
Bidirectional Truncated Recurrent Neural Networks for Efficient Speech
Denoising

Philémon Brakel, Dirk Stroobandt, Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
philemon.brakel@ugent.be, dirk.stroobandt@ugent.be, benjamin.schrauwen@ugent.be

Abstract
We propose a bidirectional truncated recurrent neural network
architecture for speech denoising. Recent work showed that
deep recurrent neural networks perform well at speech denois-
ing tasks and outperform feed forward architectures [1]. How-
ever, recurrent neural networks are difficult to train and their
simulation does not allow for much parallelization. Given the
increasing availability of parallel computing architectures like
GPUs this is disadvantageous. The architecture we propose
aims to retain the positive properties of recurrent neural net-
works and deep learning while remaining highly parallelizable.
Unlike a standard recurrent neural network, it processes infor-
mation from both past and future time steps. We evaluate two
variants of this architecture on the Aurora2 task for robust ASR
where they show promising results. The models outperform
the ETSI2 advanced front end and the SPLICE algorithm un-
der matching noise conditions.
Index Terms: recurrent neural networks, deep learning, robust
ASR

1. Introduction
One of the key features of a robust system for automatic speech
recognition (ASR) is the ability to handle background noise.
Methods for improving noise robustness either try to improve
the quality of the features that are presented to the recognition
system [2], or to improve the robustness of the recognition sys-
tem itself [3]. In this paper we focus on the first of these two
approaches.

To enhance the quality of features that have been derived
from a speech signal, one can either use expert knowledge about
the characteristics of human speech or resort to data-driven sys-
tems. As more data is becoming available, the latter approach
seems to become increasingly viable.

A successful data driven approach to speech denoising is
the Stereo-based Piecewise Linear Compensation for Environ-
ments (SPLICE) method [4], which models the joint distribu-
tion between clean and noisy utterances. In this approach, the
clean signal is modelled as a piecewise linear function of the
noisy signal. This function is constructed from models that have
been separately trained on different types and levels of noise.

Neural networks are trainable non-linear functions that can
learn from data to perform a mapping from some input pattern
to a desired output pattern. What makes neural networks in-
teresting is that they can be applied to large datasets and that
they can process information relatively fast after they have been
trained. This makes them good candidates for various speech
processing tasks. When both noisy and clean versions of utter-
ances are available, neural networks can be trained to perform
speech denoising directly [6].

Recently, there has been a revival of interest in neural net-
works for speech processing due to the success of the so-called
deep learning approach [7] on a variety of machine learning
tasks. Most importantly, deep architectures have been shown
to perform very well as acoustic models for automatic speech
recognition [8]. The idea behind deep learning is to use neural
networks with multiple layers of hidden units that learn increas-
ingly complex representations of the input patterns.

A neural network architecture that is particularly interesting
for speech processing is the Recurrent Neural Network (RNN).
RNNs are able to process information over time by updating
a set of state variables that are a function of both their previ-
ous state and the current input pattern. One of the first applica-
tions of RNNs in speech recognition was phoneme prediction
[9]. Recently, it was shown that a combination of deep learn-
ing with RNNs [1] can outperform well-known noise reduction
methods like the SPLICE algorithm [4] and the ETSI2 advanced
front end [2]. It was also shown that RNNs can improve robust
speech recognition in a Tandem setup [10].

As datasets are becoming increasingly large and paral-
lel processing units like GPUs are getting more commonly
available, it becomes increasingly beneficial for computational
methods to perform computations in parallel. Unfortunately,
RNNs are quite slow and the computations involved cannot be
parallelized. Moreover, they are difficult to train because of
the so called vanishing gradients problem [11]. The vanishing
gradients problem occurs because the backpropagation of gra-
dients through time includes a large number of multiplications
which have a tendency to either drive the gradients towards zero
so learning occurs very slowly, or to make them very large so
learning can become unstable.

In this paper we propose two variants of a recurrent neu-
ral network architecture that inherits some of the properties of
RNNs but allows for more parallelization. The models can also
use information from future speech frames and seem to be eas-
ier to optimize because the number or required backpropagation
iterations is smaller. The way the models process information
is similar to the type of information processing in deep neural
networks. We demonstrate their performance on the Aurora2
robust ASR task when they are trained with an advanced sec-
ond order optimization method to remove noise from MFCC
speech features. Under matched noise conditions, our models
outperform the SPLICE method and the ETSI2 advanced front
end.

2. Bidirectional truncated Recurrent
Neural Networks

Let V be a noisy input sequence of column vectors
{v1,v2, . . . ,vN}, where N is the length of the sequence, and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55869709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


let Y be the corresponding clean sequence we want to predict.
The goal is to learn a function V 7→ Ŷ with a minimal dif-
ference between the predicted sequence Ŷ and the true clean
sequence Y as measured in the squared error given by

‖Ŷ −Y‖2, (1)

where ‖ · ‖ is the Frobenius norm.
The architecture we propose processes information in two

directions through time; unlike a standard recurrent neural net-
work, it also uses information about future frames. We call the
architecture ‘truncated’, because the number of iterations that
is carried out to process information is much smaller than the
length of the input sequence.

Like a multilayer perceptron, the bidirectional truncated re-
current neural network computes a sequence of hidden unit ac-
tivations H and maps these activations to a prediction sequence
Ŷ. The activation of a hidden unit is computed as a weighted
sum of the activations of the units it is connected to, followed by
a non-linear transformation (in this case the hyperbolic tangent
function).

The temporal component is introduced in the computation
of these hidden unit activations. For a predetermined number of
iterations K, the hidden units are updated with the information
they receive from both their neighbours and the input pattern
V. At the start of an iteration, the odd hidden state vectors
{hm|m ∈ 2N + 1} receive a weighted sum of the activations
of their neighbours with an even index and the current input
frame. Subsequently, the even units are updated based on the
activations of the odd ones. Algorithm 1 shows this procedure
in detail. The trainable parameters of the model are the input
connection weights Win, the recurrent weights Wrec, the out-
put weights Wout and the bias parameters for the recurrent and
output layers brec and bout.

The two inner for-loops in Algorithm 1 can both be replaced
by two matrix multiplications. On parallel computing architec-
tures, this modification can lead to significant speedups. This
kind of parallelization is not possible for standard recurrent ar-
chitectures where N − 1 matrix-vector products are required.
The architecture of this first variant of the model is shown in
Fig. 1a. From now on we will refer to this model as the bidirec-
tional truncated recurrent neural network (BTRNN).

Algorithm 1 Predict clean sequence Ŷ given noisy sequence
V

Initialize H← 0
Define h0 = hN+1 = 0
A←WinV + brec1

T

for k = 1 to K do
for j = 1 to N step 2 do

hj ← tanh(Wrechj−1 +WT
rechj+1 + aj)

end for
for j = 2 to N step 2 do

hj ← tanh(Wrechj−1 +WT
rechj+1 + aj)

end for
end for
Ŷ ←WoutH+ bout1

T

Updating the odd and even units separately was motivated
by the mean-field algorithm for Markov Random Fields [12].
If the hidden units would be stochastic variables, this updating
scheme would be equivalent to a mean-field approximation of
their posterior distribution given the data.

(a) BTRNN (b) PBTRNN

Figure 1: The two variants of the bidirectional truncated recur-
rent neural network for two iterations of hidden unit updates.
Each circle represents a layer of neural network units. Grey
shading indicates that a unit is part of the input pattern. Black
shading signifies output units. Time goes from the left to the
right so each input unit represents an MFCC vector at a differ-
ent time step.

A nice property of this equivalency is that the updates are
guaranteed to converge to a fixed point that is a local optimum
of an optimization problem that aims to approximate the distri-
bution over the hidden units given the data. To see if this alter-
nating updating is actually necessary, we also look at a simpler
version of the model in which all hidden units are updated in
parallel. Updating the hidden units in parallel is computation-
ally more efficient but theoretically this could lead to oscilla-
tions. However, since the number of iterations we intend to use
is quite small, this might not be a problem. The architecture of
this second variant of the model is shown in Fig. 1b. We will re-
fer to this model as the parallel bidirectional truncated recurrent
neural network (PBTRNN).

Note that the way our models process information from
both previous and future frames is not the same as was done
in previous work where the term bidirectional RNN was used
[13, 14]. In these approaches, two different hidden states cap-
tured past and future information separately while our models
directly integrate future and past information information into a
single state representation.

The number of previous and future frames that are taken
into account is determined by the number of iterations K. The
prediction for a frame receives information about 2K+1 frames
from the input sequence. The number of iterations to use
presents a trade-off between context size and computational ef-
ficiency.

It is also clear that as the models run for a greater number of
iterations, the number of times that information flows through
a non-linear activation unit increases. At every iteration, the
information can be said to pass through an additional layer of
a deep neural network with tied weights and a sparse connec-
tion structure. This is similar to the way convolutional neural
networks process information.

3. Experiments
To evaluate our models for speech denoising, we used the Au-
rora2 dataset [15]. This is a well-known benchmark for robust
ASR. The dataset is a collection of connected digits from the
TIDigits corpus. The train set contains 8, 440 clean sentences



of which duplicates exist that have been corrupted by four noise
types at seven different levels of signal to noise ratio (clean,
20dB, 15dB, 10dB, 5dB, 0dB, -5dB). The test set consists of
56, 056 corrupted and clean sentences and is divided in three
subsets. Test set A contains the same four noise types as the
train data. Test sets B and C contain different types or noise
and can be used to evaluate the performance of a model under
mismatched training and testing conditions. All systems were
trained to map the noisy train sentences to their clean counter-
parts.

Since the train data only contains a small number of noise
types, we do not expect models that are trained on this data
to perform very well on new noise types in general. For this
reason we will focus on the results on test set A for which the
noise types are identical to those on in the train set.

A recognition system was trained on the clean train data
only. Subsequently, the noisy utterances from the test set were
processed by the various denoising models we compare and
these denoised features were presented to the recognizer dur-
ing testing.

To generate MFCC features, we used the standard HTK
scripts that were supplied with the Aurora2 dataset [15]. The
models were trained on 13 dimensional vectors that contained
12 MFCC features and the log energy of the speech signal.
First and second order derivatives (delta and delta-delta fea-
tures) were appended after the denoising process during testing.
To keep our results comparable with those in [15] we did not
apply cepstral mean normalization to the signals. The recog-
nizer was also trained and evaluated with the standard Aurora2
scripts for HTK. This means that whole-word HMMs with 16
states and for each state a Gaussian mixture with 3 components
were used.

3.1. Models

The BTRNN and PBTRNN both had 500 hidden units. We set
the number of iterations at which the hidden units were updated
to 6. This gave each model an input context size of 13 frames
and 263513 trainable parameters.

We compare our models with a deep recurrent denoising
auto-encoder (DRDAE), an model which has been shown to
work well for this task [1]. This model is a neural network with
three layers of hidden units of which the second layer of hidden
units has recurrent connections. Like in the paper by Maas et al.
[1], we set the number of units in each hidden layer to 500 and
presented the network with small time windows of three frames:
the current time frame and its two neighbours. The number of
trainable parameters for this model was 777513.

To investigate the importance of the recurrent data process-
ing in our networks, we also trained a standard multi-layer per-
ceptron with roughly the same number of trainable parameters.
This network had a single layer of 1450 hidden units. To make
the comparison as fair as possible, we presented this network
with time-windows of 13 frames so that it received the same
amount of context information as the truncated recurrent neural
networks at each time step. The number of trainable parameters
of this model was 265363.

Finally, we compared our models with the features gener-
ated by the ETSI2 advanced front end (AFE) and the SPLICE
algorithm. [2].

3.2. Training

The neural network models were trained to minimize the mean
squared error (MSE) between their predictions and the actual

Table 1: Mean squared error for the neural network models on
the train and validation data. The scores are averaged over all
different levels and types of noise.

Model Train Validation
DRDAE 17.30 17.55
MLP 16.35 17.62
BTRNN 15.38 16.39
PBTRNN 15.18 16.89

clean utterances in the train set. All utterances were normalized
by subtracting the mean and dividing by the square root of the
variances of the noisy utterances from the train set.

To train the models we used Hessian-Free optimization
[16]. This is a second order optimization method which has
been shown to be effective for training deep neural networks
and RNNs [17]. Earlier results about Hessian-Free optimization
also suggest that it is not that important anymore to use any form
of unsupervised pre-training when this optimization method is
used [16]. Because there doesn’t seem to be a straightforward
way to apply pre-training to our models we find this property of
the optimization algorithm to be particularly appealing.

The Hessian-Free optimizer is a truncated Newton method
and needs the gradient of the error objective with respect to the
parameters of a model. It also needs a function that provides it
with the product of the Gauss-Newton matrix of the model with
an arbitrary vector. If the objective is twice differentiable these
gradients and matrix vector products can easily be obtained by
means of automated differentiation. We used the Theano tool-
box [18] for python for this and to simulate the more paralleliz-
able models with a GPU. We used the standard settings for the
Hessian-Free algorithm as described in the original paper by
James Martens [16]. In preliminary experiments we found that
this algorithm outperformed LBFGS and stochastic gradient de-
scent.

The dampening parameters λ was initialized at 100. The
number of sequences to use for computing the matrix vector
products was set to 300. All weight matrices where initialized
with values sampled from a zero mean Gaussian with variance
.01. All bias parameters were initialized at 0.

We reserved 20% of the train data for validation. We ap-
plied early stopping and selected the parameters that achieved
the lowest MSE scores on the validation data after 100 iterations
of training for denoising the MFCCs of the test set. We did not
apply any form of weight decay during training.

4. Results
Table 1 displays the MSE scores for the models on both the sen-
tences from the train set and those that we left for validation.
The BTRNN and PBTRNN have the lowest validation scores.
The train error of the PBTRNN is slightly lower than that of
the BTRNN but it performs slightly worse on the validation set.
Interestingly, the MLP suffers more from early overfitting than
the DRDAE model as its train error is quite a bit lower but its
validation error is slightly higher. Table 2 shows the word er-
ror rates (WER) scores for test set A. This test set had the same
types of noise as the train set. Except for the clean utterances,
where the AFE got the best performance, the BTRNN and the
PBTRNN outperformed all other methods for all noise condi-
tions. The PBTRNN performed slightly better under moderate
noise conditions while the BTRNN a performed a little bit better
under heavier noise conditions.



Table 2: Word error rate scores for the neural models and the
ETSI2 advanced front end on test set A. The results are averaged
over the four different noise types.

SNR MFCC AFE DRDAE MLP TRNN PBTRNN
Clean 1.06 0.77 1.36 4.14 1.37 1.41
20dB 5.02 1.70 1.85 3.04 1.82 1.68
15dB 13.11 3.08 2.93 3.77 2.36 2.19
10dB 32.81 6.45 5.14 6.08 3.91 4.03
5dB 60.74 14.16 12.49 14.00 9.87 10.31
0dB 82.98 35.92 35.45 38.59 29.98 31.97
-5dB 91.62 68.70 73.70 72.79 65.37 67.42

It is surprising how badly the MLP performed on the clean
data. This indicates that either recurrent or deep processing, or
a combination of them, is important for good neural denoising
models. The performance of the DRDAE was worse than the
BTRNN and the PBTRNN but the rate at which its performance
decreases as a function of increasing levels of noise seems sim-
ilar. We suspect that it should be able to achieve similar perfor-
mance to our models but is more difficult to optimize.

We also averaged across noise conditions while leaving out
the clean and -5dB scores as described in the ETSI standard.
The BTRNN now achieves a WER of 9.59% and the PBTRNN
a WER of 10.03%. These results are better than the WER rates
reported for the AFE [2] and the SPLICE algorithm (as reported
by Droppo et al. [19]) which are 12.26% and 11.67%, respec-
tively. The DRDAE gives a WER of 11.57%, which is higher
than the result reported by Maas et al. [1] of 10.85%, which is
still higher than the WER scores of both our models. Finally,
the MLP gives an average WER of 13.09%, performing worse
than the AFE baseline.

While it was not our intention to construct models for mis-
matched noise conditions, we also report the averaged results
for test set B. As expected and like in earlier work [1], the re-
sults of the neural models are a lot worse for the mismatched
noise types. The BTRNN and PBTRNN achieved WER scores
of 25.50% and 24.66%, respectively. This is worse than the
SPLICE algorithm which gives a WER of 12.25% on this test
set. The MLP and DRDAE gave WER scores of 19.84% and
18.29%, respectively. All models still improved on the raw
MFCC features which lead to a WER of 44.42%. It seems that
the models that performed worse on the matching test set suffer
less from the mismatching conditions but are still worse than
the SPLICE baseline. This indicates that the BTRNN and PB-
TRNN learned to represent the noise in the train data very well
but did not have enough noise data available to generalize well
to other noise types. Note that the ability of the SPLICE algo-
rithm to perform well on mismatched noisy data may be caused
by the fact that separate models are used for each type of noise
and noise condition.

4.1. Computational Efficiency

It is difficult to perform a fair assessment of the computational
efficiency of the methods because this is implementation depen-
dent. Nonetheless, we measured the time it took for the models
to process the first 1000 utterances from the train set. The sim-
ulations were done on a system with an Intel i7 quadcore CPU
and a Geforce GTX 480 GPU card installed. For all models,
we report the computation time for both the GPU and the CPU.

Table 3: Time in seconds it took for each model to process the
first 1000 utterances of the train set using either the CPU or a
GPU to perform computations.

Model CPU GPU
DRDAE 15.4 20.6
MLP 7.7 1.2
BTRNN 56.0 10.2
PBTRNN 25.1 5.1

Computations on the CPU made use of the Intel MKL BLAS
library with multi-threading enabled.

Since all methods were implemented in the Theano tool-
box, their efficiency depends on the optimizations this software
is able to perform for the various computational graphs. These
implementations could probably be made more efficient by op-
timizing them manually.

As Table 3 shows, the standard BTRNN does not perform
much faster than the DRDAE but the PBTRNN is about three
times faster. This is a significant speed-up that will allow the
PBTRNN to be applied to larger datasets.

5. Discussion
We introduced two variants of a bidirectional truncated re-
current neural network architecture for speech denoising that
shares properties with deep learning and convolutional neural
networks. The two models outperform similar neural architec-
tures and the ETSI2 advanced front end for noise types that were
present in the training data. Since the deep recurrent denoising
auto-encoder we compared our models with can use more con-
text information, we suspect that our models performed better
because they are easier to optimize.

In contrast to more common recurrent architectures that
only have access to information about the past, our models also
use information about future frames. The models could still be
applied in a setup where the speech frames arrive one at the
time but in that case it would probably be best to re-update the
hidden units after more information has become available.

The fact that the models were overfitting on the specific
noise types suggests that their generalization properties could
be improved by extending the training data with more types of
noise at the potential cost of performing slightly worse on test
set A. It should be straightforward to construct such a dataset.
We also showed that our models are more computationally effi-
cient than similar architectures. This increases their potential to
scale to larger datasets.

Future work should investigate the applicability of our mod-
els on larger datasets for which the training data has been aug-
mented with artificially generated noise as has been done in
other work on robust speech recognition [20]. It would also
be interesting to combine our approach with other techniques
for noise robust ASR.

It was beyond the scope of this work to investigate the in-
fluence of the number of iterations for which the hidden units
are updated. The value we chose was based on prior intuitions
about the task and the influence of this parameter on the perfor-
mance of the models should be investigated in more detail.

6. Acknowledgements
This article was written under partial support by the FWO Flan-
ders project G.0088.09.



7. References
[1] A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and

A. Y. Ng, “Recurrent neural networks for noise reduction in robust
asr,” in INTERSPEECH. ISCA, 2012.

[2] “Advanced front-end feature extraction algorihtm,” Tech. Rep.
ETSI ES 202 050, 2007.

[3] M. J. F. Gales, “Model-based techniques, for noise robust speech
recognition,” Ph.D. dissertation, University of Cambridge, 1995.

[4] L. Deng, A. Acero, J. L. Droppo, and J. X. Huang, “High-
performance robust speech recognition using stereo training data,”
in Proc. ICASSP, Salt Lake City, UT, May 2001, pp. 301–304.

[5] H. Hermansky, D. P. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional hmm systems,” in Acoustics,
Speech, and Signal Processing, 2000. ICASSP’00. Proceedings.
2000 IEEE International Conference on, vol. 3. IEEE, 2000, pp.
1635–1638.

[6] S. Tamura and A. Waibel, “Noise reduction using connection-
ist models,” in Acoustics, Speech, and Signal Processing, 1988.
ICASSP-88., 1988 International Conference on. IEEE, 1988,
pp. 553–556.

[7] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[8] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[9] T. Robinson, M. Hochberg, and S. Renals, “Ipa: Improved phone
modelling with recurrent neural networks,” in Acoustics, Speech,
and Signal Processing, 1994. ICASSP-94., 1994 IEEE Interna-
tional Conference on, vol. 1. IEEE, 1994, pp. I–37.

[10] O. Vinyals, S. Ravuri, and D. Povey, “Revisiting Recurrent Neural
Networks for Robust ASR,” in ICASSP, 2012.

[11] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” Neural Networks,
IEEE Transactions on, vol. 5, no. 2, pp. 157–166, 1994.

[12] M. J. Wainwright and M. I. Jordan, “Graphical models,
exponential families, and variational inference,” Found. Trends
Mach. Learn., vol. 1, no. 1-2, pp. 1–305, Jan. 2008. [Online].
Available: http://dx.doi.org/10.1561/2200000001

[13] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” Signal Processing, IEEE Transactions on, vol. 45,
no. 11, pp. 2673–2681, 1997.

[14] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural Networks, vol. 18, no. 5, pp. 602–610, 2005.

[15] D. Pearce, H. gnter Hirsch, and E. E. D. Gmbh, “The aurora ex-
perimental framework for the performance evaluation of speech
recognition systems under noisy conditions,” in in ISCA ITRW
ASR2000, 2000, pp. 29–32.

[16] J. Martens, “Deep learning via hessian-free optimization,” in
ICML, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010,
pp. 735–742.

[17] J. Martens and I. Sutskever, “Learning recurrent neural networks
with hessian-free optimization,” in Proc. 28th Int. Conf. on Ma-
chine Learning, 2011.

[18] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: A cpu and gpu math compiler in python,” in Proceed-
ings of the 9th Python in Science Conference, S. van der Walt and
J. Millman, Eds., 2010, pp. 3 – 10.

[19] J. Droppo, L. Deng, and A. Acero, “Evaluation of splice on the
aurora 2 and 3 tasks,” in International Conference on Spoken Lan-
guage Processing, 2002, pp. 29–32.

[20] J. F. Gemmeke and T. Virtanen, “Artificial and online acquired
noise dictionaries for noise robust ASR,” in INTERSPEECH,
2010, pp. 2082–2085.


