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Abstract 

 
Accent invariance in speech recognition is a chal- 

lenging problem especially in the are of aviation. In this 
paper a speech recognition system is developed to 
transcribe accented speech between pilots and air traffic 
controllers. The system allows handling of accents in 
continuous speech by modelling phonemes using Hidden 
Markov Models (HMMs) with Gaussian mixture model 
(GMM) probability density functions for each state. These 
phonemes are used to build word models of the NATO 
phonetic alphabet as well as the numerals 0 to 9 with 
transcriptions obtained from the Carnegie Mellon 
University (CMU) pronouncing dictionary. Mel-Frequency 
Cepstral Coefficients (MFCC) with delta and delta-delta 
coefficients are used for the feature extraction process. 
Amplitude normalisation and covariance scaling is 
implemented to improve recognition accuracy. A word 
error rate (WER) of 2% for seen speakers and 22% for 
unseen speakers is obtained. 

 
Keywords: Automatic Speech Recognition (ASR), Hidden 

Markov Model (HMM), Gaussian Mixture 
Model (GMM), Mel-Frequency Cepstral 
Coefficients (MFCC), Covariance scaling 

 
1 Introduction 
 

SPEECH recognition has been very well established over 
the past two decades in particular in intelligent transportation 
systems and has realised a significant growth in applications. 
Nonetheless, the critical challenge of accent independence 
remains to be solved [1]. The limited availability of speech 
data for certain accented groups contributes to this complexity. 
An area of considerable importance is in aviation. It is critical 
that communication between pilots and air traffic controllers 
be accurate and efficient hence the development of the NATO 
phonetic alphabet [2]. The issue is more apparent with 
international flights, involving people of different nationalities 
and mother languages which frequently results in 
miscommunication due to accents. It is proposed that the 
development of a speech-to-text recognition system for 
accented speech could resolve this issue by transcribing 
speech and providing a secondary channel of information 
transfer. 

Most research efforts use Gaussian Mixture Models 
(GMMs) with Hidden Markov Models (HMMs) for speaker 
independent speech recognition [3]. In this paper a novel 
technique is proposed to improve recognition of accented 
speech [21] when a limited group of speakers are used in the 
training set. This entails the application of a covariance scaling 
factor which is inversely proportional to the number of 
speakers. In parallel, amplitude normalisation is used to 
improve MFCC feature matching accuracy. The novelty of 
this work is continuous speech to text recognition for air 
navigation systems with better accuracy than current systems 
using HMMs and GMM probability density functions and 
frequency cepstral coefficients for feature extraction. 

Novelty: a continuous speech recognition system using 
GMM-HMMs is developed to model phonemes and a unigram 
based language model to be used in aviation communication 
with improved recognition accuracy by implementation of 
amplitude normalisation and covariance scaling. 

Contribution: The contributions of this paper can be sum- 
marized as follows. We model phonemes using HMMs with 
GMM probability density functions for each state. These 
phonemes are used to build word models of the NATO pho- 
netic alphabet as well as the numerals 0 to 9 with transcriptions 
obtained from the CMU pronouncing dictionary. MFCC with 
delta and double-delta coefficients are used for the feature 
extraction process. We also implement the hypothesis search 
for continuous speech recognition. Moreover, we propose and 
teste a method for speech recognition that is not affected by 
accents as much as current approaches by using the speech 
recognition problem between pilots and air traffic controllers 
as a motivating application. 

The paper is organised as follows. Section II discusses the 
work done prior to the implementation of this project. A brief 
high level description of the proposed approach is given in 
Section 3. The details of the system design as well as the 
subsystem implementation is described in Section 4. The 
design choices are justified with consideration to available 
resources and scope of the project. This section also tabulates 
the results obtained by the speech recognition system and 
describes the relevance of these results. Finally, Section 5 
concludes with an overview as to how the project outcomes 
were obtained. 

Some additional resources are provided in the appendix. 
This includes Section A which defines the speech recognition 
lexicon; Section B which defines the mathematical notation 
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used in this paper and Section C, a proof of the forward 
algorithm scaling equations. 

 
2 Related Work 

 
An initial effort to perform speaker independence recogni- 

tion using Hidden Markov Models (HMMs) is presented in [4]. 
An area of research that is relevant to the effort presented 

in this paper involves the use of Hidden Markov Models with 
Gaussian Mixture Model (GMM-HMMs) probability density 
functions. Hidden Markov Models have been applied to 
speech recognition since the 1970s [4]. Since then, the 
application of the expectation maximization (EM) and GMMs 
have drastically improved speech recognition accuracy [22]. 
Such models proved to be very effective as probability density 
functions for HMMs in speech recognition [3]. GMM-HMMs 
formed the foundation of speech recognition systems until the 
recent application of deep learning models. 

In more recent years, specifically since 2009, Deep 
learning Neural Network HMMs (DNN)-HMMs have 
surpassed the performance of GMM-HMMs [5]. This 
motivated significant research in the area of artificial neural 
networks (ANNs) which was previously limited by 
computational performance. Much of the development of deep 
learning in speech recognition was achieved by IBM, 
Microsoft, Google and Baidu [6]. To over- come the 
challenges of training with big data both Microsoft and Baidu 
employed parallelism using graphics processing units (GPUs) 
while Google employed central processing units (CPUs) with 
the asynchronous stochastic gradient descent (ASGD) 
algorithm [7]. 

A significant improvement was achieved by IBM with the 
application of sequence discriminative training (SDT) [8]. 
However, the use of Hessian-free training was required to 
reduce the larger training time [9]. The development of the 
context dependent (CD)-DNN-HMM has proved very 
successful in speech recognition. DNNs have also shown a 
reduction in the requirement for speech preprocessing [10]. 
DNNs using only log Mel-scale filter bank preprocessing have 
been shown to outperform DNNs using Mel-frequency 
cepstral coefficients (MFFC) [11]. 

As of 2013, long short-term memories (LSTMs) which are 
a form of recurrent neural networks (RNNs) have been 
reported to have the lowest phone error rate (PER) when 
benchmarked on the TIMIT1 corpus [13]. LSTMs can realise 
a greater recognition accuracy than CD-DNN-HMMs even 
with a reduced network size. The implementation of these 
techniques makes use of both the ASGD and the truncated 
back propagation through time (BPTT) algorithms. 

 
3 System Overview 

 
The development of a speech-to-text solution, in the con- 

text of the above-mentioned aviation problem, first entails the 
definition of system requirements in terms of typical speech 
recognition parameters. Since communication between pilots 
and air traffic controllers is continuous and involves multiple 
speakers, a continuous accent independent model is developed. 
Although aviation communication necessitates a 
comprehensive vocabulary, only the NATO phonetic alphabet 

 
1 A common benchmark for speech recognition systems is PER on the 

TIMIT corpus [12]. 

and numerals are modelled. The use of a reduced vocabulary 
is justified by the implementation of phoneme models which 
are adaptable to larger vocabularies. 

A summarised overview of the system is presented in 
Figure 1 which shows all subsystems that are developed in this 
paper. 

The system comprises of six core components which are 
executed in sequence to accurately transcribe spoken speech. 
Although each component operates independently, the system 
is configurable for two modes of operation, training and 
classification, which are denoted in Figure 1 by the dotted and 
solid lines respectively. The training mode is used to develop 
the acoustic models which are stored in the phoneme database 
while the classification mode is used to perform transcription 
of speech. The first component of the system is the feature 
extraction subsystem which receives raw speech from either 
the microphone or speech database (depending on the 
operating mode) and generates a temporal sequence of feature 
vectors. The following component is the acoustic model which 
generates phoneme models and stores them in the phoneme 
database during the training mode. During classification, this 
component computes the likelihoods of temporal sequences of 
feature vectors with respect to the existing phoneme models 
stored in the phoneme database. The next subsystem is the 
hypothesis search which determines the transcription with the 
greatest likelihood. To allow for classification of continuous 
speech, the hypothesis search interfaces with a language 
model used for inter-word modelling. The system architecture 
can be further simplified to a linear model following the 
sequence of speech input, feature extraction, acoustic model, 
hypothesis search and transcription output with the language 
model and database providing auxiliary services. 

 

 

Figure 1. Overview of the speech-to-text system architecture 
 

Since the design of the system that follows involves sig- 
nificant mathematical derivation, the notation that is used is 
defined in appendix B. 
 
4. System Design 
 
A. Feature extraction 

Many feature extraction techniques for speech recognition 
already exist [14-15]. However, none of the techniques 
consistently outperform their alternatives, independent of 
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operational conditions [14]. On the other hand, certain 
techniques such as Mel-Frequency Cepstral Coefficients 
(MFCC) and Perceptual Linear Prediction (PLP) are very well 
established and have been shown to typically perform within 
a narrow margin of the best techniques for the given 
conditions [11]. In [16], it was established that MFCC with 
delta (∆-MFCC) and delta-delta (∆∆-MFCC) coefficients 
outperformed MFCC without the delta coefficients. Therefore, 
∆∆-MFCC is selected as a baseline in this paper. This baseline 
enables a reference point for comparison to previous work and 
creates a new baseline for future comparisons. 

The ∆∆-MFCC feature extraction technique consists of 
multiple independent steps that are shown in Figure 2. 

 

 

Figure 2. Overview of the speech-to-text system architecture 
 

1) Speech Sampling: Since digitising and capturing of 
speech is a lossy process, the sampling parameters need to 
maintain sufficient information to classify speech. For con- 
sistency, the Samson C01U Pro microphone with a pop filter 
and Samson Sound Deck software version 1.1.2.0 was used 
for all recordings. The recordings were stored in WAVE format 
with 16-bit quantisation and a sampling frequency of 16 kHz. 
According to the Nyquist-Shannon sampling criterion, this 
sampling rate enables the capturing of the speech waveforms 
with frequencies within the 8 kHz baseband (audio wide- 
band). This is sufficient information for speech decoding [17]. 

2) Amplitude Normalisation: After sampling speech, 
the amplitude is scaled using the absolute maximum as the 
normalisation factor. This ensures that the features extracted 
from the signal are independent of the magnitude of the 
original sampled speech. 

3) Pre-emphasis: Since speech energy tends to be more 
densely distributed at lower frequencies, a first order high-pass 
filter is used to marginally suppress the lower frequency 
amplitudes, thus emphasising the higher frequency amplitudes 
[17]. Therefore, the pre-emphasis filter is given by Equation 
(1), with α denoting the pre-emphasis coefficient.  

 
y[n] = x[n] − αx[n − 1]  where  0.9 ≤ α ≤ 1.      (1) 

 
where, x(n) is speech signal and y(n) is the output signal. 

Figure 3 illustrates the effect of the pre-emphasis filter 
where Figure 3(a) and Figure 3(b) are the speech spectrograms 
without and with the pre-emphasis filter respectively. Close 
inspection reveals the amplitude differences in both the low 

and high frequency bands. Therefore, a pre-emphasis filter 
coefficient of α = 0.95 was selected. 

 
(a) Without pre-emphasis filter 

 
(b) With pre-emphasis filter 

Figure 3. Speech spectrogram without (a) and (b) with the pre-
emphasis filter 

 
4) Framing: Since speech is a temporally variant signal 

it can only be considered stationary for very short time frames. 
Based on previous work and literature a time frame of 25 ms 
is selected with an overlap of 10 ms [17]. The overlap is 
necessary to ensure that the information is not lost at the frame 
boundaries due to windowing. Before windowing, the frame 
energy is calculated using Equation (2) where T is the frame 
length and x[t] is the frame amplitude at time t. 

 
𝐸𝐸 = log  ( ∑ 𝑥𝑥2[𝑡𝑡]𝑇𝑇

𝑡𝑡=0  ).                         (2) 
 
5) Windowing: To convert each stationary frame to the 

frequency domain, a window function is first applied. The 
window function is required to remove discontinuities at the 
frame boundaries. This can be achieved using Discrete Fourier 
Transform (DFT) for example. The window function achieves 
this by tapering the frame boundary values to zero. Both the 
Hamming and Hann window functions are considered and 
both are applicable but the Hamming window is selected due 
to the more uniform distribution of spectral leakage. The 
Hamming window is given by the Equation (3), where the 
signal in a frame is denoted by w(n), n = 0, … L-1 and L is 
number of samples in each frame. 

 

w[n] = �0.54-0.46 cos �2πn
L
�   0 ≤ n ≤ L-1

0                                otherwise   
.          (3) 
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Equation (4) shows how the Hamming window function 
w[n] is applied to the pre-emphasised frame, x[n], to produce 
y[n], the windowed frame. The result is depicted in Figure 4 
where the frame is enveloped by the Hamming window 
function. 

 
𝑦𝑦[𝑛𝑛] = 𝑤𝑤[𝑛𝑛]𝑥𝑥[𝑛𝑛].                           (4) 

 

 
Figure 4. 25 ms speech frame after windowing 

 
6) FFT: The Fast Fourier Transform (FFT) is a more 

efficient implementation of the DFT, Equation (5), which is 
used to convert the windowed frame from the time domain to 
the frequency domain. 
 

𝑋𝑋(𝑘𝑘) =  ∑ 𝑥𝑥(𝑛𝑛)𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁−1
𝜋𝜋=0                        

 
=  ∑ 𝑥𝑥(𝑛𝑛)𝑤𝑤𝜋𝜋𝜋𝜋𝑁𝑁−1

𝜋𝜋=0 .                     (5) 
 

The Cooley-Tukey algorithm was used to perform the FFT 
by computing only the essential twiddle factors, 𝑤𝑤𝑁𝑁𝜋𝜋 . As 
shown in Equation (6), the twiddle factors are symmetric and 
this redundancy significantly reduces the number of 
computations. 

 
𝑤𝑤𝑁𝑁𝜋𝜋 = 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁.                               (6) 
 
This technique, however, constrains the FFT to sizes that 

are exponents of base 2, therefore, a 512-point FFT with zero 
padding was used for each frame. 

 
7) Mel-Frequency Triangular Filters: Since human 

hearing is not linear with respect to frequency, the frequency 
spectrum is warped to match the sensitivity of the human ear. 
To achieve this, the Mel-frequency scale is used since it 
models frequencies below 1000 Hz linearly and frequencies 
above 1000 Hz logarithmically which is similar to that of 
human hearing [17]. The Mel-frequency scale is given by 
equation (7) below. 

 
𝑚𝑚𝑒𝑒𝑚𝑚(𝑓𝑓) = 1127ln (1 + 𝑓𝑓

700
).                    (7) 

 
To apply Mel-frequency scaling to the FFT of the frame, a 

Mel-frequency filterbank is used. The filterbank is represented 
by overlapping triangular filters warped according to the Mel- 
frequency scale. Although the speech sampling bandwidth was 
selected as 8 𝑘𝑘𝑘𝑘𝑘𝑘 , very little speech information resides 

outside the 100 𝑘𝑘𝑘𝑘  to 6.8 𝑘𝑘𝑘𝑘𝑘𝑘  frequency band [18]. 
Therefore the minimum and maximum frequencies for the 
Mel-frequency filterbank are set as 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙  =  100 𝑘𝑘𝑘𝑘  and 
𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ =  6.8 𝑘𝑘𝑘𝑘𝑘𝑘  respectively. Additionally, the number of 
filters are selected to be 𝑀𝑀 =  26  since that reduces the 
number of features significantly but still retains sufficient 
features to perform the Discrete Cosine Transform (DCT). 

To calculate the positions of the filters, the frequency 
bandwidth  (𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙  −  𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ)  is divided by  𝑀𝑀 +  2 . The 
additional two positions are required since the filters have 50% 
overlap implying that both the boundary filters require an extra 
position each. Once the positions are obtained they are Mel-
frequency scaled using Equation (7) and rounded to the nearest 
FFT bin. The result is stored in the vector 𝑓𝑓(𝑚𝑚) where 0 ≤
 𝑚𝑚 ≤  𝑀𝑀 +  1. 

Finally, equation (8) is used to generate the Mel-frequency 
triangular filters. 𝐹𝐹𝑚𝑚  represents the 𝑚𝑚𝑡𝑡ℎ  Mel-frequency 
filter, with 1 ≤ m ≤ M. The frequency input is given by 𝑘𝑘. 

 

𝐹𝐹𝑚𝑚(𝑘𝑘)

⎩
⎪
⎨

⎪
⎧

0, k < f(m − 1)
k−f(m−1)

𝑓𝑓(𝑚𝑚)−𝑓𝑓(𝑚𝑚−1)
, f(m − 1) ≤ k ≤ f(m)

f(m+1)−k
𝑓𝑓(𝑚𝑚+1)−𝑓𝑓(𝑚𝑚)

, f(m) ≤ k ≤ f(m + 1)
0, f(m + 1)  ≤ 𝑘𝑘

 .      (8) 

 
Figure 5 shows the Mel-frequency filterbank with all 26 

filters, Mel-frequency scaled across the 100 𝑘𝑘𝑘𝑘 to 6.8 𝑘𝑘𝑘𝑘𝑘𝑘 
bandwidth. Included in this figure is the cumulative 
summation of the filter amplitudes across the bandwidth. This 
shows that the filters have a net effect of multiplying the 
frequencies within the bandwidth by one. The frequencies 
outside the bandwidth are multiplied by zero and therefore 
disregarded. 

 

 
Figure 5. Mel-frequency filterbank with 26 filters and 
bandwidth between 100 𝑘𝑘𝑘𝑘 and 6.8 𝑘𝑘𝑘𝑘𝑘𝑘 
 

Each of the Mel-frequency filters in the filterbank are mul- 
tiplied with the frame and summed to get the respective filter 
coefficient. This results in 26 Mel-frequency filter coefficients 
that are logged to account for the logarithmic perception of 
human hearing. 
 

8) DCT: The next step in calculating the MFCC features 
is to generate the cepstral coefficients using the Discrete 
Cosine Transform type 3 (DCT-3). The DCT-3 is the inverse 
of the DCT-2 which is identical to the DFT under certain 
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conditions. Therefore, the DCT-3 parallels the behaviour of 
the inverse DFT (IDFT) whilst decorrelating the cepstral 
coefficients. Although principal component analysis (PCA) is 
typically used for decorellating features, the DCT performs 
sufficiently as an approximation. The decorellation of features 
is a useful property especially when the features are used as 
input to GMMs. The DCT-3 is given by Equation (9) [19]. The 
𝑖𝑖𝑡𝑡ℎ  cepstral coefficient is given by 𝑐𝑐𝑖𝑖 , where 𝑚𝑚𝜋𝜋  is the 𝑗𝑗𝑡𝑡ℎ 
Mel-frequency filter coefficient and 𝑀𝑀  is the number of 
filters in the Mel-frequency filterbank. 

 

𝑐𝑐𝑖𝑖 = �2
𝑀𝑀
∑ 𝑚𝑚𝜋𝜋
𝑀𝑀
𝜋𝜋=1 cos(𝑖𝑖𝜋𝜋

𝑁𝑁
(𝑗𝑗 − 0.5).                (9) 

 
9) Delta and Delta-Delta Coefficients: The choice of 12 

cepstral coefficients from the DCT is considered. This is 
combined with the frame log energy coefficient to form 13 
features. Although MFCC is a very effective feature extraction 
technique, it can be enhanced by adding delta/velocity (∆) and 
delta-delta/acceleration (∆∆) coefficients. These are derived 
from the original 13 coefficients as well as past and future 
coefficients. Equation (10) calculates the delta coefficients at 
time 𝑡𝑡, given by the vector ∆(𝑡𝑡), using the MFFC coefficients, 
given by vector 𝑐𝑐(𝑡𝑡). The delta factor is set to 𝑁𝑁 =  2. The 
same equation can also be used to calculate the delta-delta 
coefficients by substituting ∆(𝑡𝑡) and 𝑐𝑐(𝑡𝑡) with ∆∆(𝑡𝑡) and 
∆(𝑡𝑡) respectively. 

 
∆(t) = ∑ 𝜋𝜋(𝑐𝑐(𝑡𝑡+𝜋𝜋)+𝑐𝑐(𝑡𝑡−𝜋𝜋)𝑁𝑁

𝑛𝑛=1
2∑ 𝜋𝜋2𝑁𝑁

𝑛𝑛=1
.                     (10) 

 
Figure 6, depicts a sample of speech represented in the 

time domain in the first graph and represented as a 
spectrogram in the second graph. The final graph shows the 
MFCC, delta MFCC and delta-delta MFCC features for the 
same sample of speech. Table 1 indicates the order of the 
features in Figure 6. 

 

 
Figure 6. Time domain, spectrogram and MFCC features of a 
speech sample 
 
 
 
 
 

Table 1. Description of the different features shown in Figure 
6 

Feature Description 
1-12 Cepstral Coefficients 
13 Log Energy 
14-25 Delta Cepstral Coefficients 
26 Delta Log Energy 
27-38 Double-Delta Cepstral Coefficients 
39 Double-Delta Log Energy 

 
B. Acoustic model 

The acoustic model is developed using HMMs with GMM 
probability density functions (GMM-HMMs). Each English 
phoneme, as defined by the CMU pronouncing dictionary in 
Table 2, is modelled by a GMM-HMM. Words are formed by 
concatenating phonemes according to their CMU transcrip- 
tions. Finally, continuous speech is modelled by a sequence of 
words and optional silences. 
 
Table 2. List of all 40 phonemes in English defined by the 
CMU pronouncing dictionary [20]  

AA AE AH AO AW AY B CH 

D DH EH ER EY F G HH 

IH IY JH L K M N NG 

OW OY P R S SH T TH 

UH UW V W Y Z ZH SIL 
 

1) Hidden Markov Models: Speech can be represented 
by a discrete sequence of phonemes (states) which vary over 
a discrete sequence of frames (time intervals). However, these 
phonemes can only be inferred (observed) by MFCC features 
which are extracted from the frames of speech. To make 
accurate statistically inferences the relationship between the 
MFCC features and phonemes are modelled by GMMs (prob- 
ability density functions). Therefore, assuming that the 
Markov Property holds, HMMs are well suited for this 
application. 

By modelling the initial phoneme likelihoods, phoneme 
transition likelihoods and GMMs, the likelihood of a phoneme 
sequence (word/sentence) given the phoneme models can be 
determined. The phoneme models (HMMs) were selected to 
have a 3-state feedforward structure as depicted in Figure 7. 
The feedforward structure permits only transitions to the same 
state or next (forward) state. Although a phoneme can be 
modelled by a single state, the first and last states are used to 
model the glide-on and glide-off inter-phoneme transitions. 
The silence phonemes were, however, modelled by a combina- 
tion of 1, 2 and 3 states for varied lengths of pauses between 
words. 

 

 

Figure 7. 3-State feed forward Hidden Markov Model 
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The following parameters were used to define the 
phoneme models: 

• π: Initial state likelihood vector, see Equation (11). 
• A: State transition likelihood matrix, see Equation 

(12). 
• b: Observation likelihoods, given by GMMs. 

Note that the exit state transition likelihood, 𝐴𝐴3,4 , was 
calculated as 𝐴𝐴3,4  =  1 − 𝐴𝐴3,3 since each of the rows in the 
state transition likelihood matrix are row stochastic. The 
transition likelihood, 𝐴𝐴3,4, is used to chain the GMM-HMMs 
as part of embedded training. 
 

π = [1, 0, 0].                               (11) 
 

𝑨𝑨  = �
A1,1 A1,2 0

0 A2,2 A2,3
0 0 A3,3

�.                       (12) 

 
Furthermore, the phonemes are modelled as monophones 

instead of triphones. The distinction is that triphones require 
models for all combinations of adjacent phonemes. Therefore, 
assuming 40 distinct phonemes, (40)3  =  64 000  unique 
triphones need to be modelled. However, of the 64 000 only 
about 20 000  triphones are typically modelled since the 
remaining triphones do not occur in English speech [17]. State 
tying may be used to reduce the data and time required to 
triphone modelling which is not feasible for this paper. 

2) Gaussian Mixture Models: As was mentioned earlier, 
Gaussian Mixture Models (GMMs) were used as the proba- 
bility density functions for each state of the phoneme models. 
A Gaussian mixture model is effectively the mixture 
(summation) of 𝑀𝑀  Gaussians in 𝐷𝐷  dimensions with mix- 
ing proportions  𝒄𝒄 . To illustrate this, Figure 8 shows an 
example of a GMM with 𝑀𝑀 =  3  mixtures and 𝐷𝐷 =  2 
dimensions. In this case, the mixing proportions are set to 
𝒄𝒄 =  [0.4249, 0.2570, 0.3181]. 

Also, note that the GMM proportions always sum to unity 
as shown in Equation (13). 

 
∑ 𝑐𝑐𝑚𝑚 = 1𝑀𝑀
𝑚𝑚=1 .                               (13) 

 
Since the features extracted using MFCC are multidimen- 

sional, multivariate GMMs were used. Multivariate GMMs 
comprise of a mixture of multivariate Gaussians, which are 
individually expressed by Equation (14) below. 

 
𝑁𝑁 (𝑜𝑜, Σ, 𝜇𝜇) = ( 1

(2𝜋𝜋)
𝐷𝐷
2 |Σ|

1
2

×  

 
exp[−1

2
(𝑜𝑜 − 𝜇𝜇)𝜏𝜏Σ−1(𝑜𝑜 − 𝜇𝜇)]).      (14) 

 
The symbols, Σ and μ, represent the (𝐷𝐷 ×  𝐷𝐷) Gaussian 

covariance matrix and the Gaussian mean vector of length 𝐷𝐷 
respectively. The Gaussian mean parametrised by  𝑖𝑖  as 𝝁𝝁𝑖𝑖 
defines the mean of the 𝑖𝑖𝑡𝑡ℎ dimension vector component. The 
Gaussian covariance parametrised by 𝑖𝑖 and 𝑗𝑗 as 𝚺𝚺𝑖𝑖,𝜋𝜋 defines 
the covariance of the 𝑖𝑖𝑡𝑡ℎ dimension vector component with 
respect to the 𝑗𝑗𝑡𝑡ℎdimension vector component. 𝑜𝑜 represents 
the multivariate observation vector. 

Equation (15) gives the Gaussian Mixture Model, 𝑏𝑏(𝑜𝑜), 
that is generated by summing each of the multivariate 

Gaussians multiplied by the associated proportions. The 𝑚𝑚𝑡𝑡ℎ 
proportion, covariance matrix and mean vector are defined by 
𝑐𝑐𝑚𝑚, 𝚺𝚺�(𝑚𝑚) and �̅�𝜇(𝑚𝑚) respectively. 

 
𝑏𝑏(𝑜𝑜) =  ∑ 𝑐𝑐𝑚𝑚𝑀𝑀

𝑚𝑚=1 𝑁𝑁(𝑜𝑜, Σ�(𝑚𝑚), �̅�𝜇(𝑚𝑚)  
 
    =  ∑ ( 𝑐𝑐𝑚𝑚

(2𝜋𝜋)
𝐷𝐷
2�Σ�(m)�

1
2

𝑀𝑀
𝑚𝑚=1  × 

 
    exp [−1

2
�𝑜𝑜 − �̅�𝜇(𝑚𝑚)�𝜏𝜏�Σ�(𝑚𝑚)�−1�𝑜𝑜 − �̅�𝜇(𝑚𝑚)�]). (15) 

 
An important design consideration relating to the 

covariance matrix, Σ, arises when using GMMs since the 
covariance can either be represented as a full or diagonal 
matrix. The selection relates to decorrelation of features by 
means of the DCT. Assuming perfectly decorrelated features 
implies that diagonal covariance matrices may be used since 
decorrelation renders non-diagonal coefficients null. However, 
MFCC features are not completely decorrelated and using 
diagonal covariance matrices results in a trade off between 
performance and accuracy. It is found that the performance 
gain relative to the accuracy loss is not sufficient enough to 
justify the use of diagonal covariance matrices for this 
application. 

Figure 8(a) illustrates the difference between diagonal and 
full covariance matrices. The two left most Gaussians are 
aligned with the axes since their covariance matrices are 
diagonal but the right most Gaussian does not have that 
restriction since it has a full covariance matrix. Therefore, 
fewer full covariance matrices are required to model 
correlated data points. 

 

 
(a) 2D plot of a typical GMM with 3 mixtures in 2 dimensions 
 

 
(b) 3D plot of a typical GMM with 3 mixtures in 2 dimensions 

Figure 8. GMM with 3 mixtures in 2 dimensions represented 
by a 2D (a) and 3D (b) plot respectively. 
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3) Embedded Training: Embedded training, using the 
data in the speech database, is implemented to train the 
phoneme models. This enabled accurate modelling of 
phonemes using their phonetic transcriptions and eliminated 
the need to manually segment the speech data, which is tedious 
and produces inaccuracies. The transcriptions for the speech 
data were imported from the CMU pronouncing dictionary 
[20]. For example, the speech data transcribed by the word 
“alpha” is converted to the phoneme sequence [AE, L, F, AH]. 
By concatenating the GMM-HMM phonemes in that sequence, 
a composite GMM-HMM is constructed for that word. The 
composite GMM-HMM is initialised and then trained using 
the speech data for that word. 

The first step of the embedded training involves 
initialising the GMM parameters (µ and Σ) to the mean and 
covariance of the entire speech database with a random factor 
to distribute the mixture components. This technique is similar 
to that of a flat-start except that it ensures that the GMMs 
overlap with sufficient data points to perform Expectation 
Maximisation (EM). It is found that if there are insufficient 
data points overlapping with the Gaussians the covariance 
matrices be- come singular. To resolve this, more data points 
are added by collecting more speech recordings. If the 
Gaussians still become singular, they are expanded by scaling 
the diagonals of the covariance matrices. Additionally, the 
number of training iterations are capped at 10 epochs. 

Figure 9 represents only 2 dimension of a GMM-HMM 
with 3 states each comprising of 5 full covariance Gaussians. 
The Guassians are the large elliptic regions initialised to the 
data points as described above. The data points are 
deliberately segmented into three regions to visually verify the 
training process. 

 

 

Figure 9. HMM-GMM initialisation with 3 states, 5 mixtures 
and 2 dimensions 

 

 

Figure 10. HMM-GMM of Figure 9 after 10 epochs of 
training 

Figure 10 and Figure 11 illustrate the training of the 
GMMHMM in Figure 9. After 10 epochs the Gaussians are 
well generalised/aligned to the data points. 

By 30 epochs the Gaussians started to over train. Apart 
from this leading to poor performance for speaker 
independence, it also leads to the issue described above where 
the Gaussian in the bottom left of Figure 11 may assume too 
little data and become singular. 

 

 

Figure 11. HMM-GMM of Figure 9 after 30 epochs of 
training 

 
After initialising the GMMs, phoneme models are 

concatenated to form word models. The Baum-Welch 
algorithm, which iteratively re-estimates the model 
parameters, is implemented. The first step of the Baum-Welch 
algorithm is to compute the forward likelihoods using the 
forward algorithm. 

To compute the forward likelihoods, the likelihood of an 
observation or multivariate data point being associated with 
astate in a GMM-HMM model needs to be defined. Equation 
16 defines 𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡), the GMM probability density function for 
state 𝑗𝑗 of the HMM at time 𝑡𝑡. 

 
𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡) =  ∑ ( 𝑐𝑐𝑚𝑚

(2𝜋𝜋)
𝐷𝐷
2�Σ�𝑗𝑗

(𝑚𝑚)�
1
2

𝑀𝑀
𝑚𝑚=1  × 

 

  exp[−1
2
�𝑜𝑜𝑡𝑡 − �̅�𝜇𝜋𝜋(𝑚𝑚)�

𝜏𝜏
�Σ�𝜋𝜋

(𝑚𝑚)�
−1
�𝑜𝑜𝑡𝑡 − �̅�𝜇𝜋𝜋(𝑚𝑚)�]). (16) 

 
Equation (17) is the parametrised form of Equation (16), 

using the parametrisation factor 𝑚𝑚. 
 
𝑏𝑏𝜋𝜋

(𝑚𝑚)(ot) = ( 𝑐𝑐𝑚𝑚

(2𝜋𝜋)
𝐷𝐷
2�Σ�𝑗𝑗

(𝑚𝑚)�
1
2

 × 

 

  exp[−1
2
�𝑜𝑜𝑡𝑡 − �̅�𝜇𝜋𝜋(𝑚𝑚)�

𝜏𝜏
�Σ�𝜋𝜋

(𝑚𝑚)�
−1
�𝑜𝑜𝑡𝑡 − �̅�𝜇𝜋𝜋(𝑚𝑚)�]). (17) 

 
Therefore, the relationship between Equation (16) and 

(17) is given by Equation (18). 
 
𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡) =  ∑ 𝑏𝑏𝜋𝜋

(𝑚𝑚)(𝑜𝑜𝑡𝑡𝑀𝑀
𝑚𝑚=1 ).                      (18) 

 
The forward algorithm can now be defined which is a 

recursive technique to calculate the likelihood of an 
observation resulting from state  𝑗𝑗  at time 𝑡𝑡 , given the 
observations up until and including time 𝑡𝑡 . Since the 
algorithm is recursive, it is defined by Equations (19) and (20) 
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which are the initial step and recursive step respectively. The 
forward likelihoods are denoted by 𝛼𝛼𝜋𝜋(𝑡𝑡). Note that 𝝅𝝅 and 
𝑨𝑨 give the HMM initial state and state transition likelihoods 
respectively. 

 
𝛼𝛼𝜋𝜋(1) = 𝜋𝜋𝜋𝜋𝑏𝑏𝜋𝜋(𝑜𝑜1).                            (19) 
 
𝛼𝛼𝜋𝜋(𝑡𝑡) = [∑ 𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝑡𝑡 − 1)𝐴𝐴𝑖𝑖,𝜋𝜋]𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡).             (20) 
 

The most significant parameter of the forward algorithm 
is the full forward likelihood, 𝑃𝑃(𝑂𝑂|𝜆𝜆), where 𝑂𝑂 represents 
the observation sequence and 𝜆𝜆 the GMM-HMM model. 
This is computed by Equation (21) using the forward 
likelihoods. 𝑇𝑇 defines the length of the observation 
sequence. 

 
𝑃𝑃(𝑂𝑂|𝜆𝜆) ∑ 𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝑇𝑇).                          (21) 
 
Despite being mathematically sound, the forwar algorithm 

tends to produce very small likelihoods which are a result of 
successive multiplications of probabilities. To prevent 
underflow, the forward likelihoods are scaled at each time 𝑡𝑡 
to sum to one. This property is illustrated by Equation (22) 
where 𝛼𝛼�𝜋𝜋(𝑡𝑡) is the scaled forward likelihood for state 𝑗𝑗 at 
time 𝑡𝑡. 

 
∑ 𝛼𝛼�𝜋𝜋𝑁𝑁
𝜋𝜋=1 (𝑡𝑡) = 1.                             (22) 

 
The scaled form of equations (19) and (20) are given by 

Equations (23) and (24) respectively. The forward scaling 
proof is given in the appendix. 

 
α�j(1) = 𝑠𝑠1𝛼𝛼𝜋𝜋(1).                             (23) 

 
α�𝑗𝑗(𝑡𝑡) = ∏ 𝑠𝑠𝜋𝜋𝛼𝛼𝜋𝜋𝑡𝑡

𝜋𝜋=1 (𝑡𝑡).                        (24) 
 
Equations 23 and 24 can also be parametrised by the 

index m as given in Equations 25 and 26. 
 
𝛼𝛼𝜋𝜋(𝑚𝑚)(1) =  𝜋𝜋𝜋𝜋𝑏𝑏𝜋𝜋

(𝑚𝑚)(𝑜𝑜1).                        (25) 
 

𝛼𝛼𝜋𝜋
(𝑚𝑚)(𝑡𝑡) = [∑ 𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1 (𝑡𝑡 − 1)𝐴𝐴𝑖𝑖,𝜋𝜋]𝑏𝑏𝜋𝜋
(𝑚𝑚)(𝑜𝑜𝑡𝑡).            (26) 

 
The second step of the Baum-Welch algorithm is to 

compute the backward likelihoods. Much like the forward 
algorithm, the backward algorithm is a recursive technique to 
calculate the likelihood of an observation resulting from state 
𝑖𝑖 at time 𝑡𝑡, given the observations from time 𝑇𝑇 back until 
and including 𝑡𝑡. Since the algorithm is recursive, it is defined 
by Equations (27) and (28) which are the initial step and 
recursive step respectively. The backward likelihoods are 
denoted by 
𝛽𝛽𝑖𝑖(𝑡𝑡). 
 

𝛽𝛽𝑖𝑖(𝑇𝑇) = 1.                                 (27) 
 

𝛽𝛽𝜋𝜋(𝑡𝑡) = ∑ 𝐴𝐴𝑖𝑖,𝜋𝜋𝑁𝑁
𝜋𝜋=1 𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡 + 1)𝛽𝛽𝜋𝜋(𝑡𝑡 + 1).           (28) 

 
It was already shown by induction how the scaling factors 

are applied to the forward likelihoods. The exact same scale 

factors are applied to the backward likelihoods as shown in 
Equation (29). 

 
𝛽𝛽𝜋𝜋(𝑡𝑡) = ∏ 𝑠𝑠𝜋𝜋𝛽𝛽𝑖𝑖(𝑡𝑡)𝑡𝑡

𝜋𝜋=1 .                        (29) 
 

Both the forward and backward algorithms are used as part 
of the Baum-Welch algorithm. Therefore, the likelihood of 
transitioning from state 𝑖𝑖 to state 𝑗𝑗 at time t is given by ζi,j(𝑡𝑡) 
in Equation (30). ζi,j(𝑡𝑡) is not defined for 𝑡𝑡 =  𝑇𝑇  since it 
relies on the observation at time 𝑡𝑡 =  𝑇𝑇 +  1 which does not 
exist. 

 
ζi,j(𝑡𝑡) =

𝛼𝛼𝑡𝑡(𝑡𝑡)𝐴𝐴𝑖𝑖,𝑗𝑗 𝑏𝑏𝑗𝑗(𝑙𝑙𝑡𝑡+1)𝛽𝛽𝑗𝑗(𝑡𝑡+1)
∑ ∑ 𝛼𝛼𝑖𝑖𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 (𝑡𝑡)𝐴𝐴𝑖𝑖,𝑗𝑗𝑏𝑏𝑗𝑗(𝑙𝑙𝑡𝑡+1)𝛽𝛽𝑗𝑗(𝑡𝑡+1)

  

 

=  
𝛼𝛼𝑖𝑖(𝑡𝑡)𝐴𝐴𝑖𝑖,𝑗𝑗𝑏𝑏𝑗𝑗(𝑙𝑙𝑡𝑡+1)𝛽𝛽𝑗𝑗(𝑡𝑡+1)

𝑃𝑃(𝑂𝑂|𝜆𝜆)
.                   (30) 

 
The scaled forward and backward likelihoods are 

substituted into equation (30) and the scaling factors cancel 
out with 𝑃𝑃(𝑂𝑂|𝜆𝜆) to produce equation (31). 

 
ζi,j(𝑡𝑡) =

𝛼𝛼𝑡𝑡(𝑡𝑡)𝐴𝐴𝑖𝑖,𝑗𝑗 𝑏𝑏𝑗𝑗(𝑙𝑙𝑡𝑡+1)𝛽𝛽𝑗𝑗(𝑡𝑡+1)

𝑃𝑃(𝑂𝑂|𝜆𝜆)
 

 

     =
[∏ 𝑠𝑠𝑘𝑘]𝑡𝑡

𝑘𝑘=1
−1
𝛼𝛼𝑖𝑖(𝑡𝑡)𝐴𝐴𝑖𝑖,𝑗𝑗 𝑏𝑏𝑗𝑗(𝑙𝑙𝑡𝑡+1)[∏ 𝑠𝑠𝑘𝑘]𝑇𝑇

𝑘𝑘=𝑡𝑡+1
−1
𝛽𝛽�𝑗𝑗(𝑡𝑡+1)

[∏ 𝑠𝑠𝑘𝑘]𝑇𝑇
𝑘𝑘=1

−1  

 
     =  𝛼𝛼�𝑖𝑖(𝑡𝑡)𝐴𝐴𝑖𝑖,𝜋𝜋 𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡+1)�̂�𝛽𝜋𝜋(𝑡𝑡 + 1).             (31) 
 
The likelihood of occupying the state 𝑖𝑖 at time 𝑡𝑡 is given 

by 𝛾𝛾𝑖𝑖(𝑡𝑡) in equation (32). 
 
𝛾𝛾𝑖𝑖(𝑡𝑡) =  𝛼𝛼𝑖𝑖(𝑡𝑡)𝛽𝛽𝑖𝑖(𝑡𝑡)

∑ 𝛼𝛼𝑗𝑗(𝑡𝑡)𝛽𝛽𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

 

 
    = 𝛼𝛼𝑖𝑖(𝑡𝑡)𝛽𝛽𝑖𝑖(𝑡𝑡)

𝑃𝑃(𝑂𝑂|𝜆𝜆)
 .                            (32) 

 
The scaled forward and backward likelihoods are 

substituted into equation (32) and the scaling factors cancel 
out with 𝑃𝑃(𝑂𝑂|𝜆𝜆) to produce equation (33). 

 
𝛾𝛾𝑖𝑖(𝑡𝑡) =  𝛼𝛼𝑖𝑖(𝑡𝑡)𝛽𝛽𝑖𝑖(𝑡𝑡)

𝑃𝑃(𝑂𝑂|𝜆𝜆) 
 

 

     =  [∏ 𝑠𝑠𝑘𝑘]𝑡𝑡
𝑘𝑘=1

−1
𝛼𝛼�𝑖𝑖(𝑡𝑡) [∏ 𝑠𝑠𝑘𝑘]𝑇𝑇

𝑘𝑘=𝑡𝑡
−1
𝛽𝛽�𝑖𝑖(𝑡𝑡)

[∏ 𝑠𝑠𝑘𝑘]𝑇𝑇
𝑘𝑘=1

−1  

 
    =  𝛼𝛼�𝑖𝑖(𝑡𝑡)𝛽𝛽�𝑖𝑖(𝑡𝑡)

𝑠𝑠𝑡𝑡
.                             (33) 

 
An important relationship is given by equation (34) which 

relates the state transition likelihoods 𝜁𝜁𝑖𝑖,𝜋𝜋(𝑡𝑡)  to the state 
occupation likelihoods 𝛾𝛾𝑖𝑖(𝑡𝑡). 

 
𝛾𝛾𝑖𝑖(𝑡𝑡) =  ∑ 𝜁𝜁𝑖𝑖,𝜋𝜋(𝑡𝑡)𝑁𝑁

𝜋𝜋=1 .                         (34) 
 

As with the forward algorithm, the state occupation 
likelihoods are used as part of the expectation maximisation of 
the GMMs. It is therefore imperative that the state occupation 
likelihoods also be calculated with respect to the Gaussian 
mixture components as shown in equation (35). 
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𝛾𝛾𝑖𝑖
(𝑚𝑚)(𝑡𝑡) =  𝛼𝛼𝑖𝑖

(𝑚𝑚)(𝑡𝑡)𝛽𝛽𝑖𝑖(𝑡𝑡)
𝑃𝑃(𝑂𝑂|𝜆𝜆) 

.                        (35) 
 

The final step is expectation maximisation (EM) which 
updates the HMM transition likelihoods and the GMM 
proportion, covariance and mean parameters. The equations 
below assume that 𝑅𝑅 observation sequences are used to train 
the GMM-HMM. 

 

�̂�𝐴𝑖𝑖,𝜋𝜋 =  
∑ ∑ 𝜁𝜁𝑖𝑖,𝑗𝑗

𝑟𝑟 (𝑡𝑡)𝑇𝑇𝑟𝑟−1
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟(𝑡𝑡)𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

.                        (36) 

 

�̂�𝑐𝑖𝑖
(𝑚𝑚) =  ∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟,(𝑚𝑚)(𝑡𝑡)𝑇𝑇𝑟𝑟

𝑡𝑡=1
𝑅𝑅
𝑟𝑟=1

∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟(𝑡𝑡)𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

.                      (37) 

 

�̂̅�𝜇𝑖𝑖
(𝑚𝑚) =  ∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟,(𝑚𝑚)(𝑡𝑡)𝑙𝑙𝑡𝑡𝑟𝑟

𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟,(𝑚𝑚)(𝑡𝑡)𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

.                    (38) 

 

Σ��𝑖𝑖
(𝑚𝑚) =  ∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟,(𝑚𝑚)(𝑡𝑡)(𝑙𝑙𝑡𝑡

𝑟𝑟−𝜇𝜇�𝑡𝑡
(𝑚𝑚))(𝑙𝑙𝑡𝑡𝑟𝑟−𝜇𝜇�𝑡𝑡

(𝑚𝑚))𝜏𝜏𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

∑ ∑ 𝛾𝛾𝑖𝑖𝑟𝑟,(𝑚𝑚)(𝑡𝑡)𝑇𝑇𝑟𝑟
𝑡𝑡=1

𝑅𝑅
𝑟𝑟=1

.      (39) 

 
C. Language model 

Once the likelihood of states given an observation can be 
determined, the language model is used to determine the 
interphoneme likelihood. Although it is planned that an n-
gram language model be developed for speech recognition 
[21], its use is not imperative since the vocabulary size is too 
small. A language model only becomes effective provided the 
structure of the language is known. For a small vocabulary 
containing only NATO phonetic words and digits there is 
insufficient structural language to define a robust language 
model. A simpler but still very effective model is developed 
as shown in Figure 12. 

 

 

Figure 12. Structure of the language model for continuous 
speech recognition 

 
This model provides an equal likelihood for each of the 

words making their likelihood completely dependent on the 
acoustic model. Additionally, optional silence models are 
considered between words to account for possible pauses. 

 
D. Hypothesis search 

The language model is converted into a trellis for Viterbi 
decoding as shown in Figure 13. Each word and silence model 
is expanded using the various pronunciations, and phonemes. 
The vertical axis defines the states of the trellis while the 
horizontal axis defines the observation sequence. The use of a 
trellis allows for dynamic programming and reduced 
computation. 

 

 

Figure 13. The structure of the trellis used for the Viterbi 
algorithm 

 
Despite the reduced time taken to search the entire trellis, 

beam search could be used to prune the least likely search 
paths using a given tolerance. This will result in a tradeoff 
between accuracy and efficiency since beam search is greedy, 
thus not optimal. Beam search, however, is not implemented. 
For each observation, the likelihood of each GMMHMM state 
is computed using the GMM probability density function 
defined in equation (16). When the state likelihoods are 
computed for the next observation, only the maximum state 
likelihood prior to the current state is multiplied by the current 
state likelihood. To improve efficiency and accuracy, the 
probability density function uses logarithmic probabilities 
such that these probabilities are summed instead of multiplied. 
This also removes the need for scaling to prevent underflow 
when computing likelihoods of long observation sequences. 

 
E. Database 

The database is constructed using a hierarchy of JavaScript 
Object Notation (JSON) files to establish data relationships. 
Figure 14 defines the data relationships used for the database 
and Figure 15 defines the data relationships used for the 
dictionary. The use of a JSON database over a SQL database 
is to reduce the overhead of handling large quantities of speech 
data. This structure allowed for incremental loading of data 
whilst still being robust enough to maintain coherency. The 
hierarchical structure of the database ensured that loading of 
data required a reduced search space. 

 
Figure 14. Database relationship for the speech database 
 

 
Figure 15. Database relationship for the speech dictionary 
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End-pointing using thresholding is performed on the 
speech recorded in the database to ensure that the training data 
accurately aligned with the transcriptions. 

 
 
 

F. Seen speakers 
When the speech recognition system was tested with the 

same speakers used for training, an average accuracy of 
99.03% was obtained, Table 3. Two male speakers were used 
to conduct this test. 

 
 

Table 3. Test results for both speakers trained   
speakers’ data 

Table 4. Results for training using all the speakers except  
the selected speaker with reduced covariance scaling 

World Speaker    World Speaker   
 1 2    1 2 3 
Alpha 100 100   Alpha 100 90 0 
Bravo 100 100   Bravo 100 100 90 
Charlie 100 100   Charlie 100 100 90 
Delta 90 100   Delta 100 100 100 
Echo 100 100   Echo 100 80 80 
Foxtrot 100 100   Foxtrot 90 100 80 
Golf 100 100   Golf 100 100 0 
Hotel 100 100   Hotel 100 100 100 
India 100 100   India 90 0 80 
Juliette 100 100   Juliette 100 70 70 
Kilo 100 100   Kilo 100 100 40 
Lima 100 100   Lima 100 70 100 
Mike 100 100   Mike 90 100 100 
November 100 100   November 100 100 0 
Oscar 100 100   Oscar 80 100 60 
Papa 100 100   Papa 50 100 0 
Quebec 100 100   Quebec 100 80 70 
Romeo 100 100   Romeo 90 100 30 
Sierra 100 100   Sierra 100 100 100 
Tango 100 100   Tango 100 60 80 
Uniform 100 100   Uniform 90 100 70 
Victor 100 100   Victor 60 90 60 
Whiskey 100 100   Whiskey 100 100 100 
X-Ray 100 100   X-Ray 60 100 60 
Yankee 100 100   Yankee 100 100 50 
Zulu 90 100   Zulu 100 100 80 
Zero 100 100   Zero 90 100 10 
One 100 100   One 90 100 0 
Two 80 100   Two 0 80 60 
Three 100 100   Three 100 100 100 
Four 90 100   Four 70 100 0 
Five 100 100   Fife 70 100 90 
Six 100 100   Six 100 100 90 
Seven 100 100   Seven 100 100 30 
Eight 100 100   Eight 50 0 70 
Nine 80 100   Niner 100 100 100 
Accuracy (%) Speaker    Accuracy (%) Speaker   
 1 2    1 2 3 
 98.06 100    88.06 89.44 62.22 

 
 

G. Unseen speakers 
When the speech recognition system was tested with 

unseen speakers, an average accuracy of above 80% was 
obtained, Table 4. The test was conducted using three male 
speakers. This was achieved after applying an improved form 
of covariance scaling. It was found that when the GMMs were 
trained using an individual speaker, the covariance matrix 
needed to be scaled to be more tolerant of the unseen speakers. 
The magnitude of this scaling reduces as the number of 
speakers in the training set increases. This is due to the 
variances between speakers implicitly scaling the covariance. 

End-pointing and amplitude normalisation were two 
preprocessing techniques that resulted in significant gains in 
accuracy. It was also noted that an increase in the quantity of 
training data results in better speaker independence. 

H. Response time 
The average response time per word was measured as 3.06 

seconds. It is important to note that full covariance matrices, a 
MATLAB simulation platform and a mid range ultrabook 
were used to obtain these results. 

 
5. Conclusion 

 
We proposed and tested a method for speech recognition 

that is not affected by accents as much as current approaches 
by using the speech recognition problem between pilots and 
air traffic controllers as a motivating application. The 
strongest aspect of the approach is the high level of accuracy 
for trained speakers. This is likely a result of both MFCC 
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decorrelating features and the manner in which GMMs 
accurately model the feature space with minimal iterations of 
training. Therefore, if the system was implemented with 
speaker enrolment, accents would be handled even more 
effectively. It was also discovered that the accuracy of the 
system with regard to speaker independence depends on the 
volume of training data. Despite limited training data, the use 
of covariance scaling, end-pointing and amplitude 
normalisation increased speaker independence drastically. 

 
Appendix A 
Vocabulary listing is shown in Table 5 to Table 7. 
 
Table 5. Listing of the full NATO vocabulary used 

NATO  
ALPHA AE-L-F-AH 
BRAVO B-R-AA-V-OW 
CHARLIE CH-AA-R-L-IY 
DELTA D-EH-L-T-AH 
ECHO EH-K-OW 
FOXTROT F-AA-K-S-T-R-AA-T 
GOLF G-AA-L-F 
 G-AO-L-F 
HOTEL HH-OW-T-EH-L 
INDIA IH-N-D-IY-AH 
JULIET JH-UW-L-IY-EH-T 
KILO K-IH-L-OW 
LIMA L-AY-M-AH 
 L-IY-M-AH 
MIKE M-AY-K 
NOVEMBER N-OW-V-EH-M-B-ER 
OSCAR AO-S-K-ER 
PAPA P-AA-P-AH 
QUEBEC K-W-AH-B-EH-K 
ROMEO R-OW-M-IY-OW 
SIERRA S-IY-EH-R-AH 
TANGO T-AE-NG-G-OW 
UNIFORM Y-UW-N-AH-F-AO-R-M 
VICTOR V-IH-K-T-ER 
WHISKEY W-IH-S-K-IY 
 HH-W-IH-S-K-IY 
X-RAY EH-K-S-R-EY 
YANKEE Y-AE-NG-K-IY 
ZULU Z-UW-L-UW 

 
Table 6. Listing of the full numeric vocabulary used 

Numeric  
ZERO Z-IY-R-OW 
ONE W-AH-N 
 HH-W-AH-N 
TWO T-UW 
THREE T-R-IY 
FOUR F-AO-R 
FIFE F-AY-F 
SIX S-IH-K-S 
SEVEN S-EH-V-AH-N 
EIGHT EY-T 
NINER N-AY-N-ER 

 
Table 7. Listing of silence lengths used 

Silence  
SILENCE SIL-SIL-SIL 
 SIL-SIL 
 SIL 

 
 

Appendix B 
Mathematical notation 
 

Symbol Description 
𝑥𝑥  Variable 
𝑋𝑋  Constant 
𝒙𝒙  Vector 
𝒙𝒙𝒊𝒊  Vector indexed by 
 variable i 
𝑿𝑿  Matrix 
𝑿𝑿𝑖𝑖,𝜋𝜋    Matrix indexed by  
 variables 𝑖𝑖, 𝑗𝑗 
𝑿𝑿𝑇𝑇   Matrix transpose 
�̅�𝑥  Array of vectors 
�̅�𝑥(𝑖𝑖)   Array of vectors indexed 

by variable 𝑖𝑖 
𝑿𝑿�  Array of matrices 
𝑿𝑿�(𝒊𝒊)  Array of matrices indexed 

by variable 𝑖𝑖 
𝐹𝐹(𝑥𝑥)  Function of 𝑥𝑥 
𝑃𝑃(𝑥𝑥)  Probability of 𝑥𝑥 
[1, …, N] Expanded vector 
 

�
𝑋𝑋1,1 ⋯ 𝑋𝑋1,𝑁𝑁
⋮ ⋱ ⋮

𝑋𝑋𝑁𝑁,1 ⋯ 𝑋𝑋𝑁𝑁,𝑁𝑁

� 

Expanded matrix 

 
Appendix C 
Proof of forward algorithm scaling 
 

The intermediate forward likelihoods prior to scaling are 
defined by 𝛼𝛼�𝜋𝜋(𝑡𝑡). 
 

𝛼𝛼�𝜋𝜋(1) = 𝛼𝛼𝜋𝜋(1).                              (40) 
 

𝛼𝛼�𝜋𝜋(𝑡𝑡) = [∑ 𝛼𝛼�𝑖𝑖(𝑡𝑡 − 1)𝑁𝑁
𝑖𝑖=1 𝐴𝐴𝑖𝑖,𝜋𝜋]𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡).             (41) 

 
The scaling factor at time 𝑡𝑡 is denoted by 𝑠𝑠𝑡𝑡 and 

calculated using Equation 42. 
 
𝑠𝑠𝑡𝑡 =  1

∑ 𝛼𝛼�𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

 .                            (42) 

 
As a result the scaled forward likelihood α�𝜋𝜋(𝑡𝑡) can be 

calculated with respect to the intermediate scaled forward 
likelihood 𝛼𝛼�𝜋𝜋(𝑡𝑡) . This is shown in Equation 43 using 
substitution of Equation 42. 

 
α�𝜋𝜋(𝑡𝑡) =

𝛼𝛼�𝑗𝑗(𝑡𝑡)

∑ 𝛼𝛼�𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

=  𝑠𝑠𝑡𝑡𝛼𝛼�𝜋𝜋(𝑡𝑡).                  (43) 

 
In order to find the relation between the scaled forward 

likelihood α�𝜋𝜋(𝑡𝑡) and the original forward likelihood α𝜋𝜋(𝑡𝑡), 
mathematical induction is required. Equation 45 continues 
the induction to the second time step 𝑡𝑡 =  2. 

 
α�𝜋𝜋(1) = 𝑠𝑠1 𝛼𝛼�𝜋𝜋(1) =  𝑠𝑠1 𝛼𝛼𝜋𝜋(1).                 (44) 
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α�𝜋𝜋(2) = 𝑠𝑠2 𝛼𝛼�𝜋𝜋(2)                                
 

  =  𝑠𝑠2[ �α�𝑖𝑖(1)𝐴𝐴𝑖𝑖,𝜋𝜋  ]
𝑁𝑁

𝑖𝑖=1

𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡) 

 

  = 𝑠𝑠2[ � s1𝛼𝛼𝑖𝑖(1)𝐴𝐴𝑖𝑖,𝜋𝜋  ]
𝑁𝑁

𝑖𝑖=1

𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡) 

 
  = 𝑠𝑠1𝑠𝑠2𝛼𝛼𝑖𝑖(2).                           (45) 

 
It is intuitive that at time  𝑡𝑡 − 1 , the following relation 

shown in Equation 46 will exist. 
 
α�𝜋𝜋(𝑡𝑡 − 1) = ∏ 𝑠𝑠𝜋𝜋𝑡𝑡−1

𝜋𝜋=1 𝛼𝛼𝜋𝜋(𝑡𝑡 − 1).                 (46) 
 

Thus, the final step of the induction is shown in Equation 
47 which defines the forward scaling relation. 

 
α�𝜋𝜋(𝑡𝑡) =  𝑠𝑠𝑡𝑡[ ∑ α�𝑖𝑖(𝑡𝑡 − 1)𝐴𝐴𝑖𝑖,𝜋𝜋  ]𝑁𝑁

𝑖𝑖=1 𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡)  
 
           =  𝑠𝑠𝑡𝑡[ ∑ ∏ 𝑠𝑠𝜋𝜋𝑡𝑡−1

𝜋𝜋=1 𝛼𝛼𝑖𝑖(𝑡𝑡 − 1) 𝐴𝐴𝑖𝑖,𝜋𝜋]𝑁𝑁
𝑖𝑖=1 𝑏𝑏𝜋𝜋(𝑜𝑜𝑡𝑡)      

 
         = ∏ 𝑠𝑠𝜋𝜋𝑡𝑡

𝜋𝜋=1 𝛼𝛼𝜋𝜋(𝑡𝑡).                         (47) 
 

Using the scaled forward likelihoods, the full forward 
likelihood can be simplified to Equation 48. 

 

𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝛼𝛼𝑖𝑖(𝑇𝑇)𝑁𝑁
𝑖𝑖=1 = ∑ 𝛼𝛼�𝑖𝑖(𝑇𝑇)𝑁𝑁

𝑖𝑖=1
∏ 𝑠𝑠𝑘𝑘𝑇𝑇
𝑘𝑘=1

= [∏ 𝑠𝑠𝜋𝜋𝑇𝑇
𝜋𝜋=1 ]−1.   (48) 

 
Equation 48 is used for the Viterbi algorithm, therefore, 

the full forward log-likelihood needs to be computed. This is 
more efficient since it only uses additions as shown in 
Equation 49. 

 
log 𝑃𝑃(𝑂𝑂|𝜆𝜆) = log[∏ 𝑠𝑠𝜋𝜋𝑡𝑡

𝜋𝜋=1 ]−1 = −∑ 𝑠𝑠𝜋𝜋𝑇𝑇
𝜋𝜋=1 .       (49) 

 
Finally, the forward likelihoods are parameterised by the 

Gaussian mixture components, 𝑚𝑚, in Equations 50 and 51 
respectively. 

 
𝛼𝛼𝜋𝜋

(𝑚𝑚)(1) = 𝜋𝜋𝜋𝜋𝑏𝑏𝜋𝜋
(𝑚𝑚)(𝑜𝑜1).                        (50) 

 
𝛼𝛼𝜋𝜋

(𝑚𝑚)(𝑡𝑡) = [∑ 𝛼𝛼𝑖𝑖(𝑡𝑡 − 1)𝐴𝐴𝑖𝑖,𝜋𝜋]𝑏𝑏𝜋𝜋
(𝑚𝑚)(𝑜𝑜𝑡𝑡𝑁𝑁

𝑖𝑖=1 ).          (51) 
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