specific properties that can be exploited
by caching strategies. For example, the use of sliding-window
caches has been proposed in the context of time-shifted TV
services [9].

Recently, researchers have discovered the merits of using
popularity prediction methods in multimedia content caching.
Such methods attempt to predict either the actual future
request pattern of individual content items, or their relative
popularity compared to each other. Most work on this topic
was performed in the context of video-sharing services such as
YouTube [10], [4], [5]. Cha et al. found that there is a strong
correlation between the popularity of a video after two days
and after ninety days [10]. These observations were supported
by a study performed by Szabo et al. [5]. An alternative
approach was proposed by Avramova et al. [4]. They found
that YouTube video popularity traces follow several different
distributions, such as power-law or exponential. An analytical
model is devised that predicts the distribution associated with
specific popularity traces. In the context of VoD services, De
Vleeschauwer & Laevens propose a prediction method based
on a generic user-demand model derived from traces of VoD
and catch-up TV services [2].

In the field of time series prediction, a wide range of
techniques have been developed for forecasting all sorts of
time series. Recently, machine learning techniques, such as
support vector machines and artificial neural networks have
been applied to this problem [11], [12]. Recently, wyffels et
al. have used reservoir computing, a form of recurrent neural
networks, for time series prediction [13]. Additionally, time
series often exhibit repeating trends and periodical effects.
For example, multimedia content request patterns often show
repeating effects on a daily and weekly basis. The use of
wavelet decomposition has been proposed to decompose time
series into signals with dynamics in different scales. This
has been shown to simplify prediction with neural network
based techniques [14]. This approach was also successfully
combined with reservoir computing [15]. Wu et al. adapted
the reservoir computing approach to the popularity prediction
problem in the context of multimedia content caching [16].
However, they have not yet compared their prediction method
with classical caching strategies. Additionally, their approach
has, for now, only been validated on traces of popular YouTube
videos.

III. EVALUATION METHODOLOGY

This section presents the methodology used for evaluating
the performance of prediction-based caching strategies. First,
an in depth overview is given of the VoD dataset used for
the evaluation. Second, the different caching strategies used
in the comparison are briefly described. Third, the different

algorithmic parameters that influence behaviour are identified.
Finally, the metrics used to evaluate the strategies are further
explained.

A. Video on Demand Dataset

The dataset employed in the evaluation consists of a request
trace of the VoD service of a leading European telecom
operator, measured over a period of 32 days between Friday
February 5 2010 and Monday March 8 2010. Within this
period, a total of 75013 requests were sent by 8392 unique
users for 4971 different movies. These users were spread
across 12 city regions.

Figure 1 graphically depicts the properties of the dataset.
The distribution of requests over the different city regions is
shown in Figure 1a. It is apparent that requests are far from
uniformly distributed among cities. The distribution of users
across cities is shown in Figure 1b. Although the two figures
show some correlation between request and user count, they
are not entirely parallel. For example, city 6 has the second
highest user count, but only the third highest request count.
Subsequently, the popularity distribution over the movies is
presented in Figure 1c. The popularity distribution is highly
skewed. A total of 691 requests were measured for the most
popular movie, while 10 or less requests were received for over
72% of all movies. Figure 1d depicts the request count per day.
The figure clearly shows the weekly trend in the dataset. The
five peaks represent the five weekends part of the trace. Finally,
the hourly request rate is shown in Figure 1e and explicitly
depicts the daily trend. On weekdays, two peaks are observed.
A first, smaller, peak starts as early as 1 pm and lasts until
about 5 pm. The second peak occurs during the evening from
approximately 8 pm until midnight. On Saturday and Sunday,
high request rates persist from 9 am until midnight.

B. Caching Strategies

In order to thoroughly evaluate prediction-based caching
strategies, we compare a perfect predicting algorithm with
several other caching strategies. This section gives an overview
of the strategies used in the evaluation.

1) Least Recently Used (LRU): The LRU caching strategy
always replaces the least-recently-used object in cache [17]. A
sorted queue is maintained that indicates the request order of
objects. When an object is requested, it is added to the queue,
or its position is updated. If the queue is longer than the size
of the cache, the last object is removed from it. LRU has been
a widely used caching strategy for many years and is often
used as a reference benchmark for performance evaluation of
other caching strategies.

2) Least Frequently Used (LFU): LFU is a more elaborate
but also complex strategy than LRU. It keeps track of the
frequency of every object and keeps the objects in cache with
the highest request frequencies within a specific time window
[17]. If multiple items have the same frequency and one of
them has to be removed from cache, it is chosen according
to the LRU strategy. The difficulty with LFU, however, is
selecting a suitable time window. If the window size is too
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Fig. 1: A graphical representation of the Video on Demand dataset properties

small, the popularity dynamics are not sufficiently caught. If,
on the other hand, the window size is too large, popularity is
calculated based on stale information.

3) Optimal Strategy (MIN): The MIN algorithm is an
optimal caching strategy in terms of cache hit rate [18]. When
an object is requested that is not part of the cache and the cache
is full, it replaces the object in the cache whose next request
occurs furthest in the future. Several proofs have been devised
to show its optimality [18], [19]. However, this strategy is
impractical in an actual deployment, as the request trace needs
to be known entirely in advance.

4) Predicting Least Recently Used (P-LRU): The P-LRU
strategy is the prediction-based variant of LRU. It works much
the same way as MIN, as it replaces the object whose next
request occurs furthest in the future. However, we assume that
the strategy is only capable of accurately predicting requests
within a certain time window. Everything beyond this window
is unknown. If multiple cached objects are not requested within
the specified time window and one needs to be selected for
replacement, the classic LRU strategy is used to select one of
them.

5) Predicting Least Frequently Used (P-LFU): Predicting
the actual order in which requests will occur, as is needed for
P-LRU is very difficult. Predicting actual or relative request
frequencies within a certain time frame is expected to be easier.
Therefore, we propose a second prediction-based heuristic that
uses the LFU principles. In contrast to LFU, it predicts request
frequencies of objects within a time window in the future,
instead of keeping track of those in the past. If multiple objects

have the same frequency, a differentiation is made using the
classic LRU strategy.

C. Evaluation Metrics

Two metrics are used in the evaluation of the caching
strategies. They are the cache hit rate and cache update rate
respectively. The cache hit rate is defined as the percentage
of requests that can be served from a cache, as opposed to
from the origin content server. The cache update rate, on the
other hand, represents the percentage of requests that cause a
change in the cached objects.

IV. RESULTS & DISCUSSION

In order to evaluate performance of the devised prediction-
based caching strategies (i.e. P-LRU and P-LFU), they were
compared to both the optimal caching strategy (i.e. MIN) and
classic strategies (i.e. LRU and LFU). Note that the devised
prediction-based strategies are capable of perfectly predicting
the future within a certain period of time. Obviously, an actual
strategy cannot achieve such accurate predictions. Neverthe-
less, this allows us to determine the theoretical optimum that
can be achieved by prediction-based strategies under specific
conditions.

The interaction between two parameters is studied in the
evaluation. First, several of the presented strategies use a
sliding window parameter of some sort. For LFU, this window
determines how far back the algorithm will look when calcu-
lating frequencies. For P-LRU and P-LFU, it indicates how far
in the future the strategies are capable of predicting requests.
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Fig. 2: Performance of the classic LFU strategy as a function of the
sliding window size for different cache sizes c

Second, the cache size represents the number of objects that
can be kept in the cache. It is expected that the optimal
window size is influenced by the cache size. Therefore, the
synergy between both parameters is evaluated. Note that, for
simplicity, we assume all objects have the same size and entire
objects are stored in cache. In multimedia content caching
these assumptions normally do not hold. However, as all
evaluated caching strategies are subject to these assumptions,
we believe they do not influence the comparative conclusions
drawn in this paper.

The simulated content delivery infrastructure consists of a
single content server, which hosts all offered movies. A content
proxy cache is provided for each of the 12 city regions. The
end-users request content via the proxy cache of their own
region, which in turn requests the content with the server if
it is not cached locally. In the performed experiments, the
same cache size is used for every regional cache. The results
depicted in this section for cache hit rate and cache update
rate are averaged over the 12 caches.

A. Influence of LFU Sliding Window

In this section, the interaction between the LFU sliding
window parameter and the cache size is thoroughly evaluated.
The goal is to determine suitable values of the sliding window
parameter for use in the rest of the evaluation.

The cache hit and update rates of the LFU caching strategy
as a function of the sliding window size (in days) for different

cache sizes is shown in Figure 2. The graph depicted in Figure
2a leads to several pertinent observations concerning the cache
hit rate. First, for smaller cache sizes, the LFU sliding window
size affects cache hit rate to a greater extent than for larger
cache sizes. For example, for a cache size of 100 objects, the
cache hit rate for the optimal window size (1 day) is 45.87%,
while it is only 37.86% for a window size of 7 days. On
the other hand, for a cache size of 500 objects, the cache hit
rate difference between the optimum and worst case is only
1.41%. Second, the optimal sliding window size is directly
proportional to the size of the cache. In the depicted results,
the optimum window size for cache sizes of 100, 250, 500
and 1000 objects is respectively 1 day, 1 day and 14 hours, 3
days and 10 hours and over 7 days.

The graph shown in Figure 2b displays the cache update
rate. Much like for the cache hit rate, the update rate is less
influenced by the LFU sliding window size when the cache
size is large. However, in contrast to the hit rate, the update
rate does not achieve an optimum and keeps decreasing with
a growing window size. Therefore, the larger the LFU sliding
window size, the more stable the cache will become.

In conclusion, we have shown that the optimal sliding
window size for LFU is highly dependant on the cache
size. Additionally, its influence becomes negligible when a
relatively high percentage of the total available objects can be
stored in cache. However, in a real deployment the cache is
expected to be able to store only a small fraction of available
content. Therefore, selecting a suitable sliding window size
is a crucial step when deploying a caching infrastructure in
a multimedia content delivery network. In the evaluated VoD
dataset, a sliding window size of 1 day was found to perform
at most 0.89% less than optimal in terms of cache hit rate for
all evaluated cache sizes. As such, a 1 day sliding window is
used for LFU in the rest of this paper.

B. Influence of P-LRU Prediction Window

The two proposed predicting strategies, P-LRU and P-LFU,
use a prediction window parameter to determine the amount of
future information they take into account when making cache
update decisions. This section explores the synergy between
the prediction window size and the cache size for the P-LRU
strategy.

The cache hit and update rates of P-LRU as a function
of prediction window size (in days) for different cache sizes
are shown in Figure 3. From Figure 3a, showing the cache
hit rate, we can derive that performance for P-LRU does not
degenerate when increasing the prediction window size beyond
the optimum. As is the case for LFU, the optimum prediction
window size increases with the cache size. For example, for
a cache size of 100 objects, the cache hit rate comes within
0.1% of optimal performance for a prediction window size of
1 day and 8 hours, while for a cache size of 500 objects this is
only achieved at 2 days and 22 hours. Additionally, the effect
of optimizing the prediction window is directly proportional
to the cache size. For a cache size of 100 objects, a gain of
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Fig. 3: Performance of the predicting P-LRU strategy as a function
of the prediction window size for different cache sizes c

11.59% can be achieved, while for a cache size of 500 objects
this is limited to a 4% gain.

Figure 3b shows the cache update rate for P-LRU. As is the
case for the cache hit rate, the update rate does not improve
significantly after a certain point. For a cache size of 100
objects, there is only a 1% difference in cache update rate
between a prediction window size of 2 days and 7 days.
Additionally, the figure clearly shows that for a large enough
prediction window (3 days or more) the size of the cache has
very little influence on the cache update rate (at most 3.2%).

In summary, we have shown that a large prediction window
has relatively few benefits for P-LRU, as performance does not
significantly improve after a certain window size. However, it
should be noted that a P-LRU-based prediction strategy should
be capable of accurately predicting the relative ordering of
request arrivals within a certain time window. This is very
difficult compared to other approaches, such as predicting
relative request frequencies, as used by P-LFU. Therefore,
we believe large prediction windows cannot be accurately
achieved in an online P-LRU-based caching strategy. Addi-
tionally, the results show that performance of P-LRU is less
sensitive to the window size, as unlike LFU, its performance
does not degenerate when the window size becomes too large.
Unless otherwise stated, a prediction window size of 1 day
is used for P-LRU in the rest of this paper, which achieves a
cache hit rate of at most 2.3% worse than the optimum for all
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Fig. 4: Performance of the predicting P-LFU strategy as a function
of the prediction window size for different cache sizes c

evaluated cache sizes.

C. Influence of P-LFU Prediction Window

In this section, we evaluate the influence of the prediction
window size on the performance of P-LFU in terms of cache
hit and update rate. The results of this evaluation are shown in
Figure 4. It depicts the cache hit and update rates as a function
of prediction window size (in days) for different cache sizes.
At first glance, the results for P-LFU’s prediction window
are very similar to LFU’s sliding window. However, there
are some differences. First, P-LFU’s performance in terms
of hit rate degenerates slower than LFU’s when the window
size becomes too large. For a cache size of 100 objects, the
difference between the optimal window size (1 day) and 7 days
is only 4.33% for P-LFU while it is 8% for LFU. Second, for
a small window size the roles are reversed. For example, for
a cache size of 100 objects, when increasing the window size
from 1 minute to 1 day, P-LFU’s hit rate increases 10.46%,
while that of LFU only increases 5.89%.

In general, the conclusions drawn for LFU’s sliding window
also apply to P-LFU’s prediction window. As such, the optimal
prediction window size is influenced by the cache size, but
this influence decreases as the cache size grows. However, in
contrast to LFU, estimating the optimal cache size too low
has more far fetched consequences for P-LFU. On the other
hand, estimating it too high has less effect on performance
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Fig. 5: Comparison of the MIN, LRU and LFU strategies as a
function of the cache size for an LFU sliding window w of 1 and 2
days

when using P-LFU rather than LFU. Unless otherwise stated,
a prediction window of 1 day is used in the rest of this paper.
This value achieves a cache hit rate of at most 2.07% worse
than optimal.

D. Traditional Strategy Comparison

In the previous sections, a suitable window size was deter-
mined for LFU, P-LRU and P-LFU. In this, and the next,
section, we use previously made observations to compare
the optimal (i.e. MIN), classical (i.e. LRU and LFU) and
prediction-based strategies (i.e. P-LRU and P-LFU). First,
we determine the efficiency of the classical strategies. These
results are then employed in the next section when comparing
the novel prediction-based approaches.

Figure 5 shows a comparison in terms of cache hit and
update rates of the two classical strategies and the optimal
MIN strategy. The graphs depict performance as a function of
the cache size and for a 1 and 2 day LFU sliding window.
From Figure 5a, which shows the cache hit rate, it is apparent
that LRU performs worse than LFU for well chosen sliding
window parameters. As was shown in Section IV-A, LFU with
a sliding window of 1 day outperforms a 2 day sliding window
for smaller cache sizes. However, when the cache size grows
beyond 300 objects the 2 day window takes over the lead.
Concretely, for a cache size of 100 objects LRU’s cache hit
rate is 11.61% worse than optimal, while that of LFU with a

window size of 1 day is only 5.725% worse. However, LRU
and LFU performance converges as the cache size increases.
For a cache size of 500 objects, LRU and LFU respectively
achieve a cache hit rate of only 4.1% and 3.84% worse than
optimal.

Performance in terms of cache update rate is depicted in
Figure 5b. Here, LFU clearly has the edge over LRU and even
MIN. For small cache sizes, LFU needs even less updates than
the optimal strategy. On the other hand, LRU’s peak goes up to
almost a 90% update rate. This goes to show that LFU makes
more long term decisions, while LRU causes the cache content
to oscillate considerably. However, as is the case for cache hit
rate, performance of both classical strategies converges as the
cache size grows.

In conclusion, we have shown that LFU, with a well
chosen sliding window parameter, outperforms the simple
LRU strategy for all cache sizes, both in terms of cache
hit and update rate. Additionally, the difference is larger for
smaller cache sizes, which we expect will remain the norm
in actual deployments. Additionally, LFU’s performance in
terms of cache hit rate, for a sliding window of 1 day is
at most 6.87% worse than optimal (reached at a 30 object
cache size). This goes to show that for the real-life VoD
dataset used in this evaluation, only a small margin of possible
improvement remains for prediction-based strategies. As LRU
does not outperform LFU in any evaluated situation, solely
LFU will be used as a benchmark of comparison in the next
section.

E. Predicting Strategy Comparison

This paper proposes two alternative prediction-based ap-
proaches for caching strategies in multimedia content delivery
networks. First, P-LRU represents a predicting variant of the
classic LRU caching scheme. The optimal MIN algorithm is
actually P-LRU with an infinite prediction window. Second,
P-LFU makes caching decisions based on request frequen-
cies and is thus the predicting counterpart of the classic
LFU caching strategy. As stated earlier, an online P-LFU-
approximating strategy is expected to be easier to implement
than one based on P-LRU. This is because predicting relative
request frequencies is easier than predicting the actual order
in which requests will take place. However, besides this
qualitative difference, there are also quantitative performance
differences between both caching strategies. In this section,
these quantitative differences are evaluated.

The comparison, as a function of cache size, is shown in
Figure 6. For LFU, P-LRU and P-LFU, a window size of 1 day
is used. Figure 6a, depicting the cache hit rate, shows that both
prediction-based strategies significantly outperform LFU for
relatively small cache sizes. However, for larger cache sizes,
the performance gain becomes minimal. For a cache size of up
to 100 objects, P-LRU performs less than 0.27% worse than
optimal, while P-LFU performs 1.1% worse and classic LFU
even 5.72% worse. However, when the cache size increases
to 500 objects this becomes for LFU, P-LRU and P-LFU
respectively 3.34%, 2.36% and 2.36%. Their performance thus
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Fig. 6: Comparison of the MIN, LFU, P-LRU and P-LFU strategies
as a function of the cache size for a window of 1 day

converges. Table I gives a more complete overview of the
cache hit rate of the different caching strategies.

Performance in terms of cache update rate is shown in
Figure 6b. In line with earlier results, LFU and P-LFU achieve
the best performance at low cache sizes. However, as the cache
size increases beyond 200 objects, performance of LFU, P-
LRU and P-LFU converges.

In summary, we have shown that using prediction-based
caching strategies can indeed improve performance in terms of
cache hit rate compared to classical strategies. For a prediction
window of 1 day and a cache size of 100 objects, a gain
in cache hit rate of 5.45% can be achieved when using
prediction. Although this is not an excessive improvement,
it goes to show that bandwidth consumption can be further
decreased by devising more intelligent caching strategies, even
in real VoD scenarios. Additionally, from the results it can be
concluded that P-LRU achieves near optimal performance in
terms of cache hit rate for very small cache sizes, even with
relatively small prediction windows. On the other hand, for
larger cache sizes, P-LFU with a relatively large prediction
window can be used. For such large cache sizes, P-LFU
achieves similar performance as P-LRU. However, predicting
request frequencies is easier than the actual request pattern
order, especially for large prediction windows. As such, the
choice for P-LFU is obvious.

TABLE I: Summary of the cache hit rate of the MIN, LRU, LFU,
P-LRU and P-LFU strategies for different cache sizes and a window
of 1 day

Cache Size Cache Hit Rate (%)
MIN LRU LFU P-LRU P-LFU

10 22.36 11.89 16.14 22.33 18.70
20 30.09 17.76 23.41 30.01 26.80
30 35.31 22.27 28.43 35.31 32.17
40 39.14 25.90 32.47 39.13 36.38
50 42.16 28.97 35.65 42.13 39.79
60 44.62 31.65 38.33 44.53 42.61
70 46.71 34.01 40.56 46.60 45.11
80 48.60 36.14 42.51 48.43 47.10
90 50.20 38.09 44.36 49.94 48.91
100 51.60 39.98 45.87 51.33 50.49
200 60.04 51.03 55.06 58.59 58.53
300 63.80 56.93 59.26 61.44 61.11
400 65.72 60.44 61.74 63.18 63.18
500 66.75 62.64 63.41 64.38 64.38
1000 67.81 66.77 66.85 67.02 67.02
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Fig. 7: Cache hit rate of the P-LFU caching strategy averaged over
1 hour intervals, for a cache size of 100 objects and a prediction
window of 1 day

F. Hit Rate Evolution

In previous parts of the evaluation, the average cache
hit rate was used as a basis for performance comparisons.
However, when dimensioning the content delivery network,
not the average, but the peak cache hit rate and bandwidth
consumption are the most important indicators. Therefore, we
study the evolution of the cache hit rate, averaged over 1 hour
intervals, throughout the 1 month duration of the input trace.
Figure 7 shows this evolution for the P-LFU caching strategy,
a cache size of 100 objects and a 1 day prediction window.

The graph allows us to study the cache hit rate evolution
over time, and leads to several conclusions. First, note that
the average cache hit rate over the entire input trace for this
scenario is around 52%. It takes the cache about 13 hours
before this average performance is first reached. We thus
consider the first 12 hours a warm-up period. Second, it is
apparent that the cache hit rate varies greatly over time. After
the warm-up period, the cache hit rate varies between 81.82%
and 23.53%, with a standard deviation of 8.67%. This standard
deviation means that 68.2% of one-hour intervals have a cache
hit rate between 44.25 and 61.57%.
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V. CONCLUSION

In this paper, we aim to determine the merits of using
popularity prediction in a multimedia content caching scenario.
As such, we have introduced and evaluated two alternative
approaches to prediction-based caching in multimedia content
delivery networks. First, P-LRU is the predicting variant of
the classic LRU strategy. It predicts the order in which
requests occur within a pre-specified future time window,
and replaces objects which will be requested furthest in the
future. Second, P-LFU represents the classic LFU predict-
ing counterpart. Instead of actual request orders, it predicts
only request frequencies within the specified time window.
Although both these strategies require perfect knowledge of
future request patterns within a specific time interval and thus
have no practical applicability, they allow us to determine
the theoretical gain that can be achieved by prediction-based
caching strategies over traditional ones.

Using detailed evaluations, the synergy between the cache
size and prediction window size was explored. Additionally,
we compared performance, in terms of cache hit and update
rate, of the two prediction-based caching strategies with the
classic LRU and LFU strategies and the theoretical optimum
in terms of cache hit rate. These evaluations lead to several
pertinent conclusions. First, it was shown that the optimal
prediction window size is indeed severely impacted by the size
of the cache. More specifically, the optimal prediction window
size is directly proportional to the size of the cache. For P-
LRU, performance only degenerates if the prediction window
is chosen too small. However, for P-LFU, this is also the case if
the prediction window is chosen too large. Therefore, choosing
a suitable prediction window is more difficult in the case of
P-LFU. Second, it can be concluded that both P-LRU and P-
LFU significantly outperform LFU and LRU in terms of cache
hit rate. For example, for a cache size of 100 objects, which
is about 2% of the total available content, P-LFU’s cache hit
rate is up to 4.6% higher than that of LFU and even 10%
than that of LRU, which is a relative performance increase
of respectively 10 and 25%. Third, when the cache size is
small P-LRU can be used with a small prediction window
to achieve near optimal performance. When the cache size
becomes larger, a proportionally larger prediction window is
also needed. Then, P-LFU, with a large prediction window, can
be used. This maps well to the advantages and disadvantages
of both strategies, as P-LRU generally achieves more optimal
results, but P-LFU’s request frequencies are more easily ap-
proximated on the long run by online prediction algorithms.

In summary, the two prediction-based caching strategies
presented in this paper assume a perfect prediction is possible
within a certain time window. Although actual online strategies
are not able to achieve such perfect predictions, this study
nevertheless determined the theoretical optimum that can be
achieved by introducing predictions. Additionally, we have
shown that the overall cache hit rate can be improved by up
to 6.48% compared to the traditional LFU strategy, which is
a relative performance gain of 18%.
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