Characterizing Coherence, Correcting Incoherence

1. Context

Basic setup:

- ullet Finite possibility space Ω
- ullet Finite set of gambles ${\mathcal K}$ on ${oldsymbol \Omega}$ • Lower previsions P on $\mathcal K$

Matrix notation:

- $|\Omega|$ -by- $|\mathcal{K}|$ matrix K with gambles as columns
- the rows of K (columns of K^{T}) are the degenerate previsions
- the set S of matrices S obtained from the identity matrix I by changing at most one 1 to -1
- all-one (zero) column vector 1 (0)

2. Goals

Given K, find a non-redundant Hrepresentations for the set of all \underline{P} A. that avoid sure loss ($|\Lambda_A|\alpha_A|$), B. that avoid sure loss and for which $\underline{P} \ge \min (|\Lambda_{\mathsf{B}}| \alpha_{\mathsf{B}}|)$, C. that are coherent ($|\Lambda_{\rm C}| \alpha_{\rm C}|$).

7. Experiments

The sparsity σ is the fraction of zero components in K.

Procedure C1 is exponential in $1 - \sigma$ and \sim linear in $|\Omega|$:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 σ

3. Goal A: Characterizing ASL

Based on the existence of a dominating linear prevision:

A1.
$$\frac{\exists \mu_{\mathbb{I}}, \nu_{\mathbb{I}} \geq 0:}{\underline{P} = K^{\mathsf{T}} \mu_{\mathbb{I}} - \mathbb{I} \nu_{\mathbb{I}} \wedge 1^{\mathsf{T}} \mu_{\mathbb{I}} = 1} \longrightarrow \begin{bmatrix} K^{\mathsf{T}} - \mathbb{I} \\ 1^{\mathsf{T}} & 0^{\mathsf{T}} \end{bmatrix} \xrightarrow{\mathsf{EN, RR}} \begin{bmatrix} \Lambda_{\mathsf{A}} \mid \alpha_{\mathsf{A}} \end{bmatrix}$$
A2.
$$\frac{\exists \mu_{\mathbb{I}} \geq 0:}{\underline{P} \leq K^{\mathsf{T}} \mu_{\mathbb{I}} \wedge 1^{\mathsf{T}} \mu_{\mathbb{I}} = 1} \longrightarrow \begin{bmatrix} \mathbb{I} & -K^{\mathsf{T}} \mid 0 \\ -\mathbb{I} & 0 \\ 1^{\mathsf{T}} & 1 \\ -1^{\mathsf{T}} \mid -1 \end{bmatrix} \xrightarrow{\mathsf{PJ}_{\underline{P}}, \mathsf{RR}} \begin{bmatrix} \Lambda_{\mathsf{A}} \mid \alpha_{\mathsf{A}} \end{bmatrix}$$

4. Goal B: Characterizing ASL ≥ min

B1. Starting from $\begin{bmatrix} \Lambda_{\mathsf{A}} | \alpha_{\mathsf{A}} \end{bmatrix}$: $\begin{bmatrix} \Lambda_{\mathsf{A}} | \alpha_{\mathsf{A}} \\ -\mathbb{I} | -\min \end{bmatrix}$ $\xrightarrow{\mathsf{RR}} \begin{bmatrix} \Lambda_{\mathsf{B}} | \alpha_{\mathsf{B}} \end{bmatrix}$

5. Goal C: Characterizing coherence

Based on the existence of S-dominating linear previsions:

- C1. Analogous to A1 & intersection over all S in S:
- $\forall S \in \mathcal{S} : \exists \mu_{S}, \nu_{S} \geq 0 : \\ \underline{P} = K^{\mathsf{T}} \mu_{S} S \nu_{S} \wedge 1^{\mathsf{T}} \mu_{S} = 1 \longrightarrow \begin{bmatrix} K^{\mathsf{T}} S \\ 1^{\mathsf{T}} & 0^{\mathsf{T}} \end{bmatrix} \xrightarrow{\mathsf{EN, IS}_{S \in \mathcal{S}}, \mathsf{RR}} [\Lambda_{\mathsf{C}} \mid \alpha_{\mathsf{C}}]$
- C2. Analogous to A2 & intersection over all S in S:

$$\forall S \in \mathcal{S} : \exists \mu_{S} \geq 0 : \\ S\underline{P} \leq SK^{\mathsf{T}}\mu_{S} \wedge 1^{\mathsf{T}}\mu_{S} = 1 \longrightarrow \begin{bmatrix} S & -SK^{\mathsf{T}} & 0 \\ & -\mathbb{I} & 0 \\ & & 1^{\mathsf{T}} & 1 \\ & & -1^{\mathsf{T}} & -1 \end{bmatrix} \xrightarrow{\mathsf{PJ}_{\underline{P}}, \; \mathsf{IS}_{S \in \mathcal{S}}, \; \mathsf{RR}} [\Lambda_{\mathsf{C}} | \alpha_{\mathsf{C}}]$$

$$\mathsf{C3. \; \mathsf{Block \; matrix \; form \; of \; \mathsf{C2}} : \qquad \Rightarrow = : [A_{S,\underline{P}} \; A_{S,\mu_{S}} | b_{0}]$$

 $egin{array}{ccc} A_{\mathbb{I}, oldsymbol{P}} & A_{\mathbb{I}, oldsymbol{\mu}_{\mathbb{I}} \end{array}$ $-[\Lambda_{\mathsf{C}}|lpha_{\mathsf{C}}]$ $[A_{\underline{P}} A_{\mu} | b] =$

6. Illustrations of Procedure C1

1. Context & Goal

Given: incoherent lower prevision \underline{P} . Goal: Find a coherent correction to it.

2. Bring within bounds

If $\underline{P}f \notin [\min f, \max f]$ for some f in \mathcal{K} , it is out of bounds. To bring it within bounds:

$$\underline{B}_{\underline{P}} f \coloneqq \begin{cases} \min f & \underline{P} f \leq \min f, \\ \max f & \underline{P} f \geq \max f, \\ \underline{P} f & \text{otherwise.} \end{cases}$$

3. Downward correction

As the downward correction of \underline{P} we take the lower envelope of the maximal coherent dominated lower previsions (proposed earlier by Pelessoni & Vicig, following Weichselberger), so the nadir point D_P of the MOLP (cf. C)

maximize
$$\underline{Q}$$
,
 (†) subject to $\Lambda_{\mathbf{C}}\underline{Q} \leq \alpha_{\mathbf{C}}$ $\underline{Q} \leq \underline{P}$

or the MOLP (cf. C3)

maximize Q,

(‡) subject to
$$A_{\underline{Q}}\underline{Q} + A_{\mu}\mu \leq b$$

 $Q \leq \underline{P}$.

Some desirable properties:

- It is the maximal neutral correction ('no component tradeoffs').
- The imprecision of the correction is nondecreasing with incoherence.

For the future: Can the computation be simplified for special classes of *P*?

WANT YOU to **ERADICATE INCOHERENCE** utterly

4. Experiments

With the M3-solver we used, computation appears exponential in $|\mathcal{K}|$; using pre-computed constraints (†) is more efficient than not (‡):

We expect other solvers and certainly direct M2-solvers to perform more efficiently, but could not test any yet.

5. Upward correction

The standard upward correction of \underline{P} is its natural extension \underline{E}_P , the unique minimal pointwise dominating coherent lower prevision, so the the solution to the MOLP (cf. C)

minimize
$$\underline{E}_P$$
, subject to $\Lambda_{\mathbf{C}}\underline{E}_P \leq \alpha_{\mathbf{C}}$ $\underline{E}_P \geq \underline{P}$

or the MOLP (cf. C3)

- minimize \underline{E}_P , subject to $A_{\underline{E}_{P}}\underline{E}_{\underline{P}} + A_{\mu}\mu \leq b$ $\underline{E}_P \geq \underline{P}$.
- The problem becomes a plain LP by using the objective $\sum_{g \in \mathcal{K}} \underline{E}_{P}g$.
- (*) decomposes into a classical formulation of natural extension.

dominating lower previsions

no natural extension.

in case of sure loss

1. Representations

Any convex polyhedron in \mathbb{R}^n can be described in two ways:

H-representation (intersection of half-spaces) constraint matrix in $\mathbb{R}^{k \times n}$

$$[A \mid b] \coloneqq \{x \in \mathbb{R}^n : Ax \le b\}$$
constraint vector in \mathbb{R}^k

V-representation (convex hull of points and rays)

vector in $(\mathbb{R}^\ell)_{\geq 0}$ with components defining points ($\neq 0$) and rays (= 0)

2. Illustration

3. Tasks

- RR. Removing redundancy: if j is the number of non-redundant constraints (or vectors), this requires solving k (or ℓ) linear programming problems of size $n \times j$
- EN. Moving between H- and V-representations: done using vertex/facet enumeration algorithms; polynomial in n, k, and ℓ .
- PJ. Projection on a lower-dimensional space: easy with V-representations, hard with H-representations.
- IS. Intersection: easy with H-representations, hard with V-representations.

ШШ

UNIVERSITEIT GENT

1. Formalization

Any multi-objective linear program (MOLP) can be put in the following form: objective matrix in $\mathbb{R}^{m \times n}$ objective optimization vector in \mathbb{R}^m vector in \mathbb{R}^n maximize $\dot{y} = C\dot{x}$, subject to $Ax \le b$ and $x \ge 0$ constraint, constraint matrix in $\mathbb{R}^{k \times n}$ vector in \mathbb{R}^k

3. Tasks

Main computational tasks in nondecreasing order of complexity: M1. Finding \hat{y} .

nadir point, with M2. Finding \check{y} . $\check{y}_i = \min\{y_i : y \in \mathcal{Y}^*\}$ M3. Finding $ext \mathcal{Y}^*$

and characterizing \mathcal{Y}^* . M4. Finding $ext \mathcal{X}^*$. M5. Characterizing \mathcal{X}^* .

feasible objective vectors $\{Cx : x \in \mathcal{X}\}$

2. Illustration

feasible optimization vectors $\{x \in \mathbb{R}^n : Ax \le b \land x \ge 0\}$

C-undominated optimization vectors $\{x \in \mathcal{X} : (\forall z \in \mathcal{X} : Cx \not\in Cz)\}$ with vertices $ext \mathcal{X}^*$

undominated objective vectors $\{Cx: x \in \mathcal{X}^*\}$ with vertices ext \mathcal{Y}^*

 \rightarrow ideal point, with $\hat{y}_i = \max\{y_i : y \in \mathcal{Y}\}$

to grok MULTI-OBJECTIVE LINEAR PROGRAMMING

 y_1