Characterizing Coherence, Correcting Incoherence

| WANT YOU 3. Goal A: Characterizing ASL 1. Context & Goal
| Based on the existence of a dominating linear prevision: Given: incoherent lower prevision P.
Jug, vi >0 KT _T Goal: Find a coherent correction to it.
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A> JH1>0: -I 0 PJp, RR A If Pf ¢ [min f,max f] for some f in K, it is
 P<Kuy A 1y=1 171 B {An 0] out of bounds. To bring it within bounds:
| L ==k (minf Pf <minf,
to crank out COHERENCE 4. Goal B: Characterizing ASL > min Bpf=ymaxf Pf>maxf,
B1. Starting from [Aa aal: [ Ap A ] RR [Ag|ag] T
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1. Context
Basic setup: 5. Goal C: Characterizing coherence
* Finite possibility space (2 Based on the existence of S-dominating linear previsions:

* Finite set of gambles K on Q2
e Lower previsions Pon K

Matrix notation:

C1l. Analogous to Al & intersection over all S in S:

lower previsions
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e the rows of K (columns of K7) 'S —SKT 0] ,
" the set & of matrices 5 obtained SP<SK pis A 1 ks =1 o - coherent dominated Izwer previsions
from the identity matrix I b -17 -1
changing at mo;’t b y1 3 Block " f (;2 T [ASP Aq bo] (proposed earlier by Pelessoni & Vicig, following
- C3. Block matrix form of C2: = |AS.P AS,ug . . .
* all-one (zero) column vector 1 (0) Arp Ar bo” \’c/\;\eeldl\]/fgllk_)lie)r?g)lcs)o the nadir point Dp of
N : P)p, RR .
2. Goals [AB Aub] " |Asp As bo '[ACOCC] Maximize Q,
: ] ' <
Given K, find a non-redundant H- - B (1) subject to ACQ = Uc
representations for the set of all P Q<P
A. that avoid sure loss ([Aa|aa)), 6. lllustrations of Procedure C1 or the MOLP (cf. C3)
B. that avoid sure loss and for p -
which P >min ([Ag as)), = , Q ={a,b,c} maximize Q,
C.that are coherent ([Ac ac)). . b . } (1) () subjectto ApQ+Auu<b
= z ——
. 1 <P
7. Experiments 1. 03 O<F
| | | 2T e Some desirable properties:
U SpEIrEiy @ 15 4 f=emen @f SERETET « It is the maximal neutral correction
zero components in K. 0+ s min Fa (‘no component tradeoffs’).
Procedure C1 is exponential | , S °*  The imprecision of the correction is
in 1 — o0 and ~linearin |Q|: 0 % 1 P& of | _1]5 intersect nondecreasing with incoherence.
| o lsiool | 107 \/ -------- . and remove
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...and (at least) exponential in |[K|: o lower previsions..-
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© = Fa For the future: Can the computation be
simplified for special classes of P?
1. Representations 2. lllustration
Any convex polyhedron in R” can be Heren=2,k=3,and ¢ =4. _ ) )
described in two ways: s Pyt 1. Formalization 2. lllustration

H-representation (intersection of half-spaces)
-~ constraint matrix in Rk>n
[Abi:: {xe R":Ax< b}

(constraint

constraint vector in R

V-representation (convex hull of points and rays) S I
vector matrix in R™<¢ |
—V[ - vector in R? ; ld vertex
. n.. _ Ty, _ redundant y
1= xeR":x=Vuaru>20rwu=1}  onstraint extreme

- \__vector in (RY)so with components defining
points (+0) and rays (=0) 3. Tasks

RR. Removing redundancy: if j is the
numberof non-redundant con-
straints (or vectors), this requires
solving k (or /) linear programming
problems of size nx j

EN. Moving between H- and V-represent-
ations: done using vertex/facet enu-
meration algorithms; polynomial in
n, k, and /.

PJ. Projection on a lower-dimensional
space: easy with V-representations,
| hard with H-representations.

to juggle POLYHEDRA IS. Intersection: easy with H-represent-

like there’s no tomorrow ations, hard with V-representations.
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Any multi-objective linear program Herem =n =2 andk = 4.
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4. Experiments

With the M3-solver we used, computa-
tion appears exponential in |K|; using
pre-computed constraints (1) iIs more
efficient than not ($):
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We expect other solvers and certainly
direct M2-solvers to perform more
efficiently, but could not test any yet.

5. Upward correction

The standard upward correction of P

IS its natural extension Ep, the unique

minimal pointwise dominating co-

herent lower prevision, so the the

solution to the MOLP (cf. C)
minimize Ep

subject to AcEp< o
Ep>P

or the MOLP (cf. C3)

minimize Ep

(*) subjectto Ag,Ep+Aul <

1V

b
Ep>P.
 The problem becomes a plain LP by

using the objective ), Epg.
e (*) decomposes into a classical for-
mulation of natural extension.

dominating lower previsions
J \/

no natural extension
INn case of sure loss

feasible optimization vectors
{xeR":Ax<bAx>0}

](CMOL_P) i I pu.t |n. e follewiing Ci X C-undominated optimization
orm: maOtEiJf?rtnl\]gmxn ol | /vec;ors (xeX: (\;{Z cX:Cx4Cz)}
with vertices ext X'*
objective optimization
vector in R™ /vector in R”
imi - X &2
maximize y=Cx, undominated objective vectors

subjectto Ax<b and x>0

constraint/ \constraint

matrix in Rkxn vector in Rk 2|

3. Tasks

Main computational tasks in non-
decreasing order of complexity:

M1. F!nd!ng yv nadir point, with
M2. F!nd!ng y. ¥ =min{y;:yeY*}
M3. Finding ext)*
and characterizing )*. \/
M4. Finding ext X'*.
M5. Characterizing X'*.

X1'

/ideal point, with y; =max{y;:ye )}
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{Cx:xeX*} with vertices ext)*

feasible objective vectors {Cx:xe X'}
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