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Abstract: A simple and reliable algorithm for design optimization of structures simulated using Sonnet em 

is presented. Our approach exploits coarse-discretization electromagnetic (EM) simulation data (low-fidelity 

model) of the structure of interest for creating a fast surrogate model through kriging interpolation. The 

surrogate is utilized to predict the optimum design of the structure, verified through high-fidelity EM 

simulations. The verification data is fed back to the surrogate through a co-Kriging technique, which allows 

continuous improvement of its accuracy while the optimization process progresses. The presented approach 

yields a satisfactory design at a low computational cost and is simple to implement. The design of two 

microstrip filters is considered for illustration. 
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1. Introduction 
 

Electromagnetic (EM) simulation is nowadays a primary design tool in microwave engineering. EM-

based design closure [1] in an important step of the design process where geometry and/or material 

parameters of the device of interest are adjusted in an iterative process involving repetitive simulations so 

that given performance requirements can be satisfied. In practice, such an adjustment process is often 

performed through parameters sweeps (typically, one parameter at a time), guided by expert knowledge. 

While automation of this process through numerical optimization is highly desirable, it is also quite 

challenging, with the fundamental difficulty being high computational cost of accurate EM evaluation. In 

particular, most conventional optimization techniques (both gradient-based and derivative free) require 

large number of EM simulations, which may be prohibitive. 

Probably the most promising way of reducing the cost of EM-based design closure is by using 

surrogate models. In surrogate-based optimization (SBO) [2], a direct optimization of the structure under 

consideration (so-called high-fidelity model) is replaced by iterative updating and re-optimization of its 

cheap representation, the surrogate [3]. There are various ways of constructing the surrogate, from 

approximating sampled high-fidelity model data [2], [4] to by suitable correction of a physically-based 

low-fidelity (or “coarse”) model, e.g., an equivalent circuit [5]. 

The most successful techniques in microwave engineering exploiting physically-based surrogates are 

(SM) [5]-[7] and various forms of tuning [1], [8], [9] and tuning SM [10]. The tuning approaches are 

particularly suited to be used with Sonnet em [11] because of its co-calibrated ports technology [1]. Other 
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methods include various response correction techniques such as manifold mapping [12], adaptive 

response correction [13] or shape-preserving response prediction [14]. 

Space mapping is probably the most generic approach but its efficiency heavily depends on the 

quality of the coarse model [15]. Also, SM normally requires that the coarse model is very fast. These 

requirements are often contradictory. In particular, fast coarse models (e.g., equivalent circuits) are 

usually not quite accurate, whereas accurate models (e.g., coarse-discretization EM simulations) are 

relatively expensive. In [16], an algorithm was proposed that uses SM as well as coarse-discretization 

Sonnet simulations and shape-preserving response prediction (SPRP) [14] to create the coarse model. 

This methodology proved very efficient, unfortunately, SPRP assumes that the low- and high-fidelity 

model response shapes must be similar (in terms of specifically defined characteristic points) for all 

designs considered during the optimization run. This limits the range of applications of SPRP and 

requires that the set of characteristic points is individually defined on case to case basis. In [17], space 

mapping using the coarse model constructed from coarse-discretization Sonnet simulations has been 

proposed which overcomes the limitations of [15].  

Here, we adopt co-Kriging [18] for optimization of Sonnet-simulated structures. Co-Kriging allows 

us to create the surrogate using mostly coarse-discretization Sonnet simulations (cheaper than the high-

fidelity ones) and limited amount of high-fidelity EM data that is accumulated during the iterative process 

of optimizing and improving the surrogate. Co-Kriging is a natural way to blend Sonnet simulation data 

of different fidelity, which allows us to yield an optimized design at a low cost corresponding to a few 

high-fidelity simulations. Our technique is demonstrated through the design of two microstrip filters. 

While its efficiency is comparable [17], it is easier to implement and does not require user interaction 

with respect to setting up the SM surrogate nor implementing parameter extraction. 

 

2.   Design Optimization Using Co-Kriging 

A. Design Optimization Problem 

The design problem is formulated as a nonlinear minimization problem of the following form: 
* arg min ( ( ))f fU

x
x R x , (1) 

Here, Rf(x)  R
m
 is a response vector of a structure of interest, e.g., |S21| at m frequencies; x  R

n
 is a design 

variable vector; U is a scalar merit function, e.g., a minimax function with upper/lower specifications; xf
*
 is 

the optimal design to be determined. Here, Rf is evaluated using Sonnet em with a gh.f  gv.f grid. 

B. Coarse-Discretization Model and Initial Optimization Stage 

The optimization technique introduced here exploits a coarse-discretization model Rc, also evaluated 

using Sonnet em. The model Rc exploits a grid gh.c  gv.c so that gh.c > gh.f and gv.c > gv.f.  

The model Rc is optimized on the grid gh.c  gv.c using a pattern search algorithm [19] in order to find a 

design x
(0)

 that will be used as a starting point for the next optimization stage. The resolution of this initial 

optimization stage is limited by the coarseness of the grid gh.c  gv.c, however, for the same reason, the 

computational cost of finding x
(0)

 is low and typically corresponds to a few evaluations of the fine model Rf. 

C. Kriging and Co-Kriging Interpolation 

Kriging is a popular technique to interpolate deterministic noise-free data [20]. Let XB.c = {xc
1
, xc

2
, …, 

xc
N.c

} be the training set and Rc(XB.c) the associated coarse-discretization model responses. The kriging 

interpolant is derived as,
  1( ) ( ) ( ( ) )s KR f B cM r X F     R x x R

                                              
 (2) 

where M and F are Vandermonde matrices of the test point x and the base set XBK, respectively. The 

coefficient vector  is determined by Generalized Least Squares (GLS). r(x) is an 1NKR vector of 

correlations between the point x and the base set XB.KR, where the entries are ri(x) = (x,xc
i
), and  is a 

NcNc correlation matrix, with the entries given by i,j = (xc
i
, xc

j
). Here, the exponential correlation 
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function is used, i.e., (x,y) = exp(k=1, ,n –k|x
k
–y

k
|), where the parameters 1, ..., n are identified by 

Maximum Likelihood Estimation (MLE). The regression function is chosen constant, F = [1 ... 1]
T
 and 

M = (1). 

Co-Kriging [18] is a type of kriging where the Rf and Rc model data are combined to enhance the 

prediction accuracy. Co-Kriging is a two-steps process: first a kriging model Rs.KRc of the coarse data 

(XB.c,Rc(XB.c)) is constructed and on the residuals of the fine data (XB.f,Rd) a second kriging model Rs.KRd is 

applied, where Rd = Rf(XB.f) – Rc(XB.f). The parameter  is included in the MLE. Note that if the 

response values Rc(XB.f) are not available, they can be approximated by using the first kriging model 

Rs.KRc, namely, Rc(XB.f)  Rs.KRc(XB.f). The resulting co-Kriging interpolant is defined as 
1( ) ( ) ( )s dM r F     R x x R

                                                          
 (3)

 
where the block matrices M, F, r(x) and  can be written in function of the two separate kriging models 

Rs.KRc and Rs.KRd: 

                                           
2 2 2 2( ) [ ( ), ( , ) ( )]

fc c c c B d dr r r X r          x x x x
 

2 2

2 2 2

( , )

0 ( , )

c c c c B c B f

c c B f B f d d

X X

X X

  

  

   
   

                                                        (4) 

                                                   

0c

d d

F
F

F F

 
  

  ,    
[ ]c dM M M   

where (Fc,c,c,Mc) and (Fd,d,d,Md) are matrices obtained from the kriging models Rs.KRc and Rs.KRd, 

respectively. In particular, c
2
 and d

2
 are process variances, while c(,) and d(,) denote correlation 

matrices of two datasets with the optimized 1, ..., n parameters and correlation function of the kriging 

models Rs.KRc and Rs.KRd, respectively. 

D. Design Optimization Flow 

The co-Kriging-based design optimization procedure can be summarized as follows [21]: 
1. Set the initial design x

init
; Optimize Rc to find x

(0)
 – initial design for the co-Kriging optimization; 

2. Sample Rc in the vicinity of x
(0)

 to obtain (XB.c,Rc(XB.c)); 
3. Set i = 0; 
4. Evaluate Rf at x

(i)
; Create a co-Kriging model Rs

(i)
 as in (3) using (XB.c,Rc(XB.c)) and (XB.f,Rf(XB.f)) 

with XB.f = {x
(0)

,…, x
(i)

}; 
5. Find x

(i+1)
 by optimizing Rs

(i)
; Set i = i + 1; 

6. If ||x
(i)

 – x
(i–1)

|| <  (here,  = 10
–2

) terminate, else go to 5; 

Note that the co-Kriging model is created in the vicinity of the Rc optimum, which is the best 

approximation of the optimal design we can get at a low cost. This allows us to use a limited number of 

Rc samples while creating the surrogate. The size of the vicinity is typically 5 to 20 percent of the design 

space. The initial co-Kriging surrogate is created using only one evaluation of Rf and then updated using 

the designs obtained by optimizing the surrogate. By definition Rs
(i)

(x
(k)

) = Rf(x
(k)

) for k = 0,…,i, so that 

the surrogate accuracy constantly improves in the vicinity of the expected optimum upon the algorithm 

convergence. 

 

3. Illustration Examples 

 

A. Compact Stacked Slotted Resonators Microstrip Bandpass Filter [22] 

Consider the stacked slotted resonators bandpass filter [22] shown in Fig. 1(a). The design 

parameters are x = [L1 L2 W1 S1 S2 d]
T
 mm. The filter is simulated in Sonnet em [11] using a grid of 0.05 

mm  0.05 mm (model Rf). The design specifications are |S21|  –3 dB for 2.35 GHz    2.45 GHz, and 

|S21|  –20 dB for 1.9 GHz    2.3GHz and 2.6 GHz    2.9 GHz. The initial design is x
(0)

 = [7 10 0.6 

1 2 1]
T
 mm. The low-fidelity model Rc is also evaluated in Sonnet em using a grid of 0.2 mm  0.2 mm. 

The evaluation times for Rc and Rf are 25s and 12 min, respectively. 
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The filter was optimized using the co-Kriging-based algorithm of Section 2. The optimum of Rc, x
(0)

 

= [6.0 9.6 1.0 1.0 2.0 2.0]
T
 mm. is obtained at the cost of 38 evaluations of Rc using a pattern search 

algorithm [19] working on a grid corresponding to the simulation grid of the low-fidelity model. The co-

Kriging surrogate is created in the region [x
(0) 

– , x
(0) 

+ ], with  = [0.4 0.8 0.5 0.5 0.5 0.4]
T
 mm, using 

63 Rc samples (13 samples of the star distribution [23] and 50 samples allocated with Latin Hypercube 

Sampling (LHS) [24]). The co-Kriging optimization process is accomplished in 4 iterations with the 

optimized design x
(4)

 = [5.95 9.5 1.0 0.95 2.0 2.15]
T
 mm. Figure 1(b) shows the responses of Rf at x

init
, x

(0)
 

and x
(4)

. The total design cost (Table 1) corresponds to about 8 evaluations of Rf. Direct optimization of 

the high-fidelity model has not been performed, however, the cost of such a process would be much 

higher as indicated by the cost of optimizing the low-fidelity model (38 × Rc, cf. Table 1), where only 

approximate optimum was found – finding the optimum more accurately would require around 80 to 100 

high-fidelity model evaluations. This indicates that the proposed approach is capable to reduce the design 

cost by a factor of 10. 
 

B. Dual-Band Bandpass Filter with Stub-Loaded Resonators [25] 

Consider the dual-band bandpass with stub-loaded resonators filter [25] shown in Fig. 2(a). The design 

parameters are x = [L1 L2 L3 g1 g2 d W3]
T
 mm. Other variables are fixed: W1 = 0.5 mm, and W2 = 1.0 mm. 

The filter is simulated in Sonnet em [11] using a grid of 0.05 mm  0.05 mm (high-fidelity model Rf). The 

design specifications are |S21|  –3 dB for 1.7 GHz    1.8 GHz and for 3.1 GHz    3.2 GHz, and 

|S21|  –20 dB for 1.0 GHz    1.5GHz, 2.1 GHz    2.7GHz, and 3.4 GHz    4.0 GHz. The initial 

design is x
(0)

 = [12 12 6 1 1 1 1]
T
 mm. The low-fidelity model Rc is also evaluated in Sonnet em using a grid 

of 0.2 mm  0.2 mm. The evaluation times for Rc and Rf are 50s and 12 min, respectively.  
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        (a)               (b) 

Fig. 1. Stacked slotted resonators filter: (a) geometry [22], (b) responses of the high-fidelity model Rf at 

the initial design x
init

 (dotted line), at the optimized design of Rc, x
(0)

, (dashed line), and at the final design 

obtained using co-Kriging-based algorithm (solid line). 
 

Table 1. Optimization cost of the stacked slotted resonators bandpass filter 

Algorithm Component 
Number of Model 

Evaluations 

Evaluation Time 

Absolute [min] Relative to Rf 

Optimization of the low-fidelity model Rc 38 × Rc 16 1.3 

Setting up initial kriging surrogate
1
 63 × Rc 26 2.2 

Evaluation of the high-fidelity model Rf 
2
 5 × Rf 60 5.0 

Total optimization time N/A 102 8.5 
1 The base set included 13 points of so-called star distribution [23] and 50 points allocated using Latin Hypercube Sampling [24]. 
2 Includes evaluation of the high-fidelity model at x(0). 
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Fig. 2. Dual-band bandpass filter with stub-loaded resonators: (a) geometry [25], (b) responses of the 

high-fidelity model Rf at the initial design x
init

 (dotted line), at the optimized design of Rc, x
(0)

, (dashed 

line), and at the final design obtained using co-Kriging-based algorithm (solid line). 
 

Table 2. Optimization cost of the dual-band bandpass filter with stub-loaded resonators 

Algorithm Component 
Number of Model 

Evaluations 

Evaluation Time 

Absolute [min] Relative to Rf 

Optimization of the low-fidelity model Rc 48 × Rc 40 3.3 

Setting up initial kriging surrogate
1
 65 × Rc 54 4.5 

Evaluation of the high-fidelity model Rf 
2
 5 × Rf 60 5.0 

Total optimization time N/A 154 12.3 
1 The base set included 15 points of so-called star distribution [23] and 50 points allocated using Latin Hypercube Sampling [24]. 
2 Includes evaluation of the high-fidelity model at x(0). 

 

 

The filter was optimized using the co-Kriging-based algorithm of Section 2. The optimum of Rc, x
(0)

 = 

[11.9 11.8 5.8 1.0 0.4 0.3 0.6]
T
 mm. is obtained at the cost of 48 evaluations of Rc using a pattern search 

algorithm [19] working on a grid corresponding to the simulation grid of the low-fidelity model. The co-

Kriging surrogate is created in the region [x
(0) 

– , x
(0) 

+ ], with  = [0.2 0.2 0.2 0.2 0.2 0.2 0.2]
T
 mm, using 65 

low-fidelity model samples  and similar scheme as in the first example (15 samples of the star distribution [23] 

and 50 samples allocated with LHS [24]). The co-Kriging optimization process is accomplished in 4 iterations 

with the optimized design x
(4)

 = [11.9 12.0 6.0 1.0 0.4 0.1 0.6]
T
 mm. Figure 2(b) shows the responses of Rf at 

x
init

, x
(0)

 and x
(4)

. The total design cost (Table 2) corresponds to about 8 evaluations of Rf. 
 

3. Conclusion 
 

Simple and reliable procedure for microwave design optimization with Sonnet is discussed that utilizes 

coarse-discretization Sonnet simulations and co-Kriging as a way of creating a fast surrogate model of the 

structure under design, with sparsely referenced high-fidelity simulations used to correct the surrogate. Our 

technique is demonstrated through the design of two microstrip filters. 
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