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In recent years, there has been significant developments in artificial intelligence (AI), with machine

learning (ML) implementations achieving impressive performance in numerous fields. The defence cap-

ability of countries can greatly benefit from the use of ML systems for Joint Intelligence, Surveillance,

and Reconnaissance (JISR). Currently, there are deficiencies in the time required to analyse large Syn-

thetic Aperture Radar (SAR) scenes in order to gather sufficient intelligence to make tactical decisions.

ML systems can assist through Automatic Target Recognition (ATR) using SAR measurements to

identify potential targets. However, the advancements in ML systems have resulted in non-transparent

models that lack interpretability by the human users of the system and, therefore, disqualifying the use

of these algorithms in applications that affect human lives and costly property.

Current Deep Machine Learning (DML) implementations applied to ATR are still non-transparent and

suffer from over-confident predictions. This study addresses these limitations of DML by investigating

the performance of a Bayesian Convolutional Neural Network (BCNN) when applied with the task

of ATR using SAR images. In addition, the BCNN is used to perform target detection using data
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provided by the Council for Scientific and Industrial Research (CSIR). To improve interpretability, a

method is proposed that utilises the epistemic uncertainty of the BCNN detector to visualise high- or

low-confidence regions in each of the SAR scenes.

The results of this research showed that the performance of the BCNN in the task of ATR using SAR

images is comparable to current DML methods from literature. The BCNN achieves a classification

accuracy of 93.1 % which is marginally lower than the performance of a similar Convolutional Neural

Network of 96.8 %. The BCNN outperformed the CNN when the networks were given out-of-

distribution data. The CNN outputs showed over-confident predictions while the BCNN was able to

indicate its lack of confidence by using the epistemic uncertainty in combination with the predictive

variance in its output.

Using the dataset from the CSIR, uncertainty heat maps were generated that illustrated regions of high-

and low-confidence. The regions with the highest uncertainty were located near large collections of

trees and areas near shadows. The high-uncertainty incorrect predictions were fed back into the BCNN,

and results showed a reduction in overall uncertainty and detection performance.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

Militaries were one of the earliest adopters of SAR technologies and they continue to use it for Joint

Intelligence, Surveillance, and Reconnaissance (JISR) activities [1]. SAR analysts use information

from the radar sensors to gain intelligence about a region of interest, including the classification of

specific targets and activities. In addition, JISR activities are often time-sensitive and have a high risk

associated with them since they involve human lives and property. The problem addressed by this work

is the Automatic Target Recognition (ATR) of targets embedded in SAR data using an eXplainable

Artificial Intelligence (XAI) framework.

1.1.1 Context of the Problem

The earliest record of radar concepts was shown by Heinrich Hertz in 1886 with the discovery of wave

reflections [2]. This fundamental radar concept would later be used by the British to detect aircraft at

long distances. Key advantages of SAR are the ability to generate images based on radar reflections

in all weather conditions, at any time of the day, and the capability of passing through the foliage at

frequencies in the Very High Frequency (VHF) band [3]. Owing to these advantages, SAR has been

widely adopted in both military and civilian applications. SAR is a radar method that employs active

remote sensors to construct 2-D radar images that achieve a high range and azimuth resolution [4, 5, 6].

SAR exploits the relative motion between the sensor and target to form a large aperture and generate a

higher azimuth resolution.

The military has made great strides in developing SAR techniques and currently uses them for JISR

operations. SAR analysts are the team that manually extracts intelligence pertaining to the recognition

of targets and important events. JISR operations are highly time-dependent [1] - it is a process

that requires a high level of efficiency and coordination amongst all teams involved. Bottlenecks in
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SAR-based JISR operations are apparent, as SAR analysts have to manually sort through hundreds

of kilometres of SAR data. With limitations in sensor hardware, additional challenges arise with

sub-meter resolution images that result in targets only being represented by a few pixels. Consequently,

this leads to a rise in research to automate the process through ATR of targets within SAR data.

Advancements in machine learning (ML) algorithms and increased availability in hardware have made

the challenge of ATR more practical. As a result, numerous ML techniques have been applied to the

problem of ATR of SAR images [7, 8, 9, 10], with some Deep Neural Network (DNN) implementations

achieving remarkable classification accuracy [11]. JISR activities can greatly benefit from the use of

ML algorithms for ATR of SAR as it significantly reduces the time to analyse and classify potential

targets of interest. In addition to being time-sensitive, JISR tasks may be dangerous since the decisions

made have a direct effect on human lives. However, current state-of-the-art deep learning (DL)

algorithms have become "black-box" models that make decisions without any methods of explanation.

This has caused end-users to question the reasoning of these algorithms, especially in applications

where lives are at risk. The emerging field of XAI aims to remedy this problem by producing ML

algorithms that are explainable, interpretable, and facilitate trust in the models’ output.

1.1.2 Research Gap

Current state-of-the-art ATR of SAR methods primarily focus on classification accuracy and not

explainability and transparency. JISR activities require a high degree of confidence from the ML

algorithms to be trusted by the user. Therefore, improvements need to be made to adjust the machine

learning algorithms applied to ATR to make them adhere to XAI principles, and for them to explain

their decisions as well as facilitate trust in the decision-making process.

A significant challenge that current state-of-the-art ML algorithms face is over-confident predictions

[12]. For mass adoption of ML algorithms in the context of ATR of SAR to occur, additional measures

are needed to convey realistic confidence in decisions. Furthermore, there is a lack of research into the

quantification of uncertainty in the prediction for ATR methods using DL. A measure of uncertainty

would decrease the number of over-confident predictions made and, therefore, increase the users’ trust

in the ATR system.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Traditional DNNs have proven to achieve state-of-the-art performance in numerous classification

activities [13]. However, they are still not suitable for deployment in JISR applications and need to be

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

supplemented by the addition of XAI techniques. To combat the over-confident predictions made by

DNNs, the study investigates the application of a BCNN on the ATR using SAR images. The BCNN

has the advantage of uncertainty estimation that eliminates over-confident predictions and allows the

user to assess the network’s confidence in its output decision[14]. To address the problem of ATR of

SAR images using an XAI model, the following research questions are posed:

1. Does the use of a BCNN and the interpretation of uncertainty add transparency and explainab-

ility? The end-user should have insight into why the network made a particular classification.

This promotes trust and would help in the adoption of such technologies.

2. What is the trade-off in classification performance between traditional DNNs and XAI models?

Typically, DNNs achieved the best classification performance at the cost of non-transparency.

It is important to investigate the trade-off of higher classification performance for increased

explainability and transparency.

3. How reliable are uncertainty estimations from BCNNs? Uncertainty estimations are crucial for

the adoption of BNNs as they are the entire premise of Bayesian learning in neural networks.

Thus, it is imperative that an investigation be conducted to ensure that the uncertainty is reliable.

4. Can the BCNN be used to perform target detection of various SAR scenes? Target detection

would enable a partial ATR system. Therefore, it is critical to investigate the target detection

capabilities.

5. Can the uncertainty estimates be used to improve the BCNN’s target detection performance? An

advantage of the BCNN is its ability to quantify uncertainty, and these uncertainty estimates

may be leveraged to penalise high-confident incorrect predictions.

1.3 APPROACH

The research procedure is split into four distinct subsections: data preparation, BCNN and uncertainty

estimations, target detection, and integration.

1.3.1 Data Preparation

The dataset used for this research was provided by the Council for Scientific and Industrial Research

(CSIR) and consists of SAR measurements taken of the same scene. Each scene may contain numerous

buildings, vehicles, and natural terrains and, therefore, the data preparation begins with the creation of

the dataset. First, the targets in each scene are identified using data logs captured for each run. These

samples are used to generate the ground-truth data. Once each target has been correctly identified,

the target is cropped to a specific image size and the pixel values are captured and stored as an image

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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in its corresponding class. In addition to the dataset provided by the CSIR, another more frequently

used dataset is also used. The Moving and Stationary Target Acquisition and Recognition (MSTAR)

dataset consists of SAR imagery of ten targets at different elevations captured at X-band frequencies.

This dataset is suitable since it has a high resolution of 1m. This dataset has been used in [4], [15],

[16], [17], and [18] and is employed to make direct comparisons with ATR of SAR implementations

from recent publications. Lastly, both datasets are split into training, validation, and test sets. As the

focus is on explainability, minimal pre-processing methods are applied as it would affect classification

performance.

1.3.2 BCNNs and Uncertainty Estimations

To address the over-confident prediction made by traditional DNNs, a BCNN is used with the capability

of exploiting uncertainty estimations to reduce over-confident outputs. The following method is

used:

1. Investigate various BNN methods.

2. Explore the feature space of the training set using data analysis techniques.

3. Investigate the output of the convolutional layers and write up results for publication.

4. Evaluate the BCNN using state-of-the-art DNN architectures and perform a comparison between

the BCNN and standard DNN using performance metrics such as classification accuracy and

F-score [19].

5. Investigate uncertainty estimates of the BCNN employing the epistemic uncertainties by using

SAR images that the BCNN was and was not trained on.

6. Explore methods for transforming the uncertainty of the BCNN from epistemic into interpretable

representations.

1.3.3 Target Detection

In this work, an investigation is conducted to determine if the BCNN can be utilised for the detection

of targets in a SAR scene. Metrics are used to evaluate the target detection performance of the BCNN

detector. In addition, another investigation is performed to determine if the uncertainty estimates can

improve the detection performance. The following method is used:

1. Investigate the target detection capabilities of the BCNN using the MSTAR dataset as targets

and samples of the environment as clutter.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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2. Perform a comparison of the target detection between a similar CNN and the BCNN using the

same training set.

3. Experiment with the feedback of highly confident incorrect samples during the BCNN training

process. JISR tasks often require a high degree of confidence, and the feedback of high confident

incorrect samples might reduce the probability of these predictions.

1.3.4 Integration

Lastly, the components of the BCNN and the detector is integrated using the following steps:

1. Integrate the target detection with the uncertainty estimates and explore the correlation between

detected targets and the uncertainty estimates.

2. Investigate the influence of the uncertainty heat maps on the explainability of the BCNN.

1.4 RESEARCH GOALS

The primary objective of this study is the ATR of targets embedded in SAR images using an XAI

framework to improve the trust between ML algorithms and their users. The use of a BCNN addresses

over-confident decisions made by DNNs through quantifying uncertainties. Thereafter, the models’

uncertainty is presented in a format that allows the user to identify regions where the model is unsure

and that may require human assistance. This provides users with an additional layer of information

regarding the models’ confidence and, therefore, fosters increased trust.

1.5 RESEARCH CONTRIBUTION

A comprehensive comparison is presented between the current state-of-the-art ATR of SAR methods

from existing publications and a BCNN with a similar architecture. This investigation provides insight

into the possible trade-offs between the standard CNN and the Bayesian alternative.

Experiments are conducted to perform target detection using the BCNN. Uncertainty estimates are

utilised to provide additional information to the user conveying the confidence of the model over the

SAR scene. Lastly, an investigation is conducted using high-uncertainty incorrect detection to further

improve the detection and uncertainty estimates of the model.

1.6 RESEARCH OUTPUTS

A conference paper has been accepted for publication at the 24th International Fusion Conference

on 3 November 2021. The conference paper is titled: "Improved Explainability through Uncertainty

Estimation in Automatic Target Recognition of SAR Images” [20].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1 INTRODUCTION

1.7 OVERVIEW OF STUDY

This thesis contains six chapters, with every chapter detailing each stage of the work performed. A

summary of each chapter is provided in this section.

Chapter 2 presents a comprehensive literature study. A taxonomy of the most current ML algorithms

is shown as well as a detailed comparison of the current state-of-the-art ATR in SAR methods. In

addition, the chapter discusses an overview of the different uncertainty estimation methods in neural

networks. Lastly, it provides an overview of the emerging field of XAI with post-hoc methods for

explainability and interpretability.

Chapter 3 provides the theoretical foundation of the BNN, which includes basics on neural networks

and CNNs. The chapter illustrates the derivations for the probabilistic modelling that is used for

backpropagation training and uncertainty estimation.

Chapter 4 details the BCNN implementation as well as an overview of the implementation to per-

form the target detection. This chapter concludes by establishing the performance metrics for both

classification and target detection.

Chapter 5 contains the results of the classification and the target detection. Detailed comparisons are

made between the BCNN and CNNs using similar architectures.

Chapter 6 details the conclusions from the study and how it addresses the problem statement. Lastly, it

mentions future works and recommendations.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter provides an overview of the literature study for this dissertation. In Section 2.2, a

taxonomy is presented on the current state of ATR with SAR images as well as a detailed comparison

of various ATR implementations from recent publications. Section 2.3 summarises a taxonomy on the

uncertainty estimation methods with an emphasis on Bayesian techniques. Lastly, Section 2.4 provides

a brief introduction to XAI.

2.2 ATR WITH SAR

ATR manipulates data from various sensors directed at a particular scene and predicts the targets that

have been detected and recognised from the provided data. When ATR originated in the early 1980s,

there were two competing fields used to design ATR systems - signal processing and computer vision.

With advancements in available hardware and the emergence of artificial intelligence (AI), computer

vision has become the dominating field of interest. The problem of ATR has now become how to teach

a machine to perform tasks that humans perform automatically [21].

To reduce the vast amount of information initially provided by the SAR images, the ATR system is

divided into three distinct stages as shown in Figure 2.1.

Figure 2.1. Block diagram for an end-to-end ATR of SAR system. Taken from [22], ©IEEE 2016.
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The stages are detection (pre-screening), low-level classification (target discrimination), and high-level

classification. From Figure 2.1, it is noted that the computational complexity increases after each

subsequent stage and the input data decreases after each stage. The combination of the detector and

discriminator stages forms the Focus-of-Attention (FOA). The FOA is the main interface between the

input data and candidate targets. A key objective of the FOA is the efficient manipulation of input data

from the input of the detector to the input of the high-level classifier.

The detection stages are tasked with allowing candidate targets through to the next stage and the

elimination of clutter and speckle noise [4]. In addition, the detector performs enhancements to the

target region and suppresses the effects of background recognition. In this stage, pre-processing

methods are required to decrease the input data load, and this is achieved through various techniques

such as image segmentation [23].

The two main objectives of the discrimination stage are the estimation of the position of candidate

targets and feature discrimination. In feature discrimination, features are extracted from the targets

of interest and the effective information contained in the input SAR image is combined. This is then

converted into a feature vector that is fed into the subsequent classifier. Some ATR systems have an

additional classifier in the discrimination stage that is only trained on target features, or target features

and clutter. The final stage of the ATR system is the high-level classifier (HLC). This stage receives

candidate targets and performs the classification of targets into their respective classes. There are a

plethora of classification techniques for both the LLC and HLC stages. The main categories are feature-

based, semi-model-based, and model-based techniques. Feature-based techniques are dependent on a

specific feature to describe each target. The feature is either obtained through feature extractions in the

discrimination stage, or they are obtained from image target templates of the target. Feature-based

methods operate on the principle that the features of each target from the various classes are situated in

distinct separable regions within the feature-space of the training data [22]. Model-based techniques

differ from feature-based in terms of the order in which operations are performed. Image recognition

starts with the feature extraction from the SAR input data. Afterwards, a model of the targets is used for

comparison between the extracted features. The key difference between feature-based and model-based

techniques is that feature-based techniques attempt to extract numerous characteristics of the target,

which are used to train the classifier, while the model-based methods perform feature hypothesis tests

using the pre-defined models of the targets. An advantage of model-based techniques is that it mitigates

the difficulties in feature extraction by leveraging prior knowledge into the pre-defined models. The
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semi-model methods differ from both feature-based and model-based methods. It does not rely on

feature vectors for classifier training and differs from model-based methods as it does not use the same

procedure of feature hypothesis verification [24].

Feature-based methods are less complex than model-based methods. This is in part due to the lack

of intelligence and reasoning of feature-based methods when compared to model-based methods

which have an inherent knowledge built into the system. This enables the model-based methods to

be more robust under different operating conditions. Thus, model-based systems are more accurate

than feature-based systems. The main disadvantage of model-based systems is the level of complexity

required to design them as well as the increase in computation time. There is a balance between

accuracy and complexity, and a trade-off must be made between them.

2.2.1 Categorisation of ATR Methods for SAR Images

This section contains a survey of the different methods for learning techniques. Various ATR systems

of SAR data are selected from literature and are categorised based on their methods. Owing to the vast

amount of published work on the topic of ATR of SAR, only the systems that utilise feature-based

techniques were selected, as they are the main focus of this study.

The feature-based techniques reviewed in this study fall under the class of supervised learning. Features

are extracted from the input SAR images and converted into feature vectors. The classifier then allocates

the feature vector to its respective class. Numerous learning techniques facilitate the learning of the

discriminate features, and an overview of these techniques is shown in Figure 2.2. For this research

problem, the learning techniques contained in the dotted region are the main focus.
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Learning Techniques

Ensemble Learning

Stochastic
Techniques

Artificial Neural
Network

Linear Discriminate
Functions 

Template Matching

Boosting

Bagging

Stacking

Bayesian Networks

Multi-layered
Perceptrons

Radial Basis
Functions 

Support Vector
Machine

Bayesian
Convolutional Neural

Networks

Convolutional Neural
Network

Figure 2.2. Taxonomy of the numerous feature-based learning techniques. This paper focuses on the

learning techniques contained in the dotted rectangle.

A background of each of the main sub-categories is provided, with carefully selected published works

that use each method. Additional information is provided detailing the benchmark data to allow for a

better understanding of the performance of each implementation.
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2.2.1.1 Benchmark Dataset

For comparison purposes, the performance methods that use the MSTAR dataset were selected. The

MSTAR dataset is a common dataset used throughout the literature and is an appropriate benchmark

dataset from which the performance of each method can be evaluated.

The MSTAR dataset consists of two collections taken from the Sandia National Laboratory SAR sensor,

with both magnitude and phase information. The first collections of SAR images of the T-72 (T-72

tank), BMP2 (infantry fighting vehicle), and BTR-70 (armoured personnel carrier) were each collected

at 15◦ and 17 ◦ depression angles. The second collection contains SAR images of the 2S1, BDRM-2,

BTR-60, D7, T62, ZIL-131, and ZSU-23/4 taken at 15◦, 17◦, and 30◦ depression angles. Each sample

was 128x128 pixels in size and consisted of the magnitude data. Samples from the MSTAR dataset

are shown in Figure 2.3 where (a) and (b) are optical images of BMP2, BTR70, T72, BTR-60,2S1,

BRDM2, D7, T62, ZIL-131, and ZSU23/4, and (c) and (d) are the corresponding SAR images for each

target.

Figure 2.3. MSTAR training samples. The MSTAR dataset contains a total of ten targets of various

vehicle types.
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The examples below were evaluated using the target configurations, namely, Standard Operation

Conditions (SOC) and Extended Operation Conditions (EOC). SOC consists of ten classes with a

minimal variation in depression angle of 15◦ and 17◦. EOC includes the same ten classes, with the

addition of variation in depression angles (maximum variation of 45◦), noise variation (range from

-10 to 10 dB), occlusion variation (occlusion levels up to 50% of the target), and resolution variation

(resolution range from 0.3m to 0.7m). Given that SOC only has a slight variation in depression angle,

the performance metrics achieved were higher when compared to the EOC evaluations. Assume that

each example was evaluated using the MSTAR dataset unless stated otherwise.

2.2.1.2 Template-Matching

This is the simplest method that requires the lowest computational complexity. Recognition is achieved

through the matching of SAR data with stored templates of a range of variations of each target. The

appropriate target is selected using metrics of similarity between the offline templates and input data,

such as correlation and matching filters. An example of template-matching is presented in [6], where

the attributed scattering centres (ASC) are matched to binary target regions. Image segmentation is

performed using basic thresholding to obtain the binary target regions. Then, the binary region is

correlated to the stored template region. Lastly, weighted scores are combined from the correlations to

determine the appropriate class. Average classification accuracy of 98.34 % was achieved using the

MSTAR dataset under SOC. In addition, the system maintained state-of-the-art classification rates

under configurations with large depression angles until 30◦ and partial occlusion of 20 %.

2.2.1.3 Linear Discriminate Functions

Support vector machines (SVMs) are linear models that can be used for either classification or re-

gression. SVMs’ main objective is to determine the optimal hyper-plane that separates two classes.

Through the maximisation of the distance between the hyper-plane and the input data, the upper bound

of the expected error is reduced. The optimal hyper-plane divider is determined by the minimisation

of the squared norm function of the distance between the different classes [9]. For most datasets,

the input space is not separable, meaning there are no hyper-planes that separate the classes. Thus,

SVMs perform a higher dimensional mapping of the input such that there exists a hyper-plane that

separates the newly mapped data. This is implemented through the kernel function. The kernel function

describes an inner product in feature space which can be higher dimensional. The kernel function

represents the mapping of the input to an often higher dimensional feature space [25].

An example of an SVM implementation is presented in [16]. The training of the SVM used a Gaussian
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kernel, with the kernel size selected based on the mean Euclidean distance between the input data.

From the results obtained, the SVM achieved a best classification accuracy of 90.99 % while only

using three classes of the MSTAR dataset under SOC. Moreover, the variability of the aspect angle

had a large effect on the classification accuracy and a trade-off was made between the sector size and

the training accuracy.

2.2.1.4 Neural Networks

An artificial neural network consists of a large number of connected artificial neurons. The neurons

are separated into three categories - input layer, hidden layer, and output layer. A neural network

uses the linear combination of fixed non-linear basis functions [25]. The linear combination consists

of the summations of the contributions from each neuron as an input propagates through the model.

This is known as forward propagation. The contribution from one neuron is a multiplication of the

weight between the neuron to a particular neuron and its output. These weight values are initialised to

a set of normally distributed values. To train the neural network, forward propagation is performed to

determine the error at the output layer, and then an optimisation algorithm is applied to minimise a

specific error function. After each iteration, the weight values are adjusted such that the error function

is minimised. This is repeated until the model meets the required error threshold. Backpropagation is a

common training algorithm for training feedforward neural networks. In backpropagation, the error is

backpropagated through each layer of the model to minimise the error function. The most common

backpropagation technique is gradient descent, which makes incremental adjustments to the weight

values after every iteration. Gradient descent achieves high accuracy but can be slow when the input

data is large. In addition, non-convex weight spaces may struggle to find a global minimum. Current

neural networks use a combination of adaptive learning rate and momentum [8] to negate the pitfalls

of plateaus and saddle points in the weight space and allow for faster training times.

One of the most well-known neural networks is the convolutional neural network (CNN). The first

CNN was developed by Kunihiko Fukushima [26]. Through the implementation of the convolution

operation, CNNs are able to extract geometric features from a given input and are known for being self-

organised, since these networks are capable of performing feature extraction when given unprocessed

data. The development of the CNN was a massive advancement in the field of image classification

and led to the models achieving record-breaking image classification performance. This improvement

was a result of the structure of the network being able to accept a large high-dimensional input and

reduce the dimensionality through the implementation of multiple convolutional and pooling layers.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

This architecture leads to what is known as deep learning models. They are defined to have multiple

hidden layers whereas a standard neural network consists of a single hidden layer [27]. In addition,

improvements in Graphics Processing Unit (GPU) and Central Processing Unit (CPU) speeds allowed

for further advancements in deep learning models with increased efficiency and shorter training times

compared to standard deep neural networks.

A representative example of a CNN is given in [17]. The ATR system uses image segmentation

methods based on morphological operations in order to reduce the background recognition. The

CNN is implemented using a large-margin softmax batch normalisation structure which increases

separability in the SAR data after pre-processing. Owing to the structure of the network, an increase in

the convergence rate is recorded as well as less proneness to overfitting. The method was capable of

achieving a classification accuracy of 96.44 % on the MSTAR dataset under SOC while being robust

in EOC, such as large depression angles and configuration variants.

2.2.1.5 Stochastic Techniques

Statistical learning algorithms use probabilistic models that produce the probability that a given input

belongs to a class. The most common method is the Bayesian network (BN), a class of probabilistic

graphical models. Graphical models provide a natural way to represent and visualise the relationship

between variables. The main difficulty in statistical models is the large number of random variables

needed to model a problem. Often, it is not possible to capture every data sample, leading to insufficient

data needed to fully describe the conditional dependence between the random variables. Even with the

information given, it is not feasible to calculate the entire conditional probabilities for each occurrence.

Bayesian networks represent the relationship between a set of random variables and its conditional

probability distributions through a Directed Acylic Graph (DAG). An example of a DAG is shown in

Figure2.4. The random variables are represented by nodes denoted as A, B, C, and D. The directed

arrows represent the relationships between the nodes.
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A

C

B

D

Figure 2.4. Bayesian network structure example.

Nodes that have a one-to-one correspondence are conditionally dependent on each other and nodes

that have no connection are conditionally independent of each other.

Bayesian inference is used in order to learn the class probabilities when given data of the BN. The

conditional relationships are calculated for each node given its parent node. The joint distributions

are determined by the multiplication of the local conditional distributions. This is calculated as

follows:

P(X | θθθ) =
n

∏
i=1

P(xi | pai,θθθ i) , (2.1)

where X represents the different classes, xi denotes both the variable and corresponding node, pai

denotes the parent node of xi, and θθθ is the vector parameters. For the application of a classifier, θθθ

is the training dataset. Determining the structure of a BN often requires specialist knowledge of the

problem. An additional method of determining the structure of the BN is using statistical tests, such as

the Chi-squared test, by learning the conditional independence interaction of the nodes in the dataset

[10].

An example of a BN is given in [28] for ATR. The feature-based ATR system used Bayesian inference

to train the classifier. The BN makes use of a two-level probabilistic model. The two target states

used were the target class and azimuth angle, which were quantified from 0◦ to 360◦ at a step angle of

48◦. The target states were selected in order to obtain good features of the targets at as many angles

as possible. The probabilistic inference was used after the conditional probabilities were calculated.

Decision-making rules are used to classify each target using known information about the input’s
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azimuth angle. The BN achieved a best accuracy of 88% using five ground-based targets on a dataset

from the Massachusetts Institute of Technology (MIT). The ground targets were all vehicles ranging

from a van, truck, and bulldozer.

2.2.1.6 Ensemble Learning

Ensemble learning utilises a finite number of different learning methods. Ensembles use the combina-

tion of the outputs from multiple learning algorithms to improve the prediction capabilities. The main

ensemble methods are bagging, stacking, and boosting. Bagging methods construct numerous similar

models from different sub-samples of the same training dataset and average the predictions in order to

improve the classification performance. Stacking methods utilise numerous different models trained

on the same training dataset. A separate model is trained on the prediction of the different models

in order to better learn to aggregate the predictions. Boosting refers to methods that utilise weighted

averages to strengthen weak classifiers. An example of this is the AdaBoost algorithm discussed in

Figure 2.5.

An example of a method utilising ensemble methods is given in [15], where a novel pose rectification

and image normalisation process is introduced which reduces the variations of the input samples before

the feature extraction process. To extract highly discriminative features from ground targets, wavelet

decomposition techniques are used. This technique allows for a rich feature set to be extracted that

consists of horizontal and vertical edges. Dimensionality reduction is performed to retain the most

discriminative features. Decision tree classifiers are utilised to discriminate the features. A statistical

analysis of the input data is used to train each base discriminate tree classifier. Additionally, ensemble

learning techniques are employed. The ensemble method used is AdaBoost. The principle of boosting

is shown in Figure 2.5. In this instance, each model is represented by a decision tree. Fundamentally,

the AdaBoost algorithm aims to construct a strong classifier from the linear combination of weak

classifiers. Training starts with the strong learner initialising sample weights to an initial number of

models. The weights are optimised after each iteration and additional models are added until the stop

criteria are met.
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Model 1 Model 2 Model ... Model N
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1
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2
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...
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N

Figure 2.5. Illustration of AdaBoost algorithm.

The method in [15] achieved an average classification accuracy of 97.5% using a feature dimension of

75 on the MSTAR dataset under SOC.

An example of ensemble methods is given in [18]. The ensemble technique consists of a fusion of

a CNN and SVM for ATR using the MSTAR dataset. The structure of the CNN consists of three

convolution layers each followed by pooling layers and the output layer is fed into the SVM. The

SVMs implement the structural risk minimisation principle. For the classification of all ten classes,

ten separate SVMs were trained with each following the one-versus-all principle. The one versus all

principle divides a multi-class classification into a single binary classification task per class. The main

motivation for the combination of a CNN and SVM was to exploit the feature extraction properties

of the CNN and reduce the total number of inputs, thus, also improving the generalisation capability.

This reduces the total computation time when compared to deep learning models. A best classification

accuracy of 98.56% was achieved using the MSTAR dataset under SOC.

2.2.1.7 Comparison of State-of-the-Art ATR SAR Approaches

A comparison of feature-based techniques that have been directly applied to ATR using SAR images is

shown in Table 2.1 .
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Table 2.1. Comparison of Various Feature-Based ATR of SAR Techniques

Refs Classifier Method Dataset Features Classification

Accuracy

Te
m

pl
at

e-
M

at
ch

in
g

[6]
Template-Matching

using weighted

scores

MSTAR Binary target

regions
98.34 %

L
in

ea
rD

is
cr

im
in

at
e

Fu
nc

tio
ns

[15] SVM using

Gaussian Kernel

MSTAR while

only using

three targets

Image fed into

pose estimator

The pose of the

image is used

as the feature

vector

90.99 %

N
eu

ra
lN

et
w

or
k

[17] CNN MSTAR
Image segmentation

is performed using

morphological

operations

96.44%

[4] DCNN MSTAR

Image segmentation

is performed and

super resolution

image obtained

using Generative

Adverserial Network

99.31%
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Table 2.1. (Continued) Comparison of Various Feature-Based ATR of SAR Techniques

Refs Classifier Method Dataset Features Classification

Accuracy

St
at

is
tic

al
Te

ch
ni

qu
es

[28] BN

MIT Lincoln

Laboratory

Target

Total of twelve

features used,

such as standard

deviation, fractical

dimension, and

weighted-rank fill ratio

88 %

E
ns

em
bl

e
L

ea
rn

in
g

[18] Fusion of

CNN and SVM
MSTAR

Images are

converted in

dB and data

augmentation is

performed

98.56%

[15]
Ensemble of

decision trees

using AdaBoost

MSTAR Combination of

texture and edges
97.5 %

2.3 UNCERTAINTY ESTIMATIONS IN NEURAL NETWORKS

This section provides an overview of the various methods for quantifying uncertainty in neural networks

as well as the different ways in which uncertainty is introduced and propagated from the data acquisition

to the prediction stages. The recent advancements in DNNs have allowed for the application of these

models in numerous research domains. Earlier examples of this can be observed in several research

fields, in particular, speech recognition [29], natural language processing [30], and computer vision

[31]. Their state-of-the-art performance has led to applications in more challenging real-world tasks

such as medical image analysis [32], surveillance [33], and autonomous driving [34]. However, for

sensitive tasks where human lives are affected, their deployment is severely limited. This is owing to

the following key factors:
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• The “black box” nature of DNNs that are not interpretable and lack sufficient transparency when

making predictions [35].

• Lack of dependable confidence measures in the outputs of DNNs. A common challenge for ML

models is over-confident predictions [36].

• DNNs are unable to differentiate between samples that are in and out of the training dataset [37].

The commonality between all three factors is that they are linked through the uncertainty either in

the training data or uncertainty in the model itself. Therefore, to address each of these limitations,

it is crucial that the uncertainty be estimated and interpreted in a meaningful way to benefit users of

these models. The advantage of having the uncertainty estimates is that high uncertainty samples can

be validated by human specialists to ensure that the model is behaving as expected or that the high

uncertainty samples are completely ignored to avoid incorrect predictions. This is essential for high-risk

applications such as ATR using SAR data where a high degree of confidence is required.

2.3.1 Sources of Uncertainty

The pipeline from the data acquisition to the uncertainty estimation stage can be described in three steps

- data collection, model building, and prediction uncertainty model. Each of these steps introduces

uncertainty that affects the output of the model. The following section provides a brief description of

each step as well as how it impacts the final uncertainty estimate.

2.3.1.1 Data Collection

Data collection is the operation of gathering and measuring samples and their corresponding target

class that is a representation of a specific task or domain. The first key factor responsible for the

uncertainty measurement from the data collection process is the inconsistency in environments. The

majority of data captured from environments are subjected to constant change, whether it is the new

objects, temperature, or clutter. Thus, when testing on measured data, there are changes from the

original training dataset which can affect the model’s classification performance. The next factor of

uncertainty is the data itself which causes uncertainty in the model’s predictions. Most common is the

noise introduced by the data capturing sensor, image resolution, and an insufficient number of samples

to capture an accurate approximation of the distribution of the dataset.

2.3.1.2 Model Building

The development of the DNN entails the design of the network and the training method. The designer

has numerous free variables when designing the network architecture including the number of layers,
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the type of layers, activation functions, and filter sizes. The training process also contains a wide

range of parameters to choose from, such as the regularisation, optimisation method, learning rate

adjustment, and data augmentation. The uncertainty estimations and performance are influenced by

the architecture of the network. This is demonstrated in [38], where the confidence and accuracy of

a five-layer network are directly compared to a deeper 110-layer network. It was determined that

the average confidence for the five-layer network corresponded to the accuracy, although the average

confidence for the deeper network was significantly larger than its accuracy. The higher number of

parameters in the 110-layer network leads to overfitting, which is the cause of overconfidence.

The second source of uncertainty occurs during the training procedure. The selection of the training

parameters such as learning rate, regularisation, and batch size all affect the optimisation of the

network. Owing to the learning method, it seldom occurs that two different networks achieve the

same model parameters after training and often find different local minimums. In addition, a lack of

variety in the training data can result in the model failing to learn the specific task which leads to poor

performance.

2.3.1.3 Prediction Uncertainty Model

The predictive uncertainty is the uncertainty propagated through the model for a given input on

the output. The prediction uncertainty is the combination of both the data uncertainty and model

uncertainty [39]. The epistemic uncertainty is defined as the uncertainty generated from the model

and the aleatoric uncertainty is defined as the uncertainty generated from the data. From the previous

sources of uncertainty, the aleatoric uncertainty stems from the data collection step with the introduction

of noise, lack of image resolution, and insufficient training samples. The epistemic uncertainty is the

combination of uncertainty generated from data collection to the final prediction.

2.3.2 Uncertainty Estimation Methods

This section provides a brief overview of the different uncertainty estimation methods from recent

publications [40, 41]. A summary of the different methods is shown in Figure 2.6 with additional

information provided on Bayesian techniques.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

Uncertainty
Estimation
Techniques

Frequentist
techniques

Bayesian techniques 

Ensemble methods

Variational
inference Sampling

techniques

Laplace
Approximation

Figure 2.6. Overview of the three various uncertainty estimation techniques, with Bayesian techniques

further expanded. Adapted from [40], ©IEEE 2021.

2.3.2.1 Frequentist models

The key attribute that makes a model frequentist is that during each forward pass for any given input,

the output is the same for each repetition. This is due to the fixed discrete parameters of the network,

whereas for Bayesian models the parameters are sampled during each forward pass. From the literature,

the frequentist techniques can be divided into models that are specifically trained to be able to estimate

the model’s uncertainty [42] and techniques that use supplementary elements to estimate the uncertainty

in the model’s predictions [43].

The most common method of training the network to estimate uncertainty follows a similar approach

to Bayesian techniques. These methods approximate the distribution of the network parameters in

contrast to discrete network parameters. Training is performed using loss functions that minimise the

difference between the true distribution and the predictive distribution. A popular training method

utilises Dirichlet prior networks and can be viewed in [44]. The classification parameters of these

networks are generated using the Dirichlet distribution. The classification probabilities are then

determined from the classification parameters. The Dirichlet prior network uses a multi-task form

that minimises the Kullback-Leibler (KL) divergence between the network and a sharp Dirichlet
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distribution with in-distribution data as well as between the network and a flat Dirichlet distribution

with out-of-distribution data. An example of this approach is shown in [44]. The proposed method

showed an improved separation between the uncertainty for in- and out-of-distribution data. In addition,

the method also showed improved performance for detecting miss-classifications.

Supplementary uncertainty estimation methods are external to the predictive model and, therefore,

have no effect on the model’s predictions. Various approaches [43] train a secondary network that

estimates the uncertainty of the first network. Similar to the methods that train the network to

estimate the uncertainty, these external approaches have shown the ability to detect out-of-distribution

samples.

2.3.2.2 Bayesian Techniques

Bayesian techniques differ from traditional neural network models in the training methods. Frequentist

models are trained using the principle of maximum likelihood, while Bayesian methods infer the

posterior distribution over the model’s parameters. In the case for neural networks, the parameters

are given by the weights θθθ = (w1, ...,wk), the training samples xxx, and class labels yyy. The posterior

distribution of the weights, given the data, is provided by using the Bayes theorem:

p(θθθ | xxx,yyy) = p(yyy | xxx,θθθ)p(θθθ)
p(yyy | xxx)

. (2.2)

The predictive model for a full Bayesian approach is described in [25] for a given input x∗ to predict

output y∗, and is given by:

p(y∗ | x∗,xxx,yyy) =
∫

p(y∗ | x∗,θθθ) p(θθθ | xxx,yyy)dθθθ . (2.3)

Unfortunately, owing to a large number of parameters, no closed-form exists for the integral in (2.3),

since there is a lack of conjugate priors for such complex neural networks. Consequently, this has led

to increased research into approximate Bayesian inference techniques. A brief overview of the three

distinct methods for approximate Bayesian inference is discussed below.

2.3.2.3 Variational Inference

Variational inference approximates the posterior probability distribution on the weights of the network.

Variational learning determines the parameters θ of a distribution on the weights. The configuration of

the parameters are found such that q(θ) is close to the true posterior p(θ |x,y). More recent methods

use stochastic variational inference [36, 45] where the optimisation uses mini-batches of samples

during the training, similar to more modern training methods.
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CHAPTER 2 LITERATURE STUDY

2.3.2.4 Sampling Methods

Sampling methods are a non-parametric technique for Bayesian inference. Sampling methods sample

from a probability distribution, with the advantage of being able to identify unknown distributions

using its samples, [46]. Thus, sampling methods are not restricted to a single distribution type, and, as

a result, are popular in fields such as importance sampling, particle filtering, and Markov Chain Monte

Carlo (MCMC) sampling.

2.3.2.5 Laplace Approximation

The Laplace approximation produces a multivariate Gaussian approximation of the posterior distribu-

tion over the network’s parameters centred on the Maximum Likelihood Estimator (MLE) [47]. The

posterior distribution is determined from the second-order Taylor series expansion from the log of

the posterior over the weights. An application of Laplace approximation for deep neural networks is

presented in [48].

2.3.2.6 Ensemble Methods

Ensemble methods use multiple models to make a prediction and are based on the principle of

group decision-making [49]. Ensemble methods have shown state-of-the-art accuracy and offer a

straightforward method for estimating the uncertainty in the prediction by determining the variance in

the aggregated prediction.

An important factor to consider when using ensemble methods is that each model should behave

differently for a sample with high uncertainty. This allows the ensemble to be able to detect miss-

classifications as the average uncertainty of the models will be high, even when one or two models

have relatively low uncertainty. The convergence of each model to different local optima is known

as multi-mode evaluation [50]. Ultimately, multi-mode evaluation aims to develop models that have

a diverse range of strengths and weaknesses such that the combination of each model leads to an

improvement in the classification performance and uncertainty estimation.

2.4 EXPLAINABLE ARTIFICIAL INTELLIGENCE

As more ML models are being deployed each day, with increasing levels of complexity, it is apparent

that future technological developments can greatly benefit from its use. The human race has come

to a pivotal point where the decisions of these models directly affect the lives of humans. Therefore,

the demand has increased for the explanation of the decisions made by these ML algorithms [51].

With the increase in AI systems, the introduction of non-transparent models such as DNNs occurred.
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These models have been shown to produce impressive results by using efficient training methods

and contain a vast number of parameters [52]. With the increase in deployment of these "black-box"

models making important decisions in various fields, end-users’ need for improved transparency also

increased. The decisions by these models are often made without reason and do not come with any

logical explanations. This can be dangerous in situations where human lives may be affected. XAI

aims to address the problem of the "black-box" model in the following ways: producing models that

are explainable while maintaining learning performance, facilitating trust between the user and the

algorithms, allowing humans to understand the decision-making process, and interpreting the model’s

output [35].

There is a distinct difference between the phrases interpretability and explainability [53]. From the

literature, there are numerous definitions for both interpretability and explainability [54, 55], however,

the definition used in this study is from [56]. Here, interpretability is defined as the extent to which a

human can understand the reason for the output. By this definition, a model that is more interpretable

allows for the casual relationship between the input and output to be easily identified. An example of

this would be an image classification task where certain distinct characteristics in the input have been

identified that result in a specific output prediction. Explainability differs from interpretability since it

is related to the inner working of the ML model and not the relationship between the input and output

of the model. A model that is more explainable provides the user with an enhanced understanding of

the inner processes performed for both training and decision-making.

The XAI framework contains methods to increase the interpretability of DNNs. Such methods can be

applied to previously trained networks and are often referred to as post-hoc methods [35]. A method for

visual explanations from deep networks is presented in [57]. This technique is called Gradient-weighted

Class Activation Mapping (Grad-CAM), and it utilises the class-specific gradient data entering into the

last convolutional layer of a CNN to construct a rough map of the critical information in the image.

Grad-CAM computes the gradient with respect to the feature maps of the last convolutional layer.

Once computed, they are fed back after a global average pool operation is performed to obtain the

weights. These weight values extract the critical information of the feature maps for each class. To

generate the heat maps, the weights of the features are combined and followed by a ReLu activation

since only features with a positive influence on the class interest are desired. This is an important

XAI tool since it allows for understanding in situations where unexpected predictions are made, thus,

ensuring that the classifier is operating as expected and derives its predictions on information from the
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desired target. In recent years, the challenge of explainability in ATR has gained much attention with a

significant increase in research addressing this challenge. In [58], an example of the application of

an XAI method is presented for the task of image classification using the MSTAR dataset. The CNN

model consists of three convolutional layers, two max-pooling layers, and one dense layer followed by

a softmax layer. Data augmentation is performed by performing various rotations and transitions. The

CNN achieved a classification accuracy of 98.78% under SOC. Local Interpretable Model-Agnostic

Explanations (LIME) are used to provide model explanations through the visualisation of predictions.

LIME allows for the visualisation of the boundary of key characteristics of the target that contributed

to the prediction of the CNN.

The quantification of uncertainty in BCNNs provides additional trust to the user through the estimation

and visualisation of uncertainty in a model’s prediction. The BCNN has been applied in numerous

fields such as medicine, finance, and surveillance [59, 60, 61]. In [61], a novel model called the

Bayes-SAR Net is proposed. The BCNN achieved comparable classification accuracy when compared

to a CNN. Uncertainty estimates were formed from the mean and covariance of the estimated posterior

distribution. The model was trained on polarimetric SAR data and it was concluded that the BCNN

was more robust to adversarial noise. In [62], a taxonomy for uncertainty representation and evaluation

for modelling and decision-making in information fusion is presented. It is further extended in [63]. It

contains a discussion on the different types of epistemic and aleatoric uncertainties and where they

enter a sensing or fusion system. This taxonomy is applied to investigate the effects of aleatoric and

epistemic uncertainties of the BCNN.

2.5 CHAPTER SUMMARY

A comprehensive overview of the literature pertaining to ATR methods for SAR images was presented

in Section 2.2. In Section 3.3, a brief taxonomy of the various uncertainty estimation methods was

discussed with a focus on Bayesian techniques. Lastly, the emerging field of XAI was detailed with

examples of methods to increase interpretability in DNNs.

A comparison of the different ATR methods using SAR images was summarised in Table 2.1. It

was found that the methods that used CNNs, on average, achieved the highest classification accuracy.

The top performing CNN implementation [4] slightly outperformed the top performing ensemble

implementation [18] using both SOC and EOC on the MSTAR dataset. Both implementations contained

a CNN and, from the literature, it is apparent that CNNs achieved the best classification performance.
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Despite being the best performing ATR method in terms of classification accuracy, CNNs are considered

to be "black-box" models and are less explainable than BNs and SVMs. Furthermore, the problem of

over-confident predictions is still prevalent in CNNs and needs to be considered for ATR systems. To

address the over-confident predictions and attempt to improve interpretability, different uncertainty

estimations were investigated in neural networks.

From the literature, it is clear that the number of research pertaining to Bayesian techniques has surged.

This is a result of breakthroughs with the use of mini-batch optimisation techniques in Bayesian

inference. Numerous works have shown that Bayesian inference is now obtainable with large datasets.

These advancements have now been applied to Bayesian Neural Networks (BNNs) and have resulted

in models that perform similar to standard neural networks but are better a quantifying uncertainty to

prevent over-confident predictions.

Post-hoc methods were identified that improved the interpretability of DNNs. The Grad-CAM tech-

nique provided visual explanations of the regions in the input image that contributed the most to the

output prediction. This XAI tool provided insight into the causal relationship between the input image

and the output of the model. The same concept was used for this study but with the utilisation of

uncertainty estimations.
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CHAPTER 3 BACKGROUND THEORY

3.1 CHAPTER OVERVIEW

This chapter provides the theoretical background required for the BNN and the method to estimate the

uncertainty of the model. Firstly, the fundamental concept of the BNN is presented with the theoretical

foundation of the technique of variational inference. The Bayes by backpropagation training method

[36] is described in more detail. Lastly, the theory for uncertainty estimation is presented for both the

model and data uncertainty.

3.2 BAYESIAN NEURAL NETWORK

A BNN is the combination of probabilistic modelling and Artificial Neural Networks (ANNs). BNNs

are created to assess the uncertainty in the training and the problem of over-confident predictions made

by NNs. Fundamentally, a BNN is a probabilistic model supplemented by an ANN for its universal

function approximation attributes [64].

Blundell et al. proposed a method for variational Bayesian learning by introducing uncertainty in the

weights of an ANN [36]. An efficient novel algorithm is introduced for regularisation augmented

by Bayesian inference on the weights, allowing for a straightforward learning algorithm like back-

propagation. It is shown that by introducing uncertainty in the weights, the model gains improved

capability by expressing increased uncertainty in areas with little to no data. This results in a model

that is more robust to over-fitting while offering uncertainty estimates through its parameters in the

form of probability distributions. In this network, all of the weights are expressed by probability

distributions, in contrast to regular ANN that uses single-valued weights. A graphical comparison of

the two networks is shown in Figure 3.1.
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Figure 3.1. Side by side comparison of normal ANN and BNN. The weights of the BNN are repres-

ented by probability distributions, while the ANN uses discrete-single values. Adapted from [36],

©IEEE 2015.

The authors introduced the Bayes by backpropagation training algorithm and it is discussed in detail

in the following sub-sections. First, the theoretical foundation of the variational inference method is

described.

3.2.1 Variational Inference

Variational inference approximates a posterior distribution of latent variables z given observed variables.

A family of distributions over latent variables is selected with its own set of variational parameters

v [65]. This amounts to an optimisation problem where the objective is to learn the settings of the

parameters that closely approximate q(z) to the desired posterior distribution p(z|x). After training,

the fitted q can be used instead of the posterior to make predictions [66].

3.2.1.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a good indicator of the similarity between two distributions.

Let an undetermined probability distribution be denoted as q(z) and assume that its approximate

distribution is p(z). Thus, the KL divergence is used to quantify the closeness of two distributions

which is used to determine the free parameter settings that approximate q to the desired posterior. The
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KL divergence is defined in [25] as:

KL(q||p) =
∫

z
q(z) log

q(z)
p(z|x)

, (3.1)

= E
[

log
q(z)

p(z|x)

]
. (3.2)

At first glance, it is desirable to want to minimise the KL divergence of q and the posterior. Unfortu-

nately, the KL divergence cannot be minimised exactly, but a function that is proportional to it up to a

constant can be minimised.

3.2.1.2 Evidence Lower Bound

The Evidence Lower Bound (ELBO) is derived by first applying Jensen’s inequality [67] to the log

marginal probability of the observations. The ELBO is described in [68] as:

L(q) = Eq[log p(x,z)]−Eq[log p(z)], (3.3)

where L is the ELBO and the second term is the entropy of z. It is apparent that L is the lower bound

for the log probability of the observations.

An expression of the ELBO in terms of the KL divergence for variational inference is given by:

L(q) = log p(x)−KL[q||p], (3.4)

where the ELBO is independent of q. Notice that maximising the ELBO is equivalent to determining

the q that minimises the KL divergence to the posterior distribution. Since the KL divergence is

always greater or equal to zero, the ELBO reduces to L≤ log p(x) which is a lower bound of evidence

[65]. The evidence is log p(x). The difference between the ELBO and the log probability is the KL

divergence. The lower bound is equal to the log probability if the approximated q is exactly equivalent

to the true posterior p.

3.2.2 Bayesian by Backpropagation

Bayes by backpropagation determines the posterior distribution of the weights given the training

data P(w|D). Bayesian inference on the weights of an ANN is intractable due to the vast number of

parameters. Variational inference is applied to learn parameters θ of a distribution on the weights

q(w|θ). The optimal parameters θ ∗ is described in [36], the expression is in terms of the Kullback-

Leibler divergence as:

θ
∗ = argmin

θ
KL[qθ (w|D)||p(w|D)]. (3.5)
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As shown previously, the KL divergence is intractable and the negative ELBO is used instead. This

optimisation problem is known as variational free energy [69], and the cost function is given by:

F(D,θ) = KL[qθ (w|D)||p(w)]− log P(D|w). (3.6)

The cost function is minimised using gradient descent and variational inference searching for qθ that is

closest to the true posterior. The exact cost is shown in [36] and can be represented as:

F(D,θ) =
n

∑
i=1

log q−θ(w(i)|D)− log p(w(i))− log p(D|w(i)), (3.7)

where w(i) represents the ith Monte Carlo sample sampled from the variational posterior

q(w(i)|θ).

3.3 UNCERTAINTY ESTIMATION

In order to determine the predicted class, the predictive distribution for the output y∗ and the test input

x∗ are used. The optimised variational parameter is denoted by θ̂ which is determined by minimising

the cost function in (3.7). The optimised variational predictive distribution is described in [70], and is

given by:

q
θ̂
(y∗ | x∗) =

∫
w

p(y∗ | x∗,w)q
θ̂
(w)dw. (3.8)

However, the integral is intractable, as discussed in 2.3.2.2, the estimator of the predictive distribution

is used:

q̂
θ̂
(y∗ | x∗) = 1

T

T

∑
t=1

p(y∗ | x∗, ŵt) , (3.9)

where wt is drawn from the variational distribution q
θ̂

, and T is the number of samples. The variance

of the variational predictive distribution is also known as the predictive variance. The variance is also

referred to as uncertainty. The uncertainty is separated into aleatoric and epistemic uncertainty with

the aleatoric representing the randomness in the data while the epistemic uncertainty is generated from

the variability in the weights. The combined uncertainty is given by:

Varq
θ̂
(y∗|x∗) (y

∗) = Eq
θ̂
(y∗|x∗)

{
y∗⊗2}−Eq

θ̂
(y∗|x∗) (y

∗)⊗2 ,

=
∫

w

[
diag

{
Ep(y∗|x∗,w) (y

∗)
}
−Ep(y∗|x∗,w) (y

∗)⊗2
]

q
θ̂
(w)dw︸ ︷︷ ︸

aleatoric

,

+
∫

w

{
Ep(y∗|x∗,w) (y

∗)−Eq
θ̂
(y∗|x∗) (y

∗)
}⊗2

q
θ̂
(w)dw︸ ︷︷ ︸

epistemic

,

(3.10)
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where ⊗ denotes the outer product, and where

v⊗2 = vvT ,

Eq
θ̂
(y∗|x∗) {g(y∗)}=

∫
g(y∗)q

θ̂
(y∗ | x∗)dy∗,

Ep(y∗|x∗,w) {g(y∗)}=
∫

g(y∗) p(y∗ | x∗,w)dy∗.

(3.11)

The aleatoric uncertainty represents the intrinsic variance in the data, while the epistemic uncertainty

is a result of the variance of the weights w, given the data [70].

The method to explicitly compute the uncertainty as two separate types were developed in [39]. How-

ever, this method has two key constraints. Firstly, this method estimates the variance of linear predictors,

which is not the case for classifiers, instead, it should model the predictive probabilities. Secondly,

the aleatoric uncertainty does not factor in the correlations from the diagonal matrix modelling. The

challenges are addressed in [70] and the predictive variance is reduced to

Varq
θ̂
(y∗|x∗) (y

∗) =
1
T

T

∑
t=1

diag(p̂t)− p̂⊗2
t︸ ︷︷ ︸

aleatoric

+
1
T

T

∑
t=1

(p̂t − p̄)⊗2

︸ ︷︷ ︸
epistemic

, (3.12)

where p̄ = 1
T ∑

T
t=1 p̂t and p̂t = Softmax( fwt (x

∗)), where the softmax is described in [71], and is applied

to the output of the model.

3.4 CHAPTER SUMMARY

The theoretical foundation for the BNN as well as the method to estimate uncertainty is established

in this chapter. The method of Bayes by backpropagation is used in order to perform the Bayesian

inference. From the uncertainty in the weights, the BNN is capable of estimating the uncertainty

in its output. This provides a measure of the network’s confidence which can be used to determine

low-confidence predictions.
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4.1 CHAPTER OVERVIEW

This chapter provides an in-depth description of the implementation of the BCNN. The BCNN is

used since it incorporates the uncertainty estimations of the BNN while retaining the improvement

in image classification performance from the CNN. In addition, this chapter includes details of the

activation function, network architecture, selection of the optimiser, the dataset for classification, and

the algorithm for training the network. The method to determine the uncertainty in the model and data

is the same as the background theory in Section 3.3.

Section 4.3 describes the method to perform target detection and generate samples. For this study,

target detection refers to the ability of the network to locate targets and not target recognition or

classification. Using the ground-truth samples, the chapter describes a method to feed back high

confidence incorrect detection by using the BCNN.

4.2 BCNN IMPLEMENTATION

This section looks at the implementation of the BCNN, whereas Section 3.2 detailed the theoretical

foundation for the BNN. The implementation for the BCNN is based on the same method of variational

inference, namely, Bayes by backpropagation. The BCNN implementation used in this study is from

[14] as it provides an efficient method to perform variational inference using a CNN. This is achieved

through the use of two convolution operations to determine the mean and variance of the weights.

This implementation introduces a probability distribution over the weights in the convolutional layers,

similar to the weights in the fully-connected layers. Figure 4.1 illustrates the difference in traditional

CNNs and BCNNs. In (a), the kernel and the output are represented by single-values, while in (b), the

kernels and outputs are represented by probability distributions.
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(a)

(b)

Figure 4.1. Side by side comparison of CNN and BCNN, each with input values, kernels, and output.

In the BCNN, the output of each convolutional filter is a probability distribution whereas the output

from a CNN is a discrete-single value. Taken from [72], ©IEEE 2021.

4.2.1 Local Reparameterisation Trick

Stochastic gradient variational Bayes is a popular mini-batch optimisation technique that uses a

reparameterisation technique in order to generate samples from conditional probability distributions.

This technique provides an alternative approach to generate samples from the posterior distribution

qθ (w|D) from (3.5). The principle is based on the parameterisation of random parameters such as

the weights of a neural network. First, the weight is expressed in a discrete form as w = fθ (ε,D)
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where f (.) is a differentiable function and ε ∼ p(ε) is a random variable [68]. This parameterisation

results in an unbiased differentiable estimator from which the expected log-likelihood can be derived.

An improved parameterisation which is more computationally efficient is proposed in [73]. This is

achieved by not sampling ε straightaway, but, instead, only the intermediate variable f (ε) that affects

the log-likelihood. This transforms the global uncertainty in the weight into the local uncertainty which

is independent throughout the data and more convenient to sample. As a result, the reparameterisation

is known as the local reparameterisation trick. For the case of the weight following a Gaussian

distribution w =N(µ,σ2), the reparameterisation is given by:

w = µ +σε, (4.1)

where ε =N(0,1) is the auxiliary noise. Since the variance cannot be negative, a softplus transform

that is similar to the implementation is often used [36]. The softplus function is discussed in further

detail in Subsection 4.2.2.

The reparameterisation for BCNNs is defined in [14]. The local reparameterisation trick for the

convolutional layers is given by the output of convolutional layer b as:

b j = Ai ∗µi + ε j�
√

A2
i ∗
(
αi�µ2

i

)
, (4.2)

where i and j are subscripts for the input of the 2D image, ε j ∼N(0,1), Ai is the receptive field also

referred to as the filter size of a layer, * represents the convolutional operation, and � the component-

wise multiplication. It is important to note that the local reparameterisation b is a function of both the

mean µi and variance αiµ
2
i . This determines the parameters that should be updated for the variational

posterior distribution qθ (w |D). The process to update qθ (w |D) requires two convolutional operations

[14]. First, the output b is used in a similar fashion to the deterministic neural network to perform the

Maximum A Posterior (MAP) of the variational posterior and increase accuracy. This point-estimate is

treated at the mean of the qθ (w |D) distribution. The second convolutional operation is performed

to learn the variance. During each convolutional operation, only a single parameter is updated. This

process can be interpreted as the first convolutional operation performing a MAP of the qθ (w |D),

while the second determines the variance of the w from the MAP.

4.2.2 Activation Function

As previously described in Subsection 4.2.1, two convolution operations are performed to determine

the mean and variance. In order to ensure that the variance is non-negative, the activation function

for the convolutional layers is selected to never output a value equal to or less than zero. The softplus

activation function is used as it never equals zero for x→−∞. The equation for the softplus is given
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by:

Softplus(x) =
1
β
· log(1+ exp(β · x)), (4.3)

where β is set to 1 for all BCNN models trained. The softplus activation function and ReLu activation

are visualised in Figure 4.2. The softplus activation is different to the ReLu near zero, where the

softplus is smooth.

6 4 2 0 2 4 6
0

1

2

3

4

5

6 Softplus
ReLu

Figure 4.2. Visualisation of activation functions. Their softplus function has a distinct curve at zero.

Allowing the functions to always be greater or less than zero.

4.2.3 Architecture

Both the CNN and BCNN trained in this study used the same six-layer architecture. This architecture

contains three convolutional layers with three fully-connected layers. A key attribute of the structure

is the max pooling layers which were introduced to reduce the overall size of the model [74]. This

structure was selected owing to high classification performance and a relatively low number of layers

compared to more modern architectures such as VGG16 [31]. Figure 4.3 illustrates the dimensions at

each layer of the network. A brief description of the properties of the architecture follows.
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Figure 4.3. Illustration of input and output dimensions for three convolutional and three fully-connected

architecture.

4.2.3.1 Layer Type

In this study, only three types of layers are used - convolutional, max-pooling, and fully connected.

The convolutional layers are responsible for the feature extraction of the data. The max-pooling layer

is used to reduce the dimensions of the feature maps and thereby reduce the total number of weight

parameters that need to be trained. The fully-connected layers contain the traditional weights and

biases that are connected and used to perform the classification.

4.2.4 Receptive Field

The receptive field is the size of the area in that input image that generates the feature maps in that

convolutional layer [75]. From Figure 4.3, the receptive field is denoted by A or the kernel size.

4.2.4.1 Width

The width is the number of filters in the convolutional layer. In Figure 4.3, the width of the network

increases after each convolutional layer.

4.2.4.2 Stride

The stride is the number of pixel shifts between the filter operations on the input image. An example of

this is when the stride is set to one. This corresponds to the filter moving one pixel between convolution

operations.
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4.2.4.3 Padding

The purpose of padding is to ensure the feature maps produced by the filters have the same size as

the input. This is important since the output shape is reduced after each convolutional layer. For the

network to properly learn the features of the dataset, each filter must interact with as many pixels from

each input as possible. This ensures that each convolutional layer can extract sufficient features from

the data.

4.2.4.4 Architecture Parameters

Table 4.1 shows the architecture used for both the CNN and BCNN with the various network parameters.

The value next to the layer type is the kernel size for each layer.

Table 4.1. Six-Layer BCNN Architecture.

Layer Type Width Stride Padding Input Shape Activation Function

Convolution (5×5) 32 1 2 1×1×60×60 Softplus

Max-pooling (2×2) 2 0 1×32×60×60

Convolution (5×5) 64 1 2 1×32×29×29 Softplus

Max-pooling (2×2) 2 0 1×64×29×29

Convolution (5×5) 128 1 1 1×64×14×14 Softplus

Max-pooling (2×2) 2 0 1×128×12×12

Fully-connected 1000 3200 Softplus

Fully-connected 1000 1000 Softplus

Fully-connected 10 1000 Softplus or Softmax

4.2.5 Model Initialisation

The BCNN network has two Gaussian distributions that require initialisation. As mentioned in 4.2.1,

the variance can never be zero, therefore, the variance is represented as σ = softplus(ε) where ε is

randomly selected.

The prior distribution is initialised with a zero mean and variance of 0.1, while the posterior distribution

is initialised with a mean of zero and a ε randomly sampled from -5 to 0.1, similar to [36]. From [36],

the parameters were found experimentally by using the validation error to find the parameters that

resulted in the lowest validation error.
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4.2.6 Optimiser

The Adam optimiser is used to perform the updated steps of the variational parameters. Adam is a

combination of Root Mean Squared Propagation (RMSprop) and stochastic gradient descent with

momentum. Adam benefits from the advantages of adaptive gradient algorithms and RMSprop. It

stores the learning rate which improves performance with sparse gradients and the learning rates are

adjusted using the mean of the magnitudes of the gradient of weights, making it more resilient to

saddle points. This optimiser has proven to converge faster than both RMSprop and stochastic methods

[76].

4.2.7 Bayesian Deep Learning

The training method is described in Algorithm 1. During each forward pass, the activation b is sampled

to calculate the KL divergence. The reparameterisation trick is used to sample from each convolutional

layer. Training ends after a fixed number of epochs, and the number of epochs is determined during the

hyper-parameter optimisation process along with over hyper-parameters. T is the number of times the

activation b is sampled per iteration - the number is fixed to twenty in order to reduce the total training

time.

Algorithm 1 Bayes by Backpropogation Learning

Input: Dataset D= (xi,yi), learning rate, batch size

Initialisation : Priors and posteriors of weights

for epoch = 0 to numE pochs do

for batch in numBatches do

for i = 0 to T do

Sample weights

Calculate KL divergence

end for

Calculate ELBO using (3.7)

Determine gradient of the variational parameters θ

Update the mean µ and variance ρ of the weights

Calculate the training and validation accuracy

Calculate the training and validation loss

end for

end for
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4.2.8 Hyper-Parameter Optimisation

Hyper-parameters are the parameters that control the training of the network and include the learning

rate, number of epochs, batch size, and momentum. Hyper-parameter optimisation can be a time-

consuming task if performed manually or when using a grid-search method. To improve the efficiency

of optimising the networks, a Bayesian model-based optimisation method is employed. Bayesian

methods of optimisation record previous test results that are used to create a statistical model of the

hyper-parameter mappings. This maps the probability of an evaluation for a specific cost function. The

hyper-parameter optimisation method used is from [77]. The optimisation is performed for both the

traditional CNN and BCNN.

4.3 DETECTION OF TARGETS AND CLUTTER

In traditional ATR systems, a key stage is the Focus-of-Attention, since it is responsible for evaluating

the entire scene for Regions of Interest (ROIs). This stage can significantly reduce the computation

time required to identify every target in a scene by only passing ROIs to the classification algorithms

[78] and, thus, minimising the computationally taxing process of passing each sample through the

classification algorithm which may consist of a DNN. However, for this research, there was no

limitation on the computational time and the main focus was on improving the explainability of ATR

systems. As a result, the entire scene was used in order for the uncertainty in the detections to be

evaluated. By leveraging the uncertainty estimates over the entire scene, a 2D representation of the

uncertainty in the detections was constructed. This 2D image was then investigated to determine if

the visualisation of the network’s confidence over the scene improved the interpretability for the user.

Lastly, an investigation was conducted by feeding back high-confidence incorrect detections in order

to improve detection performance.

The following sections describe the methods for ground-truth data generation, target detection, uncer-

tainty heat map generation, and the feed back of high-confident incorrect samples.

4.3.1 Ground-Truth Generation

The method used to generate ground-truth samples is shown in Figure 4.6. Firstly, the known targets

are identified and bounding boxes are placed around them. A rudimentary sliding window is used to

isolate individual regions in the scene. The sliding-window method has two parameters - the crop size

and step size. The crop size is the fixed window size and the step size is the distance the window travels

after each iteration. To determine if a sample is a target or clutter, the Intersection over Union (IoU) is

used. IoU is a metric that measures the overlap between bounding boxes [79]. A set of examples are
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shown in Figure 4.4. An IoU of 0 corresponds to no overlap, while an IoU of 1 corresponds to two

bounding boxes overlapping exactly with each other.

Figure 4.4. Example of IoU. This shows the direct correlation between the amount of overlap and the

IoU value.

The expression for the IoU is given by:

IoU =
Area o f Overlap
Area o f Union

, (4.4)

where the Area o f overlap is the area of overlap between the ground-truth bounding box and sliding-

window bounding box, and the Area o f Union is the combined area that both the ground-truth and

sliding-window bounding boxes share. An illustration is shown in Figure 4.5.

(a) (b)

Ground truth

Sliding window

Area of overlap Area of union

Figure 4.5. Illustration of the area of overlap (a) and area of union between two bounding boxes (b).

After each iteration, the IoU is calculated for the sliding window and each bounding box in the scene.

If the IoU is greater than 0.85, then that sample is labelled as a target, since there is a high likelihood

that the majority of the target is contained within that window. Samples with an IoU of less than 0.85

are labelled as clutter samples. These samples make up the data for the target and clutter classes to

train the BCNN detector.
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Area of
intersection

(a) (b)

(c) (d)

Figure 4.6. Illustration of the method to generate ground-truth data samples. (a) Ground-truth samples

with bounding boxes drawn around them. (b) Sliding window, illustrating the crop size parameter. (c)

Sliding moving over the SAR scene. (d) Sliding window with the area of intersection used to calculate

IoU between ground-truth bounding box.

As seen in Figure 4.6, first, the bounding boxes are drawn around the target (a). Then, the sliding

window is started (b) and moved after each iteration by the step size (c). The IoU is calculated at each

iteration using the area of intersection (d).

4.3.2 Target Detection Implementation

The dataset used to generate samples for the BCNN detector was supplied by the CSIR. It is similar to

the MSTAR dataset since it contains two scenes captured at various elevations and different orientations.

To train the detector, the data from the MSTAR was used as the targets, and samples were manually

selected from regions known not to contain targets in the CSIR dataset. The BCNN was trained to

detect two classes - targets and clutter. Detection is performed using a similar sliding window as
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in Subsection 4.3.1 to distinguish between targets and clutter. An overview of the target detection

method is shown in Figure 4.7. At each iteration, the window was passed through the network and a

prediction was made. The ground-truth data in Subsection 4.3.1 was used to determine the correct

and incorrect detections. Once a window was classified as a correct target, a green box was drawn

around that sample to indicate that it was correctly detected as a target. Windows correctly detected as

clutter was left blank to emphasise the detected targets. Each incorrect detection is contained in a red

bounding box drawn around the window, an example of this is shown in Figure 5.23. To evaluate the

performance of the detector, the precision was calculated for each scene using the correct and incorrect

detections.

Figure 4.7. Sliding-window target detection using a BCNN. (a) Shows the starting coordinates and

axis that the sliding travels. (b) Sliding moves by the step size parameter. (c) Output from the classier

of the sliding window. (d) Correct classification of clutter with no bounding box around the sliding

window.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 METHODS

In Figure 4.7, (a) illustrates the test scene with dimensions X and Y, and the size of the sliding window

is given by the crop size. Box (b) shows the sliding windows moving after one iteration. The distance

travelled after each iteration is controlled by the step size. In (c), the sliding window is passed through

the classifier and a correct target is detected in that window. Box (d) shows when the classifier correctly

predicts a clutter sample and no bounding box is drawn.

4.3.3 Uncertainty Heat Map Generation

To improve explainability, the uncertainty over the scene was visualised. This highlighted the regions

of high or low confidence from the network, similar to the Grad-CAM method that visualises regions

that contributed the most to the prediction. The method to generate the uncertainty heat maps is shown

in Figure 4.8. The same initial process was followed for the target detection. A sliding window was

applied to the scene and the epistemic uncertainty of the window was calculated (Figure 4.8 (a) -

(c)). The uncertainty heat map was then normalised (Figure 4.8 (d)). For the uncertainty map to be

superimposed onto the test scene, an interpolation function was used to transform the dimension from

(44 x 34) to (1360 x 1074)( Figure 4.8 (e)). The heat map was then transformed to correspond to a

maximum brightness of 255, similar to the SAR scene (Figure 4.8 (f)). Lastly, the uncertainty heat

map was superimposed onto the scene to show regions of high-uncertainty. Low-uncertainty regions

should have a pixel value of zero and not contribute when superimposed.
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Classification: Target
Epistemic uncertainty: 0.02

Classification: Clutter
Epistemic uncertainty: 0.45
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.

0.015 ... ... 0.9
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.

.

0.016 ... ... 1

(a) (b)

(c) (d)

(e) (f)

0.02 0.5 0.01

0.015 1

5.1 127.5 2.55

3.825 255

Figure 4.8. Illustration of uncertainty heat map generation process. (a) Each window is passed through

the classier and the classification and epistemic uncertainty is captured. (b) Shows the uncertainty

value of the previous window, as well as the current classifier output and uncertainty value. (c) Shows

all uncertainty values for the SAR scene, which is the base of the uncertainty heat map. (d) The

uncertainty heat map is normalised. (e) The heat map goes through an interpolation function. (f) The

interpolated heat map is then scaled to a maximum value of 255.
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4.3.4 Uncertainty Feedback

To investigate a method to improve uncertainty estimates from the BCNN, a method of feeding back

confident incorrect samples was proposed. The main motivation of this method is to penalise incorrect

predictions with high certainty. The aim of this investigation is to determine if there is a reduction

in incorrect predictions with high certainty after retraining the BCNN. The method is described in

Algorithm 2. This implementation borrows components from Subsections 4.3.1 First the sliding

window is applied to the SAR scene, and the uncertainty heat map is generated using the method in

Subsection 4.3.3. Then for each window in the SAR scene, the IoU is calculated using (4.4). Using the

IoU values and prior knowledge of the bounding boxes of the ground truth targets in Subsection 4.3.1,

it is now possible to determine correct and incorrect detections. As described previously in Subsection

4.3.1, a window with an IoU value greater than 0.85 over the ground truth targets is classified as a

target, and windows with an IoU value less than 0.85 are classified as clutter. An example of correct

detection is when the current window has an IoU value greater than the threshold and the classifier has

predicted it to be a target or it has an IoU less than 0.85 and is predicted to be clutter. Conversely, an

incorrect detection is recorded when the window has an IoU value greater than the threshold and the

classifier output is clutter or the window has an IoU less than the threshold and it’s predicted to be a

target. Once the IoU has been calculated for each window, a check is performed for each bounding box

for all of the ground truth targets. If the window is an incorrect detection with high certainty it is stored

in a dataset. The BCNN is then retrained on the newly captured data, and an updated uncertainty heat

map is generated.
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Algorithm 2 Uncertainty Feedback

Input: SAR scene (1360 x 1074), step size = 5

Output: uncertaintyHeatmap (1360 x 1074)

Initialisation : Uncertainty heat map = 0

load BCNN model

for i = 0 to numXWindows do

for j = 0 to numYWindows do

Move sliding window

Calculate prediction and epistemic uncertainty

Update uncertainty heat map

end for

end for

Store all windows coordinates

Normalise uncertaintyHeatmap

for window in all windows do

for bb in ground truth bounding boxes do

Calculate IoU between window and bb

end for

if any(IoU > 0.85) and epistemicUncertainty < 0.05 and prediction = 1 then

Append window to confident incorrect targets list

else if all(IoU = 0) and epistemicUncertainty < 0.05 prediction = 0 then

Append window to confident incorrect clutter list

end if

end for

Create dataset using incorrect high confident samples

retrain BCNN using much lower learning on a new dataset

Perform target detection

Generate uncertainty heat-map
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4.4 PERFORMANCE METRICS

4.4.1 Classification Performance

The most prevalent performance metric for classification tasks is accuracy, which measures the

capability of the network to discriminate between various classes. By comparison, accuracy has

numerous deficiencies such as distinctiveness and informativeness [19].

In most classification problems, the performance evaluation is completed in two stages. The first

stage is the training stage, and the performance metric is used to improve classifier performance. In

the second stage, the performance metric is used to evaluate the performance of the network on test

data. The best performing classifier can be determined from the confusion matrix as shown in Table

4.2. True positives are a prediction when the model predicts the correct positive class. In a similar

way, a true negative is a prediction when the model predicts the correct negative class. In contrast,

false positives and false negatives occur when the model incorrectly predicts the positive and negative

classes. To illustrate the outcomes, an example is described where a positive class is the classification

of an enemy target and a negative class is the classification of a friendly target. All four possible

outcomes are described as follows: (tp) the enemy is classified and appropriate action is taken, (tn) a

friendly target is classified and the appropriate action is taken, (fp) the friendly target is incorrectly

classified, therefore, it is decided to respond with aggression, (fn) enemy target is incorrectly classified

as friendly and the enemy target is able to attack.

Table 4.2. Confusion Matrix for Binary Classification

Actual Positive Class Actual Negative Class

Predicted Positive Class True positive (tp) False negative (fn)

Predicted Negative Class False positive (fp) True negative (tn)

In order to determine the best performing classifier in the training process, additional performance

metrics are used and summarised in Table 4.3.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 METHODS

Table 4.3. Additional Threshold Performance Metrics for Classifier Evaluation (adapted from [19]).

Performance Metric Formula Evaluation Focus

Error Rate f p+ f n
t p+ f p+tn+ f n

Measures the miss-classification error, which is the

ratio of incorrect predictions over the total number

of runs performed.

Precision (p) t p
t p+ f p

This measures the positive patterns that are correctly predicted

from the total predicted patterns in the positive class.

Recall (r) t p
t p+ f n

This measures the fraction of positive patterns that are correctly

classified.

F-Measure 2∗p∗r
p+r

This metric describes the harmonic mean between the recall

and precision values.

To properly evaluate the performance of the BCNN and CNN, Monte Carlo (MC) runs were conducted

for each experiment. For each experiment, ten Monte Carlo runs were conducted to better estimate the

model’s performance [80]. Owing to the lengthy training times of the models, the MC runs must be

limited.

4.4.2 Detection Performance

The detection performance uses the same precision metric as the classifier performance, with the

addition of an IoU threshold. Firstly, true positives are identified when the prediction is the same as

the ground-truth and the IoU between the window is greater than the IoU threshold. The same applies

to true negatives.

4.5 CHAPTER SUMMARY

This chapter provided a detailed description of the implementation of the BCNN as well as details

regarding the training and evaluation methods. An overview of the MSTAR dataset was provided since

it will be used to benchmark the BCNN against other state-of-the-art classification algorithms.

A sliding-window implementation was described to perform target detection as well as generate ground-

truth samples using the SAR scene. The chapter also presented the method to generate uncertainty heat

maps to improve the explainability. The chapter further detailed an approach to investigate the effects
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of feeding back false confident samples by using the combination of target detection and uncertainty

heat map generation.
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CHAPTER 5 RESULTS

5.1 CHAPTER OVERVIEW

This chapter details all investigations performed to evaluate and compare the performance of the BCNN

in both classification and detection tasks. The chapter consists of several distinct sections. Firstly,

the posterior predictive distribution of the BCNN is evaluated using in- and out-of-distribution data

(Section 5.2). The classification performance between the BCNN and CNN is presented in Section 5.3

using the MSTAR dataset. In addition, the results are compared with recent classification methods

from published works.

To improve the target detection capabilities of the BCNN, a brief investigation was conducted into the

feature space of the training data. Data analysis was performed, investigating the effects of varying

the overlap between training samples. The overlap was caused by the step of the sliding window

during each iteration. If the step size is less than the window size, then there will always be an overlap

between samples.

The initial results for the target detection are presented in Section 5.5 where the ground-truth images

are generated and used to evaluate the detection performance of the model. Results of the visualisations

of the uncertainty of the BCNN are depicted in Section 5.6 which illustrates the conversion of the

epistemic uncertainty into a visual image of high- and low-confidence regions in the SAR scene. Lastly,

an investigation was performed to evaluate the effects of feeding back confident incorrectly classified

samples and retraining the model to reduce the number of high-uncertainty zones. The discussion of

the results is provided at the end of each section.
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5.2 PREDICTIVE UNCERTAINTY IN BCNNS

In this section, the uncertainty estimates from the BCNN are evaluated for in-distribution and out-

of-distribution samples. In this study, in-distribution data refers to samples that are similar to the

training dataset distribution, while out-of-distribution data samples do not follow the distribution of

the training dataset. In addition, the softmax probabilities are shown for both a CNN and BCNN. The

BCNN had added error bars for the predictive variance. Along with the softmax outputs, the epistemic

uncertainty was calculated. For the epistemic uncertainty, the softplus activation function was used and

was normalised similar to the softmax function. From the hyper-parameter optimisation in Subsection

4.2.8, the BCNN and CNN were trained using the parameters in Addendum A. A total of ten MC runs

were conducted, and the random variable assessed is the classification accuracy. The model with the

highest classification accuracy was selected. The discussion of the results is provided in Subsection

5.2.3.

5.2.1 In-Distribution Data

Three examples were presented to the BCNN and CNN to evaluate the predictive uncertainty. The

comparisons of the predictions between the BCNN and CNN are shown in Figures 5.1, 5.3, and 5.5.

The corresponding epistemic uncertainty estimates are shown in Figures 5.2, 5.4, and 5.6.

Ground truth: BTR70
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CNN Prediction: BTR70
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BCNN Prediction: BTR70

Figure 5.1. Comparison of CNN and BCNN predictions for in-distribution sample one. Both the CNN

and BCNN predicted the correct class, with the BCNN having a 77 % probability and the CNN having

a 100 % probability.
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In Figure 5.1 both networks made correct predictions, with the CNN predicting with absolute certainty

and the BCNN giving a 77 % probability to the predicted class. From Figure 5.2, the classes: BMP2,

BTR70 and T72 recorded the highest epistemic uncertainties, with the correct class the BTR70 having

the highest uncertainty of all the classes.

0.00 0.02 0.04 0.06 0.08 0.10
Epistemic uncertainty

BMP2

BTR70

T72

BTR-60

2S1

BRDM2

D7

T62

ZIL-131

ZSU23/4

Average uncertainty: 0.0084

Figure 5.2. Epistemic uncertainty of sample in Figure 5.1. The first three classes have the highest

uncertainty compared to the other classes.

From Figure 5.3 is it apparent that the predictive variance was higher than the predictive variance

observed in Figure 5.1. This indicates that the BCNN was less certain for this prediction, with the

increase in average epistemic uncertainty supporting this deduction.
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Ground truth: BMP2
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BCNN Prediction: BMP2

Figure 5.3. Comparison of CNN and BCNN predictions for in-distribution of sample two. The CNN

made had a prediction with a softmax probability of 100 % while the BCNN was less certain with a

probability of 53 %. The predicted class of the BCNN had a large variance in the predictive variance.
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Average uncertainty: 0.0078

Figure 5.4. Epistemic uncertainty of sample in Figure 5.3. There are numerous classes with almost

equal uncertainty. Thus, indicating a spread in the softmax probability in the BCNN’s prediction.

It was observed that both models made predictions with absolute certainty as shown in Figure 5.5.

In addition, the low average epistemic uncertainty indicates that the BCNN was indeed certain of its
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prediction.

Ground truth: ZIL-131

0.0 0.2 0.4 0.6 0.8 1.0
Softmax probability

BMP2

BTR70

T72

BTR-60

2S1

BRDM2

D7

T62

ZIL-131

ZSU23/4

CNN Prediction: ZIL-131

0.0 0.2 0.4 0.6 0.8 1.0
Softmax probability

BMP2

BTR70

T72

BTR-60

2S1

BRDM2

D7

T62

ZIL-131

ZSU23/4

C
a
te

g
o
ry

BCNN Prediction: ZIL-131

Figure 5.5. Comparison of CNN and BCNN predictions for in-distribution sample three. Both the

CNN and BCNN had a predicted softmax probability of 100 %. The recorded predictive variance of

the BCNN was approximately zero.
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Figure 5.6. Epistemic uncertainty of sample in Figure 5.6. The observed average uncertainty was the

lowest for all three in-distribution samples.
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5.2.2 Out-of-Distribution Data

For the out-of-distribution data, the first sample was taken from the dataset provided by the CSIR of a

region of trees. The second sample was generated from a Gaussian distribution with a mean of 0 and a

variance of 0.1. The two examples were presented to the BCNN and CNN to evaluate the predictive

uncertainty. The comparisons of the predictions between the BCNN and CNN are shown in Figures 5.7

and 5.9. The corresponding epistemic uncertainty estimates are shown in Figures 5.7 and 5.9.

Ground truth: Out-of-distribution
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Figure 5.7. Comparison of CNN and BCNN predictions for out-of-distribution sample one. The

BCNNs had four numerous classes with probabilities greater than zero, while the CNN only predicted

one class.
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Figure 5.8. Epistemic uncertainty of sample one. This was the highest recorded average uncertainty

for both in- and out-of-distribution samples.

Ground truth: Out-of-distribution
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Figure 5.9. Comparison of CNN and BCNN predictions for out-of-distribution sample two. A similar

result is observed for the CNN, with a single absolute certain prediction made, while the BCNN had a

much more varied prediction. A large predictive variance was observed for multiple classes.
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Figure 5.10. Epistemic uncertainty of sample two. The average uncertainty recorded was 0.0101,

which was lower than the average uncertainty for sample one. This suggests that sample one was less

similar to the training data than sample two.

5.2.3 Discussion of the Predictive Uncertainty of the BCNN

5.2.3.1 In-Distribution Data

From the comparison of softmax outputs for the CNN and BCNN, it is apparent that the CNN makes

predictions with absolute confidence by allocating a 1.0 probability to a single class, while the BCNN

had a much more varied prediction. It is noted that in Figure 5.5, both the CNN and BCNN were highly

confident with the error bar for the BCNN at approximately zero for the in-distribution sample.

The epistemic uncertainty provided additional insight into the confidence of the BCNN with a higher

average epistemic uncertainty recorded for predictions with lower confidence values. In the example in

Figure 5.5, both the BCNN and CNN were confident in their predictions while the BCNN recorded

its lowest average epistemic uncertainty for all in-distribution samples. The epistemic uncertainty

provided additional information regarding confidence, especially when highly confident predictions

were made.

An important observation is that the epistemic uncertainty for the predicted class was the highest in all

of the examples. This can be interpreted as the predicted class having the highest uncertainty, and this

corresponds with the error bars in the softmax outputs with the longest bar being over the predicted
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class. Despite the predicted class having the highest uncertainty, it does not imply the model is not

confident. This is observed in Figure 5.6, where the predicted class has the highest uncertainty but the

average epistemic uncertainty for all ten classes is relatively low when compared to average epistemic

uncertainty in Figure 5.2 and 5.4.

5.2.3.2 Out-of-Distribution Data

For the out-of-distribution samples in Figures 5.8 and 5.9, it was observed that the CNN still made

predictions with absolute certainty, therefore, with maximum confidence, which is clearly unreasonable.

Despite being incorrect, this prediction with absolute certainty is very misleading and is not suitable for

real-world applications that directly affect humans. On the other hand, the BCNN provided additional

information indicating that it was not confident in its prediction. It is noted that the predictive variance

of the softmax outputs was higher than the in-distribution variance. An increase in the average

epistemic uncertainty was recorded.

It is apparent that the CNN has no method of managing out-of-distribution data, and the BCNN

provides a solution through uncertainty estimation. When using epistemic uncertainty, it is possible

to allow the BCNN to withhold its decision when the uncertainty is above a specific threshold. This

allows for undecided samples to be evaluated by a human specialist rather than making an incorrect

overconfident prediction.

5.3 COMPARISON OF CLASSIFICATION PERFORMANCE BETWEEN BCNN AND

CNNS

To compare the classification performance between the BCNN and CNN, the hyper-parameters for

each network were determined using the Bayesian optimisation technique described in Subsection

4.2.8. The hyper-parameters for both networks are given in Addendum A. The results are discussed in

Subsection 5.3.4.

5.3.1 CNN

The CNN was trained using the hyper-parameters in Table A.2 with the six-layer architecture described

in Table 4.1. Ten MC runs were performed and the training accuracy and loss curves for a random MC

run are shown in Figure 5.11.
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(a) The average training accuracy achieved was 1.0, with a similar result for

the validation accuracy.

(b) The training and validation curves converge after 20 Epochs, indicating

that the model was not over-fit.

Figure 5.11. (a) Classification accuracy of standard CNN for 100 Epochs with both the training and

validation curves. (b) Training and validation loss curves.
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The classification performance was evaluated using the test set from the MSTAR data. The confusion

matrix was constructed and is shown in Figure 5.12.

Figure 5.12. Confusion matrix for the CNN for all ten classes of the MSTAR dataset. The columns

are normalised using the total number of actual samples, and the rows are normalised using the total

number of predicted samples. The bottom right cell is the total accuracy of the BCNN

5.3.2 BCNN

The BCNN was trained using the hyper-parameters in Table A.1 with the six-layer architecture

described in Table 4.1. Ten MC runs were performed and the training accuracy and loss curves for a

random MC run are shown in Figure 5.13.
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(a) The training accuracy increased gradually before plateauing after 80

Epochs.

(b) The training and validation curves converged after 30 Epochs.

Figure 5.13. (a) Classification accuracy of the BCNN for 105 Epochs with both the training and

validation curves. (b) Training and validation loss curves.

The classification performance was evaluated using the test set from the MSTAR data. The confusion

matrix was constructed and is shown in Figure 5.14.
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Figure 5.14. Confusion matrix for the BCNN for all ten classes of the MSTAR dataset. The columns

are normalised using the total number of actual samples, and the rows are normalised using the total

number of predicted samples. The bottom right cell is the total accuracy of the BCNN

5.3.3 Comparison of Classification Performance

The classification accuracy and F-1 scores for the CNN and BCNN are tabulated in 5.1. Additional

implementations were selected to distinguish the performance of the BCNN compared to methods

from recent publications. The selected methods used either CNNs or an ensemble of different learning

methods that included a CNN.
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Table 5.1. Comparison of Classification Accuracy between BCNN, CNN, and Implementation from

the Literature.

Performance metric CNN BCNN [81] [18] [17]

Classification accuracy 0.968 0.931 0.9913 0.986 0.964

F-1 Score 0.937 0.918 - - -

5.3.4 Discussion of the Comparison of Classification Performance between BCNN and

CNN

From Table 5.1 it was concluded that the CNN performed better than the BCNN by achieving a higher

classification and F-1 score while scoring the highest classification accuracy of 96.8%. This was

expected as a similar result was achieved in [4]. In Figure 5.11(a) and 5.13(a), there is an observable

difference when the classification accuracy reaches a plateau with the CNN converging faster than

the BCNN. The difference in batch sizes could be a factor since the hyper-parameter optimisation

function proposed a much smaller batch size for the BCNN than the CNN. Another reason for the

faster convergence could be the increased number of parameters in the BCNN as the BCNN had twice

as many parameters to optimise.

When compared to DNNs from the literature, the BCNN achieved a similar classification performance

while retaining the ability to estimate the uncertainty in its prediction. The trade-off with a slight

decrease in classification performance is undoubtedly worth the additional information gained from

the uncertainty. Furthermore, the ability to eject predictions with low confidence scores should result

in improved classification accuracy and close the performance gap between BCNNs and CNNs.

5.4 DATA ANALYSIS FOR TARGET DETECTION DATA

Data analysis is an important step when developing any ML algorithm. Principal Component Analysis

(PCA) was performed to investigate the separability between the target and clutter samples. It has been

shown that an increase in separability leads to improved predictive performance [82]. This section

investigates the effect of varying the overlap parameter for the sliding window when generating the

samples for the clutter, since the same sliding-window method is used to extract samples from the

individual SAR scenes to generate the dataset for the detector.
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5.4.1 Investigation of Varying Overlap of Training Samples

Initially, the clutter samples were captured using a step size of five pixels. This resulted in a large

number of samples being generated with numerous samples overlapping one another. As illustrated

in Figure 4.5, the overlap of samples is the area of intersection between those samples. The 2D

dimensional PCA space is shown in Figure 5.15 with samples that were captured with a step size of

five pixels.

Figure 5.15. 2D PCA plot for samples generated using a step size of five pixels. Four distinct clusters

are observed.

The 3D PCA space is shown in Figures 5.16 and 5.17 at two different angles.
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Figure 5.16. 3D PCA plot for samples generated using a step size of five pixels. There appear to be

two planes in PCA space where the target and clutter clusters are concentrated.

Figure 5.17. 3D PCA plot for samples generated using a step size of five pixels taken from a different

orientation. This orientation emphasises the separation between two classes.
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The 2D PCA space is shown in Figure 5.18 with samples captured with no overlap.

Figure 5.18. 2D PCA plot for samples generated with no overlap. Three main clusters are now

observed. One cluster on the X-axis for the clutter sample, and two opposing clusters for the target

samples.

The 3D PCA space is shown in Figures 5.19 and 5.20 at two different angles.

Figure 5.19. 3D PCA plot for samples generated with no overlap. Compared to the 3D PCA plot in

Figure 5.16, the clusters appear more condensed for the samples generated with no overlap.
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Figure 5.20. 3D PCA plot for samples generated with no overlap. Illustrating the increase in separation

between the target and clutter clusters.

5.4.2 Discussion on the Investigation of Varying Overlap of Training Samples

From the PCA plots in Figures 5.15 to 5.17, three distinct clusters can be observed for the target

samples, with one single large cluster for the clutter samples. It was noted that there was a region where

the two target clusters and clutter clusters intersected. This large entanglement can reduce detection

performance if the network is not able to distinguish between the two classes. Thus, the overlap between

cluster samples must be removed in order to reduce the correlation between neighbouring samples

taken in proximity to one another. The results of the removal of the overlap between neighbouring

samples are observed in Figures 5.15 to 5.20. It was observed that the number of target clusters was

reduced to only two. In addition, the intersection of the target and clutter clusters was reduced when

compared to the PCA plot that was generated from samples with significant overlap. The additional

clusters could have been generated due to the increase in correlation of samples that have repeating

patches owing to regions of overlap. When the overlap was removed, this led to the samples being

more independent from each other.
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5.5 TARGET DETECTION

The detection method detailed in Section 4.3.2 was implemented. The results for the detection and

uncertainty heat maps were generated using the same four scenes as in Figure 5.21.

5.5.1 Ground Truth

The ground-truth measurements were generated from Figure 5.21. Target samples must have an IoU

greater than 0.85 to be labelled as a ground-truth target. Clutter samples are defined as samples with an

IoU of less than 0.85. Table 5.2 shows the number of ground-truth samples for both target and clutter

contained in each of the scenes for a step size of eight.

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Figure 5.21. SAR scenes provided by the CSIR with corresponding bounding boxes around the targets.

(a) Scene 1 was captured over a large open grass area, it also contains a small portion of the tree to the

bottom right. (b) Scene 2 contains a large collection of trees that is next to a few man-made structures.

(c) Scene 3 is the same area as scene 2 but captured at a different orientation, at this angle more of

the forest area is exposed. (d) Scene 4 was captured in a similar region as scene 1 but at a different

orientation. This scene highlights more of the tree and hill areas.
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Table 5.2. Number of Ground-Truth Samples for Targets and Clutter

Image Number of ground-truth targets Number of ground-truth clutter

(a) 113 20588

(b) 226 20475

(c) 99 20602

(d) 106 20595

The total number of ground-truth targets for Table 5.2 are visualised in Figure 5.22. From Table 5.2,

the ground-truth data is severely imbalanced with a disproportionate number of ground-truth clutter

samples to ground-truth target samples. As stated previously in Subsection 4.3.2, the detector uses

the MSTAR dataset for the target data and the ground-truth clutter samples from Table 5.2 as the

clutter data. The imbalance of the increased number of ground-truth clutter samples is mitigated by

randomly selecting an equal amount of ground-truth clutter samples as target samples in the MSTAR

dataset.

Figure 5.22 corresponds with the detector correctly detecting every possible target in each scene. It is

noted that there are a number of overlapping bounding boxes over the targets. In general, the current

detection algorithm uses an additional network to predict the bounding box coordinates. The prediction

of the bounding boxes can be addressed in future works. Furthermore, the main objective of this

study is the improvement in explainability, and the current method is sufficient to address the research

questions posed.
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(a) Scene 1. (b) Scene 2.

(c) Scene 3. (d) Scene 4.

Figure 5.22. Illustration of the ground-truth targets for each scene. (a) Scene 1 has seven ground-truth

targets. (b) Scene 2 also has seven ground-truth targets. Scene 3 has five ground-truth targets, due to

the orientation two targets are not visible at this angle. (d) Scene 4 has six ground-truth targets.

From Figure 5.22, it is noted that there are multiple detections for each target. This is caused by the

larger target, such as the building, where multiple windows have an IoU greater than the threshold.

As a result, there are numerous redundant detections. However, this method is sufficient to further

investigate the research problem.
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5.5.2 Target Detection Performance

The results for the target detection are shown in Figures 5.23 to 5.26 using the ground-truth data in

Subsection 5.5.1. Correct detections are represented by green bounding boxes and incorrect detections

are represented by red bounding boxes. It is noted that there are multiple detections for specific targets.

This is factored into the results to generate confusion matrices. This would increase the difficulty

of detecting every target in the ground-truth data as there are significantly more samples. Since the

precision is used to measure the performance of the detector and not the accuracy, the proposed

implementation still results in a fair evaluation of the detector’s performance.

Figure 5.23. Target detection using BCNN for scene 1. There are correct detections for all seven

targets, with false detections recorded at the edges of structures.
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1

2

Figure 5.24. Target detection using BCNN for scene 2. The majority of the targets were detected

correctly. The tree area did result in multiple false detections.

In Figure 5.24, the numbered arrows show two examples of incorrect predictions of trees as targets

because they have similar characteristics as the targets.

Figure 5.25. Target detection using BCNN for scene 3. Despite all of the ground-truth targets being

correctly detected, there are far more incorrect detections. This illustrates the different orientation

angles can have on SAR measurements. Previously, the majority of false detections were concentrated

on the trees, and now they are focused on the area near the structures.
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Figure 5.26. Target detection using BCNN for scene 4. From the detector results in scenes 1 and 4, it

is apparent that the open grass area had a lower number of false detections than the scenes with a large

forest area. The change in orientation did result in more incorrect detections than in scene 1, similar to

what was observed in scene 3.

To evaluate the detection performance of the BCNN detector, the method detailed in Subsection 4.4.2

was used. Firstly, the confusion matrices for each scene is shown in Figure 5.27. On the confusion

matrix, the percentages of all the samples predicted to belong to each class that are correctly and

incorrectly classified are shown in the column on the right of the plot. The percentages of all the

examples belonging to each class that are correctly and incorrectly classified are shown in the row

at the bottom of the figure. The percentages on the far right columns are normalised using the total

number of predicted samples for each class, and the percentages on the bottom row are normalised

using the total number of available samples. The precision scores were calculated from the confusion

matrices and are shown in Table 5.3.
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(a) Scene 1.
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(b) Scene 2.
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(c) Scene 3.
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(d) Scene 4.

Figure 5.27. Confusion matrices for detections in each scene. The columns are normalised using the

total number of actual samples, and the rows are normalised using the total number of predicted samples.

The bottom right cell is the total accuracy of the BCNN. The columns on the far right represent all the

samples predicted to belong to each class, which are correctly and incorrectly classified.

Owing to the imbalance in the number of targets and clutter, there are significantly more clutter

detections, as seen in Figure 5.27. As a result, the accuracy of over 99 % is recorded for all scenes.

However, this is inaccurate and falsely depicts the performance. The target accuracy shows a much
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better representation of the true performance, which is the block above the accuracy on the bottom

right.

Table 5.3. Precision of Detection using BCNN

Image Number of ground-truth targets Precision

(a) 113 0.472

(b) 135 0.562

(c) 107 0.311

(d) 100 0.508

5.5.3 Discussion of Target Detection Results

5.5.3.1 Ground Truth

The number of samples generated for the ground-truth scenes is varied by the step size used and the

IoU threshold. By increasing the step size, fewer ground-truth samples were created. This affected

the detection capabilities of the BCNN since the model was trained on data captured with the target

centred in the middle of the image. Another factor was the size of the bounding boxes around the

targets. If the bounding boxes are too small, it makes the conditions to meet the IoU threshold more

difficult. This can result in missed detections as the network recognises the target but the amount of

overlap is insufficient for it to be labelled as a correct detection.

5.5.3.2 Target Detection Performance

The detection performance over the four scenes is varied, with the lowest precision recorded for scene

3 and the best precision recorded for scene 2. An interesting observation is that scenes 2 and 3 were

of the same region, but captured at a different orientation. The discrepancy in detection performance

could be a result of the reduced amplitude in that region. This is caused by a lower Radar Cross Section

(RCS) of the target at this orientation and the decrease in spotlight illumination since the region would

have been further from the radar.

The BCNN was able to correctly detect the majority of the ground-truth targets. Despite the target data

only being supplied by the MSTAR, the BCNN was still able to detect non-vehicular targets such as a

building. However, numerous missed detections were recorded over the large region of trees in Figures

5.24 and 5.25. Upon closer inspection, the miss-detected targets in the trees appeared to resemble

targets. Examples of these are shown in Figure 5.28.
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(a) Missed detection 1 from Figure 5.24. (b) Missed detection 2 from Figure 5.24.

Figure 5.28. Examples of missed detections for trees that appear to be targets.

Most of them had a bright region in the centre with a form of shadow similar to the MSTAR data.

Given an increased amount of training samples, the network should be able to correctly distinguish

them.

5.6 UNCERTAINTY HEAT MAPS

The uncertainty heat maps were generated using the method described in Subsection 4.3.3 and are

shown in Figures 5.29(b) to 5.32(b).

(a) (b)

Figure 5.29. Normalised uncertainty heat map of scene 1 (a). Uncertainty heat map superimposed

onto scene 1 (b), the yellow ellipse contains low-certainty clutter detection.
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The region contained in the yellow ellipse has examples of low-certainty clutter detections. The highest

uncertainty regions are observed over the targets and in the region in the yellow ellipse.

(a) (b)

Figure 5.30. Normalised uncertainty heat map of scene 2 (a). Uncertainty heat map superimposed

onto scene 2 (b). A group of high uncertainty detections are observed over the forest area.

The area of dense trees and the regions over the targets have numerous high-uncertainty regions.
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(a) (b)

Figure 5.31. Normalised uncertainty heat map of scene 3 (a). Uncertainty heat map superimposed

onto scene 3 (b). There appear to be high uncertainty areas at the edges of vehicles and structures.

With the outline of the building being particularly prominent, an example of this is observed at the top

right.

The highest uncertainty regions are concentrated in the top right over the buildings. It is noted that

there is a small cluster of trees with high uncertainty.

(a) (b)

Figure 5.32. Normalised uncertainty heat map of scene 4 (a). Uncertainty heat map superimposed

onto scene 4 (b). There are minimal areas of high uncertainty over the scene, except at the targets.
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It was observed that the uncertainty estimate for scene 4 was low, except over the target. A small

region by the hill appeared to have high uncertainty.

5.6.1 Discussion of Uncertainty Heat Map Results

From Figures 5.29(b) to 5.30(b), the most distinct elements are the regions that contain targets. Across

all examples, the uncertainty over the targets was the highest. This is attributed to the results in Section

5.2, where it was shown that the predictive uncertainty was always the highest for the predicted class.

This is apparent even for miss-detection when the BCNN classifies a tree as a target. However, there

were regions with a high uncertainty that were correctly classified as clutter. An example of this can

be observed in Figure 5.29(b) near the large shadow by the top right hill in the area contained in the

yellow ellipse.

An interesting phenomenon occurred around the targets where the outer edges had increased uncertainty

relative to the centre of the targets. This is especially prominent for buildings where a distinct outline

can be observed and is less prominent for smaller targets such as vehicles. Examples of the high-

uncertainty traces are observed in Figures 5.29(b) and 5.31(b) .

The uncertainty heat maps deliver an additional level of information to the user along with the detections.

The uncertainty map provides a visual representation of the confidence of the model over each scene,

thus, improving the trust between the user and the network. The user may now perceive which areas

in the network have high or low confidence. This allows for human aid to be requested to assist the

network when there are high-uncertainty targets. The incorporation of uncertainty estimates should

improve the explainability of ATR systems.

5.7 FEEDBACK ON HIGH-CONFIDENCE INCORRECT SAMPLES

The method to feed back samples as discussed in Subsection 4.3.4 was implemented. The results

are shown in Figures 5.33 to 5.36. To investigate the effects of retraining, the BCNN with confident

incorrect samples was explored. First, the detection performance and uncertainty heat map were

determined for each scene. Once the BCNN was retrained, the detection performance and uncertainty

heat map were determined again for comparison. To retrain and not completely alter the current

configuration of the weight parameters, the learning rate was reduced by a factor of 25. This ensured

that the BCNN was able to adjust to weights appropriately for the new data but make a significant

change that would drastically change the detection performance. In addition, multiple runs were
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performed to gather confident incorrect samples. A total of five runs were performed for the results

obtained.

(a) Detection before feedback. (b) Detection after feedback.

0.0

0.2

0.4

0.6

0.8

(c) Uncertainty heat map before feedback.

0.0

0.2

0.4

0.6

0.8

(d) Uncertainty heat map after feedback.

Figure 5.33. Comparison of the effect of retraining BCNN on confident incorrect detections for scene

1. The key difference in (a) and (b) is the reduction in false detections, and in (c) and (d) is the reduction

in the number of high uncertainty regions.

From the comparisons, it is clear that there is a reduction in the overall uncertainty of the scene.
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Notable changes are observed near the large area of trees and high-uncertainty regions in the centre of

the scene, with numerous high-uncertainty regions disappearing after retraining.

(a) Detection before feedback. (b) Detection after feedback.

0.0
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0.4

0.6

0.8

(c) Uncertainty heat map before feedback.
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0.4

0.6

0.8

(d) Uncertainty heat map after feedback.

Figure 5.34. Comparison of the effect of retraining BCNN on confident incorrect detections for scene

2. The main takeaway from (a) and (b) is the removal of false detections over the forest region at the

top right. (c) and (d) follow a similar trend to Figure 5.33 where there was a reduction in the number

of high uncertainty areas. Scene 2 showed the most improvement in terms of precision.

After retraining, there was a reduction in the number of high-uncertainty regions. Noteworthy areas
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were the large cluster of trees in the top left and near the building towards the bottom left of the image.

In addition, there were far fewer missed detections.

(a) Detection before feedback. (b) Detection after feedback.

0.0
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0.4

0.6

0.8

(c) Uncertainty heat map before feedback.
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0.2

0.4

0.6

0.8

(d) Uncertainty heat map after feedback.

Figure 5.35. Comparison of the effect of retraining the BCNN on confident incorrect detections for

scene 3. (a) and (b) continue to follow the trend of a reduction in false detections. Interestingly, the

BCNN did not perform better in the tree region and had one additional false detection. Contrary to the

previous scenes, in (c) and (d) there was no reduction in the number of high uncertainty regions.
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When compared to Figures 5.33 and 5.34, the reduction in uncertainty for scene 3 is lower. However,

there was still a decrease in uncertainty of the overall scene.

(a) Detection before feedback. (b) Detection after feedback.
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0.8

(c) Uncertainty heat map before feedback.
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0.4

0.6

0.8

(d) Uncertainty heat map after feedback.

Figure 5.36. Comparison of the effect of retraining BCNN on confident incorrect detection for scene

4. (a) and (b) showed a significant improvement in the reduction of false detections, while being

able correctly to detect all ground-truth targets. After retraining, a slight reduction in uncertainty was

observed between (c) and (d). The effect of retraining appears to shift high uncertainty regions to

over-the-ground-truth targets.
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It was observed that there was an increase in the number of high-uncertainty regions in scene 4, while

there was an improvement in the number of correct detections.

To compare the precision and uncertainty estimation, ten MC runs were conducted to determine the

mean of the precision and uncertainty for pre- and post-feedback. The results are tabulated in Tables

5.4 and 5.5.

Table 5.4. Comparison of Detection Precision for Pre- and Post-Feedback of Confident Incorrect

Samples.

Scene
Pre-feedback precision Post-feedback precision

Average Worst Best Average Worst Best

1 0.426 0.397 0.478 0.429 0.300 0.538

2 0.407 0.375 0.454 0.853 0.667 1.0

3 0.356 0.291 0.391 0.396 0.300 0.538

4 0.449 0.333 0.583 0.543 0.429 0.7

Table 5.5. Comparison of Average Epistemic Uncertainty for Pre- and Post-Feedback of Confident

Incorrect Samples.

Scene
Average epistemic uncertainty

Pre-feedback Post-feedback % Reduction

1 0.000440 0.000190 58.82

2 0.00166 0.000521 68.61

3 0.0014970 0.001582 -5.68

4 0.000558 0.0005165 7.44

5.7.1 Discussion of the Feedback on High Confidence Incorrect Samples

The effect of feeding back confident incorrect samples resulted in fewer missed detections. This can

be observed with the overall increase in precision shown in Table 5.4 for all scenes. However, it also

resulted in fewer correct detections but the average precision was improved. This was to be expected

as the model was retrained on data that had previously caused missed detections.
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The feedback of confident incorrect samples reduced the number of high-uncertainty predictions for

each scene. A significant decrease in the high-uncertainty regions was observed from Figures 5.33(d)

to 5.36(d). This may be attributed to the decrease in the number of target detections. However, regions

with known targets had a similar uncertainty to the uncertainty map before the feedback. This indicated

that the network had learnt that those samples were indeed targets and adjusted its predictions for

incorrect detections. In Figure 5.33(b), this was observed where the number of missed detections in

the upper right corner was significantly reduced after the feedback while the network was still able to

detect the majority of the targets correctly.

From Table 5.5, it was shown that the average epistemic uncertainty for each scene was reduced after

the network was retrained. This implies that the network was more confident regarding its predictions.

It is observed that the feedback of high-uncertainty incorrect samples is beneficial to the network. This

method may not be practical during real-time applications where ground truth may be available but it

was practical in a controlled environment during the training of the network. This method may assist

in training and evaluation to improve performance and uncertainty estimation.

The visualisation of the epistemic uncertainty of the BCNN provided an indication of how confident the

network was over the scene. Regions where it is typically difficult to detect targets, such as dense areas

of trees, showed high uncertainty, while in flat field regions, a lower uncertainty was observed. The

uncertainty heat maps provided improved interpretability by showing the network’s confidence given

various SAR scenes. These heat maps can be used to aid the user by providing additional information

to make decisions and increase the user’s trust in the BCNN decisions.
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The popularity of SAR sensors has significantly increased since it became an essential surveillance

tool in World War II with the British famously using SAR to identify aircraft at relatively close ranges.

Military forces have made great strides in advancing SAR techniques and currently use them for

JISR operations. SAR analysts are human agents who manually extract intelligence pertaining to the

recognition of targets and events. JISR operations require timely decisions and could have dangerous

consequences. It is a process that requires a high level of efficiency and coordination amongst all

teams involved [1]. Bottlenecks in data and information processing are apparent, as SAR analysts have

to manually sort through hundreds of kilometres of SAR data. With limitations in sensor hardware,

additional challenges arise with low-resolution images that result in targets only being represented by

a few pixels. Consequently, this work aims to address the challenge of ATR of SAR images through

the application of ML algorithms to aid in the classification process. In addition, the ML model uses

eXplainable Artificial Intelligence (XAI) principles of transparency and explainability with model

agnostic tools that act as an interpreter between the ML algorithm and the end-user.

One of the most pressing difficulties for ML methods is the non-transparency and over-confident pre-

dictions made by DNNs. These models have become more complex to achieve increased performance

but have achieved this at the cost of transparency. As the field of XAI is still in its infancy, research to

quantify a model’s explainability and transparency is not yet well defined. Progress is being made at

an increasing rate as regulatory bodies are pushing to embrace XAI principles to ensure that future AI

models are made safer since human lives are being affected by their decisions.

The key results of this study are summarised next.
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6.1 PREDICTIVE UNCERTAINTY OF BCNN

The predictive uncertainty showed that the BCNN made fewer over-confident predictions than the CNN

while providing insight into the confidence of its prediction. When both networks were presented with

samples that were in- and out-of-distribution to the MSTAR dataset, the BCNN demonstrated it was a

significant improvement over the CNN. The CNN still made over-confident predictions, allocating a

100 % probability to a single incorrect class. However, the BCNN probabilities were much more spread

out and with the aid of the epistemic uncertainty, it was apparent that the network was not confident.

This difference when managing out-of-distribution data emphasises the necessity for alternative DNN

implementation such as the BCNN. As a result, the BCNN is capable of handling out-of-distribution

samples and responds accordingly by refusing to classify them. In this situation, operators may be

notified to address the uncertain sample. This is in contrast to traditional CNNs that would proceed

with an incorrect high-confidence prediction.

6.2 CLASSIFICATION PERFORMANCE BETWEEN CNN AND BCNN

The BCNN was able to correctly classify targets in the MSTAR dataset. Achieving a classification and F-

1 score of 96.8 % and 93.7 %, respectively, was comparable to numerous classification implementations

from recent publications. When compared to a CNN trained with the same architecture, the BCNN

had a lower classification and F-1 score which correlated with other publications [4, 14].

6.3 TARGET DETECTION PERFORMANCE

The BCNN was used to distinguish targets from clutter to perform detections over various SAR scenes.

Using the performance metric of precision, an average precision of 46.3 % was achieved. It was found

that the detector was able to correctly detect the majority of the targets. The regions of trees resulted in

the highest number of miss-detections. This is a result of the similarities between specific trees and

targets in the MSTAR dataset since they have a shadow with a brighter region in the centre.

6.4 UNCERTAINTY HEAT MAP

The uncertainty heat maps provided a 2D visualisation of the confidence of the model over each region

where the brighter regions indicated a higher uncertainty and the dimmer regions corresponded to a

low uncertainty. The regions of high uncertainty appeared in areas that are more difficult to detect

targets, such as large areas of trees or areas that heavily cast a shadow. The high uncertainty over the

targets was a result of the epistemic uncertainty where the predictive class always had the highest

uncertainty. The uncertainty maps improved the explainability of the system by utilising the uncertainty

estimations. The BCNN is able to provide an explanation of how confident it was. Thus, the detection
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map, supplemented with an uncertainty heat map, allows the user to have more trust in the target

detector. Ultimately, this is a step in the direction of improving the current ML method to foster

increased trust, interpretability, and transparency.

6.5 FEEDBACK OF HIGH UNCERTAINTY INCORRECT SAMPLES

An additional advantage of the uncertainty estimates is that they may be used to improve the per-

formance of the network and reduce the number of high-uncertainty predictions. It was found that

by feeding back high-confident incorrect samples, the precision of the detector was improved and an

overall reduction in average epistemic uncertainty was observed. This method may be used as the last

step before a model is deployed to make small adjustments to the network to reduce the number of

high-confident incorrect detections.

6.6 ANSWERS TO RESEARCH QUESTIONS

1. Does the use of a BCNN and the interpretation of uncertainty add transparency and explainabil-

ity? The use of the BCNN and uncertainty estimates improved the interpretability of the system

through the use of uncertainty heat maps. However, the BCNN did not add transparency since

the network does not provide additional insight into the decision-making processes.

2. What is the trade-off in classification performance between traditional DNNs and XAI models?

The trade-off in classification accuracy was a 3 % difference between the BCNN and CNN. This

trade-off was made for the advantage of the uncertainty estimation capabilities, and it was shown

that the BCNN was less prone to over-fitting while the CNN made incorrect predictions with

absolute certainty.

3. How reliable are uncertainty estimations from BCNNs? When the uncertainty estimates were

evaluated, it was found that there was a distinct difference between samples that were in- and out-

of-distribution. The BCNN could reliably differentiate between the in- and out-of-distribution

samples using epistemic uncertainty.

4. Can the BCNN be used to perform target detection of various SAR scenes? The BCNN was

used in the implementation of a detector, and it was found that the BCNN was able to detect

targets in a variety of SAR scenes. The detector achieved an average precision of 46.33 % for

the four different scenes. From the results, the detector was able to locate the majority of the

known targets.

5. Can the uncertainty estimates be used to improve the BCNN’s target detection performance?

The proposed method to feed back incorrect high-certainty detections resulted in an overall

reduction in the epistemic uncertainty and improvement in precision for all scenes. Thus, it was

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6 CONCLUSION

concluded that the uncertainty estimates did improve the BCNN’s detection performance as well

as reduce the overall uncertainty.

6.7 SUGGESTED FUTURE WORK

This dissertation has emphasised the importance of uncertainty estimation in CNNs and how they

can reduce over-confident predictions as well as aid in improving the trust of the end-user in the

ML algorithm. However, there are still numerous research avenues to pursue, which include the

following.

XAI is still in its infancy, and, as a result, there are no widely adopted standard metrics to measure

the explainability of a particular ML algorithm. For the mass adoption of these algorithms, standards

need to be in place to measure the interpretability so various methods can be assessed to select the

most explainable model. Once qualitative standards have been developed, such methods will be used

to measure the increase in explainability of incorporating uncertainty heat maps.

This implementation used a rudimentary sliding window to perform the target detection and uncertainty

heat map generation, and the approach consisted of feeding the individual windows into the BCNN

to estimate the uncertainty. This method is computationally expensive as the classifier computes the

output for each individual window. Current detection algorithms such as You Only Look Once (YOLO)

have been shown to perform with a high degree of speed and precision [83, 84]. In addition, YOLO

factors in the targets with different resolutions and aspects and is adaptable to complex datasets with

multiple overlapping classes. The next step would be the incorporation of a BCNN with a YOLO

implementation to achieve a state-of-the-art detection algorithm with the benefits of the improvement

in explainability through the uncertainty estimations.

Lastly, the focus would extend the BCNN to manage complex data. For this dissertation, only the

magnitude was used for training and evaluation. It has been shown that a significant amount of

information is contained in the complex data compared to only the magnitude [85]. Implementing a

complex BCNN should improve the performance of the network, especially for the application of ATR

using SAR measurements.
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ADDENDUM A HYPER-PARAMETER

OPTIMISATION

The optimised hyper-parameters are listed below for both the CNN and BCNN.

Table A.1. Optimised Hyper-Parameters for BCNN.

Parameter Value

Learning rate CNN 0.00065124

Network type 3 convolutional layer 3 fully-connected

Validation size 0.1

MC runs 10

Priors µ = 0, σ = 0.1

Learning rate BCNN 0.00035393

Batch size BCNN 8

Number of epochs 105

Patience 11

Activation function softplus
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ADDENDUM A HYPER-PARAMETER OPTIMISATION

Table A.2. Optimised Hyper-Parameters for CNN.

Parameter Value

Learning CNN 0.00065124

Network type 3 convolutional layer 3 fully-connected

Validation size 0.1

MC runs 10

Batch size BCNN 24

Number of epochs 110

Activation function ReLu
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