Characterizing Coherence, Correcting Incoherence

to crank out COHERENCE CHARACTERIZATIONS

1. Context

Basic setup:

- Finite possibility space Ω
- Finite set of gambles \mathcal{K} on Ω
- Lower previsions \underline{P} on \mathcal{K}

Matrix notation

- $|\Omega|$-by- $|\mathcal{K}|$ matrix K with gambles as columns
- the rows of K (columns of K^{\top}) are the degenerate previsions - the set \mathcal{S} of matrices S obtained from the identity matrix \mathbb{I} by changing at most one 1 to -1 - all-one (zero) column vector 1 (0)

2. Goals

Given K, find a non-redundant H representations for the set of all \underline{P} A. that avoid sure loss ($\left[\Lambda_{\mathrm{A}} \mid \alpha_{\mathrm{A}}\right]$),
B. that avoid sure loss and for which $\underline{P} \geq \min \left(\left[\Lambda_{\mathrm{B}} \alpha_{\mathrm{B}}\right]\right)$,
C. that are coherent ($\left[\Lambda_{\subset} \mid \alpha_{C}\right]$).

7. Experiments

The sparsity σ is the fraction of zero components in K.
Procedure Cl is exponential in $1-\sigma$ and \sim inear in $|\Omega|$:

1. Representations

Any convex polyhedron in \mathbb{R}^{n} can be described in two ways:
H-representation (intersection of half-spaces) constraint matrix in \mathbb{R}^{k}
$[A \mid b]:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ constraint vector in \mathbb{R}^{k} V-representation (convex hull of points and rays) vector matrix in $\mathbb{R}^{n \times \ell}$
$:=\left\{x \in \mathbb{R}^{n}: x=V \mu \wedge \mu \geq 0 \wedge w^{\top} \mu=1\right\}$
3. Goal A: Characterizing ASL Based on the existence of a dominating linear prevision $\mathrm{A1}. \begin{aligned} & \exists \mu_{\mathbb{I}}, v_{\mathbb{I}} \geq 0: \\ & \underline{P}=K^{\top} \mu_{\mathbb{I}}-\mathbb{I}_{\mathbb{I}} \wedge 1^{\top} \mu_{\mathbb{I}}=1\end{aligned}\left[\begin{array}{cc}K^{\top}-\mathbb{I} \\ 1^{\top} & 0^{\top}\end{array}\right] \xrightarrow{\mathrm{EN}, \mathrm{RR}}\left[\Lambda_{\mathrm{A}} \mid \alpha_{\mathrm{A}}\right]$ A2. $\begin{aligned} & \exists \mu_{\mathbb{I}} \geq 0: \\ & \underline{P} \leq K^{\top} \mu_{\mathbb{I}} \wedge \\ & 1^{\top} \mu_{\mathbb{I}}=1\end{aligned}\left[\begin{array}{rr|r}\mathbb{I} & -K^{\top} & 0 \\ -\mathbb{I} & 0 \\ 1^{\top} & 1 \\ -1^{\top} & -1\end{array}\right] \xrightarrow{\text { PJ } p_{p}, R R}\left[\Lambda_{\mathrm{A}} \mid \alpha_{\mathrm{A}}\right]$
4. Goal B: Characterizing ASL \geq min B1. Starting from $\left[\Lambda_{A} \mid \alpha_{A}\right]:\left[\begin{array}{c|c}\Lambda_{A} & \alpha_{A} \\ -\mathbb{I} & -\min \end{array}\right] \xrightarrow{R R}\left[\Lambda_{B} \mid \alpha_{B}\right]$

5. Goal C: Characterizing coherence

 Based on the existence of S-dominating linear previsions: C1. Analogous to A1 \& intersection over all S in \mathcal{S} :$$
\begin{aligned}
& \forall S \in \mathcal{S}: \exists \mu_{S}, v_{S} \geq 0: \\
& \underline{P}=K^{\top} \mu_{S}-S v_{S} \wedge 1^{\top} \mu_{S}=1
\end{aligned} \rightarrow\left[\begin{array}{cc}
K^{\top}-S \\
1^{\top} & 0^{\top}
\end{array}\right] \xrightarrow{\mathrm{EN}, \mathrm{I} \mathrm{~S}_{S \in S}, \mathrm{RR}}\left[\Lambda_{\complement} \mid \alpha_{\mathrm{C}}\right] \text {] }
$$

C2. Analogous to A2 \& intersection over all S in \mathcal{S} :

6. Illustrations of Procedure C1

2. Illustration

constraint matrix in $\mathbb{R} k \times n$

1. Context \& Goal

Given: incoherent lower prevision \underline{P}. Goal: Find a coherent correction to it.

2. Bring within bounds

If $\underline{P} f \notin[\min f, \max f]$ for some f in \mathcal{K}, it is out of bounds. To bring it within bounds:
$\underline{B}_{\underline{P}} f:= \begin{cases}\min f & \underline{P} f \leq \min f, \\ \max f & \underline{P} f \geq \max f, \\ \underline{P f} & \text { otherwise } .\end{cases}$

3. Downward correction

As the downward correction of \underline{P} we take the lower envelope of the maximal coherent dominated lower previsions (proposed earlier by Pelessoni \& Vicig, following Weichselberger), so the nadir point $\underline{D_{\underline{p}}}$ of the MOLP (cf. C)

$$
\text { maximize } \underline{Q},
$$

(†) subject to $\Lambda_{C} Q \leq \alpha_{C}$ $\underline{Q} \leq \underline{P}$
or the MOLP (cf. C3)

$$
\text { maximize } \underline{Q},
$$

(\ddagger) subject to $\bar{A}_{\underline{Q}} \underline{Q}+A_{\mu} \mu \leq b$
$\underline{Q} \leq \underline{P}$.
Some desirable properties:

- It is the maximal neutral correction ('no component tradeoffs').
- The imprecision of the correction is nondecreasing with incoherence.

For the future: Can the computation be simplified for special classes of \underline{P} ?

I WANT YOU

to ERADICATE INCOHERENCE utterly

4. Experiments

With the M3-solver we used, computation appears exponential in $|\mathcal{K}|$; using pre-computed constraints (\dagger) is more efficient than not (\ddagger):

We expect other solvers and certainly direct M2-solvers to perform more efficiently, but could not test any yet

5. Upward correction

The standard upward correction of \underline{P} is its natural extension \underline{E}_{P}, the unique minimal pointwise dominating coherent lower prevision, so the the solution to the MOLP (cf. C)

$$
\begin{aligned}
\operatorname{minimize} & \underline{E_{P}}, \\
\text { subject to } & \Lambda_{C} \underline{E}_{\underline{P}} \leq \alpha_{\mathrm{C}} \\
& \underline{E_{P}} \geq \underline{P}
\end{aligned}
$$

or the MOLP (cf. C3)
minimize $\underline{E}_{\underline{P}}$,
(*) subject to $A_{\underline{E_{P}} \underline{E_{\underline{P}}}}+A_{\mu} \mu \leq b$ $\underline{E_{P}} \geq \underline{P}$.

- The problem becomes a plain LP by using the objective $\sum_{g \in \mathcal{K}} E_{p g}$.
(*) decomposes into a classical formulation of natural extension.
dominating lower previsions
 vector in $\left(\mathbb{R}^{\ell}\right)_{\geq 0}$ with components defining
points $(\neq 0)$ and rays $(=0)$ points ($\neq 0$) and rays ($=0$)

to juggle POLYHEDRA like there's no tomorrow

RR. Removing redundancy: if j is the number of non-redundant constraints (or vectors), this requires solving k (or ℓ) linear programming problems of size $n \times j$
EN. Moving between H- and V-representations: done using vertex/facet enumeration algorithms; polynomial in n, k, and ℓ.
PJ. Projection on a lower-dimensional space: easy with V-representations, hard with H-representations.
IS. Intersection: easy with H-representations, hard with V-representations.

