
ADAPTING AN EVOLUTIONARY ALGORITHM WITH EMBEDDED
SIMULATION AND PSEUDO-RANDOM NUMBER GENERATION FOR THE

CELL BROADBAND ENGINE

Sofie Van Volsem, Sven Neirynck
Department of Industrial Management

Ghent University
Technologiepark 903

BE-9052 Zwijnaarde, Belgium
e-mail: {Sofie.VanVolsem, Sven.Neirynck}@UGent.be

KEYWORDS
PlayStationr3, cell processor, SIMD, normal random
numbers, simulation, evolutionary algorithm

ABSTRACT

For the problem of optimizing inspection strategies in
multi-stage production systems, a metaheuristic consist-
ing of an evolutionary algorithm with embedded sim-
ulation was developed in Van Volsem et al. (2007),
Van Volsem (2009) and Van Volsem (accepted for publi-
cation, 2009). The metaheuristic requires normally dis-
tributed pseudo-random numbers; the time needed for
this random number generation is a substantial fraction
of the total computation time. In an effort to reduce
the computation time, the metaheuristic was adapted
for computation on the Cell Broadband Engine. The
proposed adaptation is twofold: we propose a way to
make the metaheuristic suitable for fast multicore com-
putation, and secondly, the potential of SIMD compu-
tation for speeding up the random number generation
process and the metaheuristic is investigated.

INTRODUCTION

Traditional computer software is written for serial com-
putation. To solve an optimization problem, an algo-
rithm or metaheuristic is constructed and implemented
as a serial stream of instructions. These instructions
are executed on a central processing unit (CPU) on one
computer.
Parallel computing uses multiple processing elements si-
multaneously to solve a problem. This is accomplished
by breaking the problem into independent parts so that
each processing element can execute its part of the al-
gorithm simultaneously with the others. The processing
elements can be diverse and include resources such as a
single computer with multiple processors, several net-
worked computers, specialized hardware, or any combi-
nation of the above.
Today most commodity CPU designs include single in-
structions for some vector processing on multiple (vec-

torized) data sets, typically known as SIMD (Single In-
struction, Multiple Data). Modern video game consoles
and consumer computer-graphics hardware rely heavily
on vector processing in their architecture. In 2000, IBM,
Toshiba and Sony collaborated to create the Cell Broad-
band Engine (Cell BE), consisting of one traditional
microprocessor (called the Power Processing Element
or PPE) and eight SIMD co-processing units, or the
so-called Synergistic Processor Elements (SPEs), which
found use in the Sony PlayStationr3 among other ap-
plications.
The computational power of the Cell BE or
PlayStationr3 can also be used for scientific comput-
ing. Examples and applications have been reported in
e.g. Kurzak et al. (2008), Bader et al. (2008), Olivier
et al. (2007), Petrini et al. (2007).
In this paper, the potential of using the PlayStationr3
for speeding up metaheuristic optimization is investi-
gated. More specifically, we propose an adaptation of
an evolutionary algorithm with embedded simulation for
inspection optimization. Thereto, two issues need to be
addressed:

• the metaheuristic itself needs to be adapted to make
it suitable for parallel computation and vector pro-
cessing, and

• the random number generation required by the
metaheuristic has to be adapted for parallel com-
puting as well.

The main mechanism of achieving this goal is through
parallelization and vectorization. The main obstacles in
the way of parallel execution are data hazards, which
prevent simultaneous execution of instructions with de-
pendencies between their arguments, and control haz-
ards, which result from branches and other instructions
changing the Program Counter (Kurzak et al. 2008). In
other words:

• Instructions can be grouped together only if there
is no data dependency between them.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55869844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• Communication and synchronization between the
different subtasks are typically one of the greatest
obstacles to getting good parallel program perfor-
mance.

Moreover, the potential speed-up of an algorithm on
a parallel computing platform is limited by Amdahl’s
law, which states that a small portion of the program
which cannot be parallelized will limit the overall speed-
up available from parallelization.
The remainder of the paper is organised as follows: in
Section 2, the original problem and metaheuristic so-
lution approach is described. Section 3 reports on the
adaptation of the metaheuristic, while the potential of
SIMD computation for speeding up the random number
generation process is investigated in Section 4. Section
5 summarizes and concludes.

INSPECTION OPTIMIZATION WITH AN
EVOLUTIONARY ALGORITHM AND SIMU-
LATION

Efficient production quality control is a major issue to
manufacturers. Efficient economic inspection strategies
ensure the required output quality while minimizing the
total inspection cost. Generally speaking, more and
tighter inspection will induce a higher product quality –
in terms of meeting product specifications– but will also
result in higher costs of inspection, scrap and rework.
An economic inspection plan will balance this trade-off.
Consider a serial multistage production system (MSPS)
in which products travel sequentially from stage 1 to
stage n and inspection of products is performed by k
(k ≤ n) inspection stations. At each stage, a manu-
facturing action is performed on or with the products,
before moving on to an inspection station, or to the pro-
cessing station of the next stage in case of no inspection.
An inspection strategy for an MSPS decides on:

1. the number and location of inspection stations;

2. the rigor of the inspections (inspection limits) for
each inspection station.

3. the number of inspections executed (sample size
or sampling frequency and acceptance number) for
each inspection station;

The problem facing the MSPS inspection planner thus
consists of finding the combination of these inspection
parameters in order to minimize the total expected in-
spection cost (TIC). This is a complex joint optimiza-
tion problem; addressed in Van Volsem et al. (2007),
Van Volsem (2009) and Van Volsem (accepted for pub-
lication, 2009).
Their joint optimization method consists of embedding
Monte Carlo simulation (to compute the serial n-stage
MSPS subject to inspection) in an Evolutionary Algo-
rithm (EA) (to perform the actual optimization). For

each of the n stages, the EA proposes the inspection
type (F for full inspection, S for sampling inspection, N
for no inspection), the upper and lower inspection limits
(UIL and LIL), and the acceptance sampling parame-
ters (s and t) where appropriate.
The following notation is used:

K = batchsize
n = number of process stages
p′i = fault occurrence in stage i

LILi = lower inspection limit in stage i (variable)
UILi = upper inspection limit in stage i (variable)
LSn = lower specification limit after stage n (fixed)
USn = upper specification limit after stage n (fixed)
si = sample size for stage i
ti = acceptance number for stage i
di = number of bad items after stage i

cT,i = unit test cost in stage i
cR,i = unit rework cost in stage i
cP = unit penalty cost (after stage n)

TCi = test cost in stage i
RCi = rework cost in stage i
αF,i = 1 if F is selected in stage i, = 0 otherwise
αS,i = 1 if S is selected in stage i, = 0 otherwise
TTC = total test cost
TRC = total rework cost
TPC = total penalty cost
TIC = total inspection cost

The TIC is calculated as follows:

TIC = TTC + TRC + TPC (1)
with

TTC =
n∑

i=1

TCi (2)

TRC =
n∑

i=1

RCi (3)

TPC = cP .dn (4)
and with

TCi = cT,i.(αF,i.K + αS,i.si) (5)
RCi = cR,i.p

′
i.αF,i.K (6)

Determining the optimal inspection strategy, i.e. the
whole of inspection decisions that minimize the TIC,
requires the determination of inspection options αi and
the corresponding inspection limits (LILi, UILi) and
sampling parameters (si, ti), for all stages i = 1, ..., n.
This is what the proposed Evolutionary Algorithm does.
Evolutionary Algorithms are adaptive heuristic search
methods mimicking selective breeding, where offspring



are sought which have certain desirable characteristics,
determined at the genetic level by combination of the
parents’ chromosomes. In a similar way, in seeking bet-
ter solutions, EA’s combine pieces of existing solutions:
new generations of offspring are generated through an
iteration process until a convergence criterion is met.
The basic concepts were developed by Holland (1975)
and were forged into a problem solving methodology for
complex optimization problems by De Jong (1975) and
Goldberg (1989).
There are four main parts in the EA paradigm, namely
the problem representation and initiation, the objective
function evaluation (fitness calculation), the parent se-
lection, and the actual evolutionary reproduction of can-
didate solutions.

Problem representation and initiation

Every proposed solution is represented by a vector of the
independent variables (inspection decision variables),
coded as a chromosome constituted by as many genes
as the number of independent variables. The chromo-
somes used in the EA we propose, consist of a set of
“character” values (F , N or S), real values (LILi and
UILi) and integer values (si, ti).
We used a population size M of 50 initial solutions.
From this pool, some are selected (parents) to construct
new solutions (children). The construction algorithm
for the initial population consists in randomizing the
characters (N,S, F ), and randomizing the limits by al-
lowing (symmetrical) variation from the original limits
by a certain user defined percentage.

Objective function evaluation (fitness calcula-
tion)

For every candidate solution its fitness as a possible par-
ent has to be evaluated, where fitness refers to measure
of profit or goodness to be maximized while exploring
the solution space. We use a straightforward normaliza-
tion procedure to calculate the fitness value f for each
solution j in a population of M solutions:

fj =
1/ TICj∑M

k=1(1/TICk)
(7)

Parent selection

Parent selection for producing offspring is done as in
Holland’s original Genetic Algorithm, i.e. for each repro-
duction two parents are chosen: one parent is selected
on its fitness basis, the other is chosen randomly. The
idea behind this is that the parent chosen for its fitness
ensures genetic quality, while the random parent ensures
genetic diversity.

Reproduction

In our algorithm, the new generation consists of (M−1)
children, the M th solution in the next generation popu-
lation is the best solution from the previous generation
(=elitism of 1 ). Generating offspring is performed in
two steps: first crossover is applied, then the inspection
limits are adapted. After these two steps, reproduction
is completed and the children thus obtained can pop-
ulate the new generation. This way, the simultaneous
determination of inspection parameters is achieved.
Our crossover operator randomly selects a crossover
point, and constructs two new solutions by exchanging
the tails of both parents. Instead of mutation, inversion
is used (see Reeves (1993; pg. 173)).

Algorithm 1 original EA
Create initial sorted population
for generation = 1 to number of generations do

Create offspring
for solution = 1 to M do

for stage = 1 to n do
Calculate process values
Calculate inspection cost

end for
Calculate TIC

end for
Sort population

end for
Take winner

ADAPTATION OF THE EA

Kurzak et al. (2008) state that while not all problems
SIMDize well, most can benefit from it one way or an-
other.
To adapt the above metaheuristic for computation on
the Cell Broadband Engine, we need to parallelize it
to make it suitable for computation on the SPEs, and
consequently the code has to be vectorized for in order
to make efficient use of the SPEs.
First we have to choose which parts will run on the
SPEs and what on the PPE. Next step is to SIMDize
the SPE code. Caclulating the TICS of an inspection
strategy requires a fair amount of computational power
and has no data dependencies. This is therefore an ideal
candidate to run on the SPE’s. The creation of offspring
for new generations will be done on the central PPE,
which will then communicate the inspection strategies
to the SPEs who will calculate the TICs in parallel.
The TIC calculation on the SPE’s consists of calculat-
ing the process values and subject them to the selected
inspection strategy. Each solution is simulated 50 times,
the average TIC is returned. This simulation requires a
lot of normal random numbers, how to adapt the ran-
dom number generation for parallel processing is the



Algorithm 2 adapted version of the EA
Create initial sorted population
for generation = 1 to number of generations do

for solution = 1 to M do
Create offspring
Calculate TIC on SPE (IN PARALLEL)

end for
Sort population

end for
Take winner

subject of the next section.
How is the TIC calculation now implemented on an
SPE? Keeping in mind that the memory of an SPE is
limited to 256k, we have decided to calculate it one pro-
cess value at a time, through all n stages instead of
complete batches stage by stage. This is feasible as the
processing of the values is not interdependent. This way
we needn’t worry about the 256k memory which would
otherwise become a problem if the batchsize becomes to
big.
How do we SIMDize the inspection? Normally this code
consists of a lot of branches:

Do we need to inspect? YES/NO
Is the value between inspection limits? Y/N
Are we using sampling inspection? Y/N
Do we need to switch to full inspection? Y/N

In SIMD we cannot have the conditional branches as the
same code needs to run on all the elements in the vector.
We implemented a standard technique of processing the
instructions for both branches of the conditional branch
and at the end select the right value with the instruction
SPUsel.

NORMAL PSEUDO-RANDOM NUMBERS

In many simulation and Monte Carlo programs, a sub-
stantial fraction of the computation time is used in gen-
erating pseudo-random numbers (Brent 1998). Vector
or parallel computation can significantly contribute in
accelerating the simulation process. However, parallel
computation for Monte Carlo programs in itself also
brings about some difficulties that cannot be overlooked:

• The requirements for parallel random number gen-
erators (RNGs) are more stringent than those for
sequential RNGs. If a simulation is to be run on
a multi-processor machine, it is of the essence to
ensure that the random numbers used by each pro-
cessor are independent, or equivalently, to ensure
that the sequences of random numbers used by each
processor are disjoint.

Different applications require pseudo-random numbers
with different distributions (uniform, normal, exponen-

tial, Poisson, etc.). The algorithms used to generate
these random numbers usually rely on a good source of
uniform random numbers, which are then transformed
to random numbers with other distributions. The algo-
rithms used can be divided in the following groups:

Inversion methods are based on the observation that
continuous cumulative distribution functions (cdfs)
range uniformly over the interval [0, 1]. If u is a uni-
form random number on [0, 1], then a random num-
ber X from a continuous distribution with speci-
fied cdf F is obtained using X = F−1(U). Subject
to the restriction that the distribution is continu-
ous, this method is generally applicable (and can
be computationally efficient if the cdf can be ana-
lytically inverted)

Transformation methods provide an alternative in
cases where cdf inversion too computationally ex-
pensive in practice for some probability distribu-
tions. The Box-Müller transform is an example of
such an algorithm. It produces two normally dis-
tributed random numbers from a pair of uniformly
distributed random numbers. If u1 and u2 are in-
dependent random variables that are uniformly dis-
tributed on [0, 1], then

z0 = R cos(Θ) =
√
−2 lnu1 cos(2πu2)

z1 = R sin(Θ) =
√
−2 lnu1 sin(2πu2)

are independent random variables with a standard
normal distribution.

Acceptance-rejection methods also provide an al-
ternative in cases where the functional form of the
required distributions makes it difficult or time-
consuming to generate random numbers using in-
version methods. As the previous two methods,
acceptance-rejection methods require uniform ran-
dom numbers. In this method it is assumed that
the probability distribution F we wish to simulate
has a pdf f(x). The basic idea is to find an al-
ternative probability distribution G, with pdf g(x),
from which we already have an efficient algorithm
for generating from, but also such that the function
g(x) is “close” to f(x). In particular, we assume
that the ratio f(x)/g(x) is bounded by a constant
c > 0. The algorithm for generating X distributed
as F proceeds as follows:

1. Choose a pdf g.

2. Find a constant c such that f(x)/g(x) ≤ c ;∀ x
3. Generate a uniform random number u

4. Generate a random number v from g

5. If c ∗ u ≤ f(v)/g(v) , accept and return v.
Otherwise, reject v and go to step 3



For efficiency, a “cheap” method is required for gen-
erating random numbers from g, and the scalar c
should be small.

These methods all either involve the computation of
mathematical functions such as sines, cosines and log-
arithms, which are slow in comparison to the time re-
quired to generate a uniform random number, or require
on average more than one uniform random number for
each normal random number. From this it evidently fol-
lows that normal RNGs based on transforming uniform
random numbers are slower than uniform RNGs. Leva
(1992) compared several of the best acceptance-rejection
methods an found that they are at least five times slower
than a fast uniform RNG on the same machine.
Brent (1998) argues that the most well-known and
widely used methods for normal RNG often do not vec-
torize well. He therefore suggests vectorized implemen-
tations of the “old-fashioned” Box-Müller transforma-
tion.
We follow this suggestion; the RNG used to generate the
uniform random numbers is the SFMT (SIMD-oriented
Fast Mersenne Twister, Saito and Matsumoto (2006)),
followed by our own implementation of the Box-Müller
transform. Standard mathematical functions such as
sines and cosines are calculated using the Universal
SIMD Mathlibrary (2009) libsimdmath.

SUMMARY AND CONCLUSIONS

We design an optimized parallel implementation of an
evolutionary algorithm and simulation for optimizing
inspection strategies for multi-stage processes on the
PlayStationr3. We adapted the algorithm to elimi-
nate branches and optimized the code using standard
techniques such as loop unrolling and vectorization. We
adapted the random number generation process: we de-
veloped and implemented a Box-Müller transform on
uniform random numbers generated with an 128-bit
Mersenne twister. The original algorithm calculation
time was >1 hour for 200 generations; re-writing the
code with SIMDizing the RNG led to a calculation time
of 5’59” on a single core of a 2.5GHz AMD Phenom pro-
cessor. The further porting and optimizing of the code
to make it suitable for running on the cell broadband en-
gine led to a calculation time of 14” on a PlayStationr3.
We thus realized a speedup factor of more then 256 in
comparison with the original algorithm in Van Volsem
et al. (2007), and showed the PlayStationr3 suitable
for scientific computing.

REFERENCES

Bader D.; Chandramowlishwaran A.; and Agarwal V.,
2008. On the design of fast pseudo-random number
generators for the cell broadband engine and an ap-

plication to risk analysis. IEEE Transactions on the
37th International Conference on Parallel Processing.

Brent R., 1998. Random number generation and simu-
lations on vector and parallel computers. Proceedings
of the 4th International Euro-Par Conference, 1–20.

De Jong K.A., 1975. An Analysis of the Behaviour of
a Class of Genetic Adaptive Systems. Ph.D. thesis,
University of Michigan Press.

Goldberg D., 1989. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison Wesley,
NY.

Holland J.H., 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Kurzak J.; Buttari A.; Luszczek P.; and Dongarra J.,
2008. The PlayStation3 for high performance scien-
tific computing. Computing in Science and Engineer-
ing, 10, no. 3, 84–87.

Leva J., 1992. A fast normal random number gener-
ator. ACM Transactions on Mathematical Software,
18, 449–453.

Olivier S.; Prins J.; Derby J.; and Vu K., 2007. Porting
the GROMACS Molecular Dynamics Code to the Cell
Processor. Proceedings of the 8th IEEE International
Workshop on Parallel and Distributed Scientific and
Engineering Computing.

Petrini F.; Fossum G.; Fernandez J.; Varbanescu A.L.;
Kistler M.; and Perrone M., 2007. Multicore surprises:
lessons learned from optimizing Sweep3D on the cell
broadband engine. IEEE Transactions on the 2007 In-
ternational Parallel and Distributed Processing Sym-
posium.

Reeves C.R., 1993. Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific Publi-
cations.

Saito M. and Matsumoto M., 2006. SIMD-oriented Fast
Mersenne Twister: a 128-bit Pseudorandom Number
Generator. Proceedings of the the 7th International
Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing.

Universal SIMD Mathlibrary, 2009. URL http://
webuser.fh-furtwangen.de/~dersch/.

Van Volsem S., 2009. Joint optimization of all inspection
parameters for multi-stage processes: algorithm, sim-
ulation and test set. Proceedings of the 16th European
Concurrent Engineering Conference.

Van Volsem S., accepted for publication, 2009. Joint
optimization of all inspection parameters for multi-
stage processes: evolutionary algorithm and simula-
tion. International Journal of Innovative Computing
and Applications.



Van Volsem S.; Dullaert W.; and Van Landeghem H.,
2007. An Evolutionary Algorithm and Discrete Event
Simulation for Optimizing Inspection Strategies for
Multi-Stage Processes. European Journal of Opera-
tional Research, 179, 621–633.

AUTHOR BIOGRAPHY

SOFIE VAN VOLSEM received a MSc degree in
Chemical Engineering from Ghent University in
1998 and a PhD in Engineering Sciences from the
same institution in 2006. She worked in indus-
try as a process & quality engineer before return-
ing to academia. After being with the University
of Antwerp for 6 years and the University College
of West-Flanders for nearly 2 years, she currently
holds a post-doc position at Ghent University. She
teaches Quality & Industrial Statistics. Her re-
search interests are quality management, quality
and reliability issues in supply chains, management
applications of metaheuristics.

SVEN NEIRYNCK graduated as MSc in Computer
Sciences at Ghent University in 1997. After 10
years of working as a systems engineering manager,
he currently divides his time between IT consul-
tancy with expertise in storage, archiving, data se-
curity and HPC systems; and research in the area
of simulation at Ghent University.


