
Multi-Objective Evolutionary Neural

Architecture Search for Recurrent Neural

Networks

by

Reinhard Booysen

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

January 2022

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Publication data:

Reinhard Booysen. Multi-Objective Evolutionary Neural Architecture Search for Recurrent Neural Networks. Master’s

dissertation, University of Pretoria, Department of Computer Science, Pretoria, South Africa, January 2022.

Electronic, hyperlinked versions of this thesis are available online, as Adobe PDF files, at:

http://upetd.up.ac.za/UPeTD.htm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://upetd.up.ac.za/UPeTD.htm

Multi-Objective Evolutionary Neural Architecture Search for

Recurrent Neural Networks

by

Reinhard Booysen

E-mail: reinn.cs@gmail.com

Abstract

Artificial neural network (ANN) architecture design is a nontrivial and time-consuming

task that often requires a high level of human expertise. Neural architecture search

(NAS) serves to automate the design of ANN architectures, and has proven to be suc-

cessful in finding ANN architectures that can outperform those manually designed by

human experts. It is often the case that in real world implementations of machine learn-

ing and ANNs, a reasonable trade-off is accepted for marginally reduced model accuracy

in favour of lower computational resources demanded by the model. This study inves-

tigates the use of multi-objective evolutionary algorithms as an exploration strategy for

NAS to evolve recurrent neural network (RNN) architectures. This allows for the consid-

eration of the underlying computational resource requirements of the RNN models while

maintaining an acceptable model performance-related objective. Additionally, methods

such as weight inheritance, early stopping, and pruning of architectural unit connections

during offspring generation, are investigated in the context of RNN architecture search

to allow for more efficient exploration of the RNN architecture search space.

Keywords: Recurrent Neural Networks, Neural Architecture Search, Multi-Objective

Evolutionary Algorithms.

Supervisor : Dr. A. S. Bosman

Department : Department of Computer Science

Degree : Master of Science

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mailto:reinn.cs@gmail.com

“Time is eternity that sees its own implementations.”

Plato

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

I would like to express my deep and sincere gratitude to the following people and insti-

tutions:

• Doctor Anna Bosman, my supervisor, for her guidance and invaluable insight

throughout this journey.

• My family for their continuous support.

• The Centre for High Performance Computing (CHPC), for the use of their dis-

tributed computing architecture resources.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

List of Figures iv

List of Algorithms vii

List of Tables viii

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 4

2 Artificial Neural Networks 6

2.1 Neural Network Structures . 6

2.1.1 Artificial Neuron . 7

2.1.2 Activation Functions . 8

2.1.3 Neural Network Architectures . 9

2.1.4 Training Neural Networks . 13

2.2 Recurrent Neural Networks . 16

2.2.1 Recurrent Neural Network Architecture 17

2.2.2 Training Recurrent Neural Networks 18

2.2.3 Long Short-Term Memory . 19

2.3 Summary . 23

3 Evolutionary Algorithms 24

3.1 Evolutionary Algorithm Fundamentals 25

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1.1 Representation of Individuals . 26

3.1.2 Initial Population . 27

3.1.3 Fitness Evaluation . 27

3.1.4 Selection . 28

3.1.5 Recombination . 30

3.1.6 Termination Condition . 31

3.2 Multi-Objective Evolutionary Algorithms 32

3.2.1 Multi-Objective Problem Solving Approaches 32

3.2.2 Genetic Algorithms . 34

3.3 Summary . 40

4 Neural Architecture Search 41

4.1 How Neural Architecture Search Works 41

4.1.1 Search Space . 42

4.1.2 Search Strategy . 45

4.1.3 Performance Estimation Strategy 46

4.1.4 Neural Architecture Search Method Quality 47

4.2 Evolutionary NAS Methods . 48

4.3 Summary . 53

5 Framework 54

5.1 Search Space . 55

5.2 Search Strategy . 58

5.2.1 Recurrent Neural Network Morphism 60

5.2.2 Initial Population . 64

5.2.3 Fitness Evaluation . 66

5.2.4 Selection . 68

5.3 Summary . 69

6 Empirical Analysis 70

6.1 Empirical Procedure . 70

6.2 Empirical Study . 72

ii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.2.1 Word-Level Language Modeling Task 72

6.2.2 Character-Level Language Modeling Task 93

6.3 Summary . 106

7 Conclusions 110

7.1 Summary of Conclusions . 110

7.2 Future Work . 113

Bibliography 115

A Acronyms 126

B Symbols 127

B.1 Chapter 2: Artificial Neural Networks . 127

B.2 Chapter 3: Evolutionary Algorithms . 128

B.3 Chapter 4: Neural Architecture Search 129

B.4 Chapter 5: Framework . 130

B.5 Chapter 6: Empirical Analysis . 131

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

2.1 The artificial neuron. 9

2.2 Graph depicting the unipolar sigmoidal, bipolar sigmoidal and hyperbolic

tangent activation functions. 10

2.3 A neural network with two hidden layers. 13

2.4 Illustration of varying gradient descent optimization trajectories based on

the number of input patterns considered. 16

2.5 A recurrent neural network (left) and an unrolled recurrent neural network

(right). 19

2.6 LSTM architecture [33]. 21

3.1 One-Point crossover of two parent solutions to generate two offspring so-

lutions. 31

3.2 Before and after applying the mutation operator on a single candidate

solution representation. 32

3.3 Example of a Pareto solution set with dominated and nondominated so-

lutions for a problem with two objectives [21, 81]. 35

3.4 Crowding distance calculation for the ith solution [21]. 38

3.5 Normalized reference lines for three reference points of a two-objective

problem [47]. 40

4.1 The three components of Neural Architecture Search as presented by

Elsken et al. [25]. 43

4.2 A NN architecture containing k cells (left) and an example cell decompo-

sition (right). 44

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.1 Block encoding. 56

5.2 Basic RNN architecture block encoding structure. 58

5.3 Basic RNN architecture. 59

6.1 LSTM model optimiser validation perplexity results. 76

6.2 Average number of blocks and average test perplexity per generation for

scenario A1. 78

6.3 Scenario A1 Pareto front. 79

6.4 LSTM 0 architecture. 80

6.5 The LSTM 58 architecture evolved in scenario A1. 81

6.6 The rdm8 190 architecture evolved in scenario A1. 82

6.7 BASIC 0 architecture. 82

6.8 Total number of constructive and destructive network transformations

that were performed during scenario A1. 83

6.9 The rdm68 45 architecture evolved in scenario A1. 84

6.10 Average number of blocks and average test perplexity per generation for

scenario A2. 86

6.11 Total number of constructive and destructive network transformations

that were performed during scenario A2. 87

6.12 The rdm35 108 architecture evolved in scenario A2. 87

6.13 Scenario A3 Pareto front. 90

6.14 Average number of blocks and average test perplexity per generation for

scenario A3. 91

6.15 Total number of constructive and destructive network transformations

that were performed during scenario A3. 92

6.16 The rdm19 69 architecture evolved in scenario A3. 93

6.17 Average number of blocks and average test perplexity per generation for

scenario A4. 94

6.18 The rdm76 0 architecture evolved in scenario A4. 95

6.19 Average number of blocks and average MSE loss per generation for sce-

nario B1. 97

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.20 Total number of constructive and destructive network transformations

that were performed during scenario B1. 98

6.21 The rdm82 21 architecture evolved in scenario B1. 100

6.22 The rdm82 28 architecture evolved in scenario B1. 101

6.23 Average number of blocks and average MSE loss per generation for sce-

nario B2. 101

6.24 Total number of constructive and destructive network transformations

that were performed during scenario B2. 102

6.25 The rdm44 6 architecture evolved in scenario B2. 104

6.26 Average number of blocks and average MSE loss per generation for sce-

nario B3. 105

6.27 Total number of constructive and destructive network transformations

that were performed during scenario B3. 106

6.28 Average number of blocks and average MSE loss per generation for sce-

nario B4. 108

6.29 Total number of constructive and destructive network transformations

that were performed during scenario B4. 109

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Algorithms

1 Generic Evolutionary Algorithm [26, 81] 26

2 Pseudocode of the nondominated sorting function that is used by the

NSGA-II algorithm [21] . 37

3 Pseudocode of the NSGA-II algorithm [21] 39

4 MOE/RNAS Algorithm . 61

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

2.1 Linear activation functions from [64, 78, 80] 11

2.2 Non-linear activation functions from [64, 78, 80] 12

5.1 Descriptions of node values in architecture representation. 60

6.1 Comparison of LSTM model test perplexities achieved after being trained

with four different PyTorch optimisation techniques. 75

6.2 Scenario A1 MOE/RNAS algorithm implementation configuration. 76

6.3 Scenario A1 Pareto front architecture performances. 77

6.4 Scenario A2 MOE/RNAS algorithm implementation configuration. 82

6.5 Scenario A2 Pareto front architecture performances. 85

6.6 Scenario A3 MOE/RNAS algorithm implementation configuration. 88

6.7 Scenario A3 Pareto front architecture performances. 89

6.8 Scenario A4 MOE/RNAS algorithm implementation configuration. 89

6.9 Scenario A4 Pareto front architecture performances. 89

6.10 Scenario B1 MOE/RNAS algorithm implementation configuration. 96

6.11 Scenario B1 Pareto front architecture performances. The performance of

the LSTM architecture is included for reference. 99

6.12 Scenario B2 Pareto front architecture performances. 103

6.13 Scenario B3 MOE/RNAS algorithm implementation configuration. 105

6.14 Scenario B3 Pareto front architecture performances. 105

6.15 Scenario B4 MOE/RNAS algorithm implementation configuration. 107

6.16 Scenario B4 Pareto front architecture performances. 109

viii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Introduction

The artificial neuron is a mathematical function whose development draws inspiration

from the neurons found in the mammalian brain [56, 73, 76]. Multiple artificial neurons

can be grouped in layers and connected to other neurons in different layers to form an ar-

tificial neural network (NN). NNs are machine learning models capable of approximating

non-linear mathematical functions [34].

The structure of the NN is referred to as the NN’s architecture, and different NN ar-

chitectures exist to solve problems such as computer vision, forecasting, natural language

processing, and more [31, 35, 60].

Recurrent neural networks (RNNs) are a set of specialized NN architectures that are

designed specifically to learn from data with sequential or prominent temporal structures

by simulating a discrete-time dynamical system [54, 57, 67]. The RNN architecture

contains a hidden state component, which serves to provide a feedback connection into

the NN. This hidden state allows the RNN to retain information as it progresses through

the individual time steps of a particular input sequence [57, 67], thereby allowing the

RNN to have a form of memory [12].

Designing a NN architecture for a specific problem is a nontrivial task and often re-

quires a high level of human expertise [84, 90, 96]. A number of ways have been proposed

to automate the task of NN architecture design, which is currently being researched un-

der the neural architecture search (NAS) paradigm [24, 96]. NAS aims to automatically

find NN architectures for a provided dataset with minimal human intervention, and has

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 2

already been successful in finding NN architectures that outperform state-of-the-art NN

architectures designed by human experts [24, 50, 88].

Different NAS techniques exist for finding well-performing NN architectures, such as

reinforcement learning (RL) methods [96], evolutionary algorithm (EA) methods [52],

gradient-based methods [13], and more. Evaluating the performance of multiple NN

architectures can become a computationally expensive task [42, 96], and a number of

techniques have been proposed that attempt to improve the efficiency of NN architecture

performance evaluation in NAS [35, 41, 94].

The majority of modern NAS studies focused on convolutional neural network (CNN)

architecture search [32, 88]. Aside from Bayer et al. [6], there have not been any

significant investigations into the use of multi-objective EAs for RNN architecture search.

Furthermore, most of the methods proposed to make EA-based NAS methods more

efficient have not been investigated in the context of RNN architecture search, e.g.,

network morphism with destructive network transformations [24].

The main purpose of this work is to develop a novel multi-objective EA-based NAS

method to generationally evolve RNN architectures that are capable of learning from a

provided dataset. Additionally, the use of network transformations during RNN archi-

tecture offspring generation are studied to gain a better understanding of how network

transformations can be used for the optimisation of RNN architecture complexity related

objectives.

The rest of this chapter is organised as follows. Section 1.1 discusses the objectives

of the research. The contributions of the study are presented in Section 1.2. Finally, an

outline of the remainder of this dissertation is provided in Section 1.3.

1.1 Objectives

The main objective of this study is to develop a multi-objective evolutionary algorithm

based NAS method for RNN architectures. The following sub-objectives have been

identified in working towards achieving the main objective:

1. Provide an overview of NNs and EAs that are used in this study.

2. Provide an overview of the existing NAS methods.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 3

3. Investigate NAS methods for RNN architectures to gain a better understanding of

the RNN architecture search space and encoding schemes.

4. Investigate the techniques that have been proposed to make NN architecture per-

formance evaluation in NAS more efficient.

5. Propose a modular RNN architecture search space and encoding scheme.

6. Propose a multi-objective EA RNN architecture search method that can explore

the modular RNN architecture search space.

7. Investigate the techniques that can be implemented to make the proposed RNN

architecture search method more efficient.

8. Implement the proposed multi-objective EA NAS method to search for RNN ar-

chitectures for natural language processing datasets.

9. Identify any shortcomings in the proposed RNN architecture search method, and

propose possible future enhancements.

1.2 Contributions

The contributions of this study are summarised as follows:

• A cell-based RNN architecture search space is introduced. The proposed search

space is expressive enough to allow for the discovery of novel RNN units, and allows

for constructive as well as destructive network transformations.

• Appropriate network transformations that allow for the optimisation of RNN archi-

tecture complexity related objectives are proposed. Destructive network transfor-

mations are defined that remove units from the RNN architecture, which reduces

the overall complexity of the RNN architecture and effectively leads to a decrease

in the computational resource demand of the model.

• A modular RNN architecture block encoding scheme that allows for low-level RNN

architecture evolution is proposed. Each block represents a single unit in the RNN

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 4

architecture, and an RNN architecture can then be encoded using a number of

blocks. An RNN architecture encoded by a number of connected blocks can be

easily transformed by adding or removing blocks. The modularity of the block

encoding scheme allows for the analysis of the low-level changes made to an RNN

architecture during evolution. Additionally, by considering the number of blocks

an RNN architecture contains as an architecture complexity objective, the effect

of the network transformations on the resulting model accuracy can be studied

specifically within a multi-objective optimisation paradigm.

• MOE/RNAS: a novel multi-objective EA-based NAS algorithm for RNN architec-

ture search is proposed. The MOE/RNAS algorithm relies on an NSGA-II inspired

multi-objective EA for the exploration of the cell-based RNN architecture search

space. The MOE/RNAS algorithm employs a network morphism approach for

offspring generation instead of performing any explicit crossover or mutation op-

erators. The destructive network transformations considered by the MOE/RNAS

algorithm’s network morphism component allow for the optimisation of RNN archi-

tecture complexity related objectives along with the optimisation of an architecture

performance objective, such as model accuracy.

• An empirical analysis of the MOE/RNAS algorithm’s effectiveness to find RNN

architectures for natural language processing (NLP) datasets is conducted.

• Experiments show that the proposed MOE/RNAS algorithm is capable of evolving

RNN architectures to optimise multiple objectives, which includes at least one RNN

architecture complexity objective.

• Empirical results show that the proposed MOE/RNAS algorithm can automatically

find novel RNN architectures that dominate manually designed RNN architectures

when multiple objectives are considered for RNN architecture performance evalu-

ation.

1.3 Dissertation Outline

The remainder of the dissertation is organised as follows:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 5

• Chapter 2 discusses NNs, with a focus on RNNs.

• Chapter 3 discusses EAs and multi-objective EA based problem solving.

• Chapter 4 discusses NAS and reviews the currently available literature on EA

based NAS methods.

• Chapter 5 proposes the MOE/RNAS algorithm: a novel multi-objective EA-based

NAS method to search for RNN architectures, which is presented in the form of a

framework.

• Chapter 6 empirically analyses the effectiveness of the proposed MOE/RNAS

algorithm to search for RNN architectures in the NLP domain.

• Chapter 7 provides a summary of all the findings and conclusions of the presented

work, and includes a list of ideas for future work based on the presented work.

The following appendices are included:

• Appendix A provides a list of the important acronyms used or newly defined in

the course of this work, as well as their associated definitions.

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Artificial Neural Networks

Artificial neural networks (NNs) are machine learning algorithms capable of approxi-

mating various mathematical functions [34], and gained popularity as a result of their

real-world applications, some of which include computer vision, forecasting, natural lan-

guage processing, and more [31, 35, 60]. Underlying NNs is the artificial neuron [78].

The artificial neuron owes its existence to earlier neuroscientific research and hypotheses

around the electrochemical signals in the brain that drive mental activity [56, 73, 78].

Researchers in the field of computer science derived interpretations of these hypotheses

that formed the foundation of the artificial neuron [56], along with inspiration from the

biological structure of the neurons found in the mammalian brain [56, 73, 76].

The rest of this chapter outlines the fundamentals of NN architectures and the im-

portance of proper NN architecture design in the context of machine learning problem

solving. Section 2.1 describes the underlying components that make up the NN struc-

ture. In Section 2.2, the recurrent neural network and its architecture are discussed in

greater detail. Section 2.3 concludes the chapter.

2.1 Neural Network Structures

The brain cells, called neurons, receive electrochemical signals as inputs. These signals

can originate from a vast array of sources, which includes the nervous system, other cells,

or neurons [78]. A particular neuron can activate (or fire) if some linear combination of

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 7

the inputs it receives exceeds some expected (hard or soft) threshold [76]. This event

results in another electrochemical signal being sent onwards to subsequently connected

neurons. The individual neurons will learn over time what best threshold is the appro-

priate boundary for deciding whether the neuron should activate/fire a signal onwards

(i.e., send an output signal).

The rest of this section discusses the artificial neuron that was designed based on

the biological neuron, and how multiple artificial neurons can be connected in a network

that is capable of approximating complex mathematical functions. The artificial neuron

is discussed in Section 2.1.1. Section 2.1.2 discusses activation functions, Section 2.1.3

discusses neural network architectures, and Section 2.1.4 discusses the training of neural

networks.

2.1.1 Artificial Neuron

The artificial neuron, as it was introduced in 1943 by McCulloch and Pitts [56], aims to

mimic a similar behaviour to that of the biological neuron, in what is fundamentally a

mathematical paradigm. The artificial neuron accepts some linear combination of inputs,

and returns a relevant output value that is calculated for the particular combination of

inputs. A weight vector, w, is incorporated wherein each of the neuron’s inputs, xn,

has a specific weight value associated with it such that for n inputs, wn ∈ R. These

weight values represent the connection strength of the respective inputs [9]. The artificial

neuron aggregates the weighted sum of the respective inputs and applies the result to

an activation function, which determines the output of the artificial neuron [78]. A bias

value is also incorporated which involves augmenting the input vector of the artificial

neuron to include an additional input xn+1. Setting the value of xn+1 to −1 allows for the

corresponding weight wn+1 to serve as a threshold value that influences the aggregated

weighted sum of the artificial neuron’s inputs, thereby controlling when the activation

function triggers. The net input signal of the artificial neuron is calculated by:

net =
n∑
i=1

xiwi − b (2.1)

where b represents the bias value such that b = xn+1wn+1 = −wn+1 [26]. The output

value of the artificial neuron is calculated by applying the net input signal to an activation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 8

function, f , such that:

ŷ = f(net) (2.2)

which can be seen in Figure 2.1.

Rosenblatt [73] introduced an artificial neuron, called a perceptron, that employs the

step activation function. The step activation function is a linear activation function that

compares the net input signal of the neuron with the threshold θ to determine the output

signal. The output of the step activation function is 1 if the net input signal is more

than the threshold θ, and zero otherwise. There are other activation functions that can

be used instead of the step activation function, which is discussed below.

2.1.2 Activation Functions

Activation functions serve to determine the output of the artificial neuron [78], and

play an important role in enabling artificial neurons to learn higher order polynomials

[64]. The artificial neuron’s activation function can either be linear or non-linear. Linear

activation functions include the identity and linear functions, among others. Typical non-

linear activation functions include the logistic (sigmoid) function, hyperbolic tangent,

rectified linear unit, softmax, and more.

A single artificial neuron can only represent linearly separable functions [26]. Con-

necting multiple artificial neurons with non-linear activation functions in a network to

form a NN allows for the representation of non-linearly separable functions [34]. Further-

more, Nwankpa et al. [64] noted that non-linear activation functions are differentiable

which is an important requirement for back-propagated training of networks of artificial

neurons (see Section 2.1.4).

The unipolar sigmoid function (also called the logistic function) is a commonly used

non-linear activation function that is defined by:

σ(x) =
1

1 + e−x
(2.3)

with an output range limited to (0, 1). The bipolar sigmoid function, on the other hand,

has an output range of (−1, 1) and is defined by:

σ(x) =
1− e−x

1 + e−x
. (2.4)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 9

Figure 2.1: The artificial neuron.

The hyperbolic tangent function, which is also sigmoidal, is defined by:

tanh(x) =
ex − e−x

ex + e−x
(2.5)

with an output range of (−1, 1). A comparison between the unipolar sigmoid, bipolar

sigmoid, and hyperbolic tangent activation functions can be seen in Figure 2.2. Table

2.1 and Table 2.2 list the function, range and derivatives of some commonly used linear

and non-linear activation functions, respectively.

Choosing an appropriate activation function will depend on the specific task or prob-

lem to be solved. Sharma et al. [78] noted that a general rule of thumb for selecting

an activation function does not exist, and the process of selecting an activation function

may require experimentation with different activation functions to determine which yield

the best results. Sharma et al. [78] do however provide some suggestions for choosing

an activation function, for example: a combination of sigmoidal functions can give bet-

ter results for classification tasks and the ReLU activation function often yields better

results when used as the activation function of neurons in the hidden layers of the NN

[78].

2.1.3 Neural Network Architectures

Artificial neurons can be grouped in layers and connected to other neurons in different

layers to form a NN. The structure of a NN, such as the number of neurons and how

these neurons are connected, is referred to as the NN architecture [54]. Fundamentally,

the NN architecture can either follow a feed-forward network structure or a recurrent

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 10

Figure 2.2: Graph depicting the unipolar sigmoidal, bipolar sigmoidal and hyperbolic tangent

activation functions.

network structure [76]. The connections between neurons in a feed-forward network are

orientated in a single direction, with no loops or internal state [76], an example of such

a NN is shown in Figure 2.3.

The recurrent neural network (RNN) structure has connections that feed outputs

back into the network as inputs [57, 76]. The recursive structure of the recurrent net-

work architecture makes it more complicated, and more difficult to train compared to

feed-forward network architectures [57, 63, 76]. RNNs are discussed in more detail in

Section 2.2.

NNs with non-linear activation functions are capable of approximating any continuous

function [34] requiring at minimum a single hidden layer [85]. In such a configuration,

the simplest NN is composed of three layers: an input layer, a hidden layer, and an

output layer. The input layer receives the raw data values and serves to send these

inputs onwards to the subsequent hidden layer [78]. Hidden layers allow for increasingly

complex decision-making on a more abstract level [28]. The output layer receives as

its input, the output of the layer immediately preceding it. The output layer returns

the final result (or output) of the NN. When neurons are connected to form a NN, the

resulting model can be used to represent a non-linear function [34, 78].

Calculating the output of a NN starts by obtaining the output values of the hidden

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 11

Activation function Function Range Derivative

Identity f(x) = x (−∞,∞) f ′(x) = 1

Linear f(x) = ax (−∞,∞) f ′(x) = a

Table 2.1: Linear activation functions from [64, 78, 80]

units in the NN. For a given hidden unit that accepts n linear combination of input

values and a bias unit, the weighted sum of these inputs are calculated by:

aj =
n+1∑
i=1

wjixi. (2.6)

The final activated output of the particular hidden unit, zj, is then determined by

applying the chosen activation function g(·) to the result of equation (2.6) such that:

zj = g(aj). (2.7)

Given the output values for M hidden units, the output values for each of the k output

units in the NN can then be calculated. As with the hidden units, this starts by obtaining

the weighted sum of the output unit’s inputs such that:

ak =
M+1∑
j=1

wkjzj (2.8)

The chosen activation function is then applied such that the final output of each output

unit is given by:

ŷk = g̃(ak) (2.9)

where g̃ need not be similar to the activation functions chosen for the hidden units.

NN architecture design is a time-consuming task which requires expert knowledge

[84, 90, 96]. The results from Jozefowicz et al. [37] and Merity et al. [59] showed the

significance of NN architecture design, wherein they compared the validation and test

results of different RNN architectures and found that appropriate architectural adapta-

tions can lead to improved model performance (see Section 2.2.3). Bengio [7] conjectured

that improper NN architecture design may lead to computational and statistical con-

sequences which can result in the NN being unable to produce good outputs for new

inputs that were not used during training.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 12

Activation func-

tion

Function Range Derivative

Logistic (sig-

moid)

f(x) = 1
1+e−x (0, 1) f ′(x) = f(x)(1− f(x))

Hyperbolic tan-

gent

f(x) = ex−e−x

ex+e−x (−1, 1) f ′(x) = 1− f(x)2

Softmax f(x)i = exi∑K
k=1 e

xk

for i = 1, ..., K

(0, 1) ∂fi(x)
∂xj

= f(x)i(x)(δij−fj(x))

Rectified Linear

Unit (ReLU)

f(x) =

x, if x ≥ 0

0, if x < 0

= max{0, x}

(0,∞) f ′(x) =
1, if x > 0

0, if x < 0

undefined, if x = 0

Leaky ReLU

(LReLU)

f(x) =x, if x ≥ 0

0.01x, if x < 0

(−∞,∞) f ′(x) =

1, if x ≥ 0

0.01, if x < 0

Exponential

Linear Unit

(ELU)

f(x) =x, if x ≥ 0

α(ex − 1), if x < 0

(−α,∞) f ′(x) =1, if x ≥ 0

f(x) + α, if x < 0

Table 2.2: Non-linear activation functions from [64, 78, 80]

Bengio [7] suggested that the depth of a NN is an important design decision, since

deep networks can solve complex problems easier compared to shallow networks. The

number of layers a NN has constitutes the depth of that particular network [67]. Deep

NNs with more hidden layers have proven to be significantly more efficient at approxi-

mating functions compared to shallow NNs [7, 67].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 13

Figure 2.3: A neural network with two hidden layers.

2.1.4 Training Neural Networks

Training NNs consists of implementing and executing a specific training algorithm that

iteratively updates the NN’s parameters so that the NN can more closely approximate

the mapping from the input values to the relevant output value(s) [30]. The parameters

of a NN are its weight and bias values [30], and updating these parameters during the

training process is how the NN learns to approximate the relevant function. The terms

training and learning are commonly used interchangeably.

The training of a NN is done in either supervised, unsupervised, or reinforcement

learning paradigm [9]. Supervised learning describes an environment in which the NN

is trained on a labeled dataset where each input value has a known (expected) output

value, called the target value [9]. Unsupervised learning, on the other hand, does not

have a labeled dataset with target values. Instead, the objective of training a NN in

an unsupervised setting is for the NN to learn useful structures or clusters in the data

[76]. With reinforcement learning, the model is given rewards for returning good output

values [76]; the model is then expected to learn which of its prior actions resulted in

good outputs [63]. For this study, it is only the supervised learning paradigm that is of

interest.

During training in a supervised learning environment, the labeled dataset is randomly

split into two separate sets: a training set and a validation (generalisation) set. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 14

training set is used for training the NN, whereas the validation set is used for evaluating

the NN, that is, to test its generalisation ability on the unseen data that the NN has

not been trained on. As part of the training process, the training dataset is traversed

so that each of the input patterns in the training dataset is fed forward through the NN

to obtain the predicted output value for the particular input pattern. Using an error

function, the error value is then computed for the particular input pattern by comparing

the NN’s predicted output value with the expected (target) output value. The total

loss of the NN is then determined by aggregating the error values of some set of input

patterns. Commonly used error functions include the sum of squared errors (SSE):

E =
1

2

N∑
n=1

K∑
k=1

(ŷnk − ynk)2 (2.10)

and cross-entropy:

E = −
N∑
n=1

K∑
k=1

(ynklog(ŷnk) + (1− ynk) log(1− ŷnk)) (2.11)

for n = 1, ..., N examples in the labeled dataset and k = 1, ..., K output nodes where ŷnk

represents the predicted output value of the kth output node for the nth input pattern

and ynk represents the target value of the kth output node for the nth input pattern [30].

A common approach is to use a training algorithm that employs gradient descent

to explore the search space of possible NN parameter values in order to minimize the

calculated loss value of the NN [30, 63]. The backpropagation training algorithm is

one such gradient-based training technique that uses the chain rule for calculating the

partial derivatives (gradient) of the error function with respect to the parameters of the

NN [9, 30]. The gradient vector is then used to update the NN’s parameters during a

backward pass of the training algorithm. For a given labeled dataset containing N input

patterns, consider the loss value Em as a differentiable function such that

Em = Em(ŷ1, ..., ŷk)

where ŷk represents the predicted output value of the kth output node, where 1 ≤ m ≤ N

such that m defines the number of input patterns to consider for error value aggregation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 15

For a given weight value, wkj, between units ak and aj, the gradient for wkj is calculated

by
∂Em

∂wkj
=
∂Em

∂ak

∂ak
∂wkj

∂netk
∂wkj

=
∂Em

∂ak

∂ak
∂wkj

ŷk (2.12)

for the kth output node ŷk, and the wkj weight value is then updated by

∆wkj ← υ

(
−∂E

m

∂wkj

)
(2.13)

where υ denotes the learning rate, a hyper-parameter that is used as a multiplicative

factor for scaling the gradient [9].

Updating the NN weight values can be done for every input pattern in the training

dataset, which is called stochastic training. An alternative approach can be followed

where the input patterns of the training dataset are split into m sized subsets. A set

of m input patterns is referred to as a batch. After each of the inputs in the batch

has been evaluated, a cumulative error value for the batch is calculated, which is then

used for weight updates. For smaller values of m that are close to 1, gradient descent

trajectory towards the minima is stochastic whereas larger values for m closer to the

total number of input patterns in the training dataset result in a smoother optimization

trajectory towards the minima. Batch training refers to the case where the training

dataset is treated as a single batch, whereas mini-batch training considers smaller batch

sizes. An illustration of the varying trajectories can be seen in Figure 2.4, which shows

the best-case scenarios for each of the respective trajectories.

The training process is repeated until some pre-defined condition is met, such as

the maximum number of iterations (called epochs), or a threshold for the calculated

loss value has been reached, to name just a few. It is possible to train a NN for too

long, resulting in the NN exhibiting very good performance over the training dataset,

but poor performance on unseen data; this is referred to as overfitting [63]. Overfitting

can also occur when the NN architecture has an unnecessarily high level of complexity,

thus having more parameters than what is required [76]. Additionally, a model is said

to be overfitting when it has a high variance and a low bias [9]. Variance measures

the difference among predicted outputs of the model for similar input values whereas

bias measures the difference between the predicted output values and the target values

[9]. NNs that have not been trained for a sufficient number of epochs may exhibit poor

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 16

Figure 2.4: Illustration of varying gradient descent optimization trajectories based on the

number of input patterns considered.

performance on both the training dataset and unseen data, which is called underfitting.

Underfitting describes the scenario where a model has a low variance and a high bias

[9, 27]. Underfitting can also be caused by a NN architecture with an insufficient number

of parameters, which means that the NN architecture does not have enough artificial

neurons to learn from the training data [7].

2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a set of specialized NN architectures that are

designed specifically to learn from data with sequential or prominent temporal structures

by simulating a discrete-time dynamical system [54, 57, 67]. RNNs have been applied

to a number of problems which categorically include forecasting [43], speech recognition

[29], natural language processing [59, 61], and more.

The RNN architecture is discussed in more detail in Section 2.2.1. Section 2.2.2

discusses RNN training and the problems often encountered when training RNNs, and

Section 2.2.3 provides an overview of RNN architectures that have been designed to deal

with the problems encountered during RNN training.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 17

2.2.1 Recurrent Neural Network Architecture

The main characteristic of the RNN is the hidden state that forms part of the archi-

tecture. The hidden state serves to provide a feedback connection, which allows the

NN to retain information as it progresses through the time steps of the input sequence

[57, 67], thereby allowing the RNN to have a form of memory [12]. This hidden state

is an essential component of the RNN architecture that enables more efficient process-

ing of datasets with sequential attributes or significant time dependencies [12, 43]. For

feed-forward NNs to process datasets with significant temporal structures, time needs

to be represented explicitly by adding input nodes corresponding to the relevant time

steps of the input sequence, whereas the recursive structure of the RNN allows the NN

to represent time implicitly [23].

There exist, among a few, two particularly interesting ways that have been introduced

to provide the aforementioned feedback connection into the network. The first one was

introduced by Jordan [36], who proposed feeding the output layer back into the NN. The

Jordan [36] architecture allows the network to incorporate the sequence of output values

through time. Elman [23] proposed an alternative approach a few years later that feeds

the hidden layer back into the NN instead. The Elman [23] approach allows the network

to have better recall of previously encountered inputs.

In what is fundamentally its most basic form, the simple recurrent neural network

(SRN) accepts a sequence of T inputs, (x1, ...,xT), contains a hidden state ht, and

produces an output ŷt, where t represents a specific time step in the input sequence

[12, 29, 57]. The hidden state of the RNN architecture proposed by Jordan [36] is given

by:

ht = fh(xt, ŷt−1)

where ŷt−1 refers to the output of the RNN at time step t − 1 and fh is the activation

function of the hidden state. The RNN architecture proposed by Elman [23], on the

other hand, calculates the value of the hidden state by:

ht = fh(xt,ht−1)

where ht−1 refers to the hidden state of the preceding time step. The output of the

recurrent network, ŷt, is then given by ŷt = fo(ht) where fo can be a different activation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 18

function to the one chosen for the hidden state. The convention followed by this study

assumes the architecture that was proposed by Elman [23] as the default for the basic

RNN or the simple RNN, unless otherwise stated.

More formally, the hidden state, ht, and the output, ŷt, of the RNN architecture are

defined by:

ht = fh(Whxt + Uhht−1 + bh), (2.14)

ŷt = fo(Wyht + by) (2.15)

where W and U are weight matrices and b a bias value [29]. It is often the case that

for fh and fo element-wise non-linear activation functions are used [15, 67]. Sigmoidal

activation functions, such as the logistic (sigmoid) function or the hyperbolic tangent

function, are typically used for fh [12, 67]. There are some challenges associated with

updating the W and U weight matrices during gradient-based training of the RNN as a

result of the RNNs recursive structure. These challenges are discussed in the following

section.

2.2.2 Training Recurrent Neural Networks

Training RNNs is often considered more complicated than training feed-forward NNs

[8, 12, 18, 67, 68]. Due to the temporal structure of the input data that the RNN

accepts, time-delayed updating of parameters is required during training [57]. A gen-

eralization of the backpropagation training algorithm discussed in Section 2.1.4, called

backpropagation through time (BPTT), proposed by Rumelhart et al. [75], is commonly

used for training RNNs [8, 68]. The BPTT algorithm stores the activations of the neu-

rons as it progresses through time, and during the backward pass, these activations are

recursively used for calculating the gradients with respect to the RNN parameters [8, 75].

During training, the RNN is “unrolled” in time, essentially duplicating the model for

each time step [68], which can be seen in Figure 2.5. The error values for all time steps

are accumulated and then used for relevant weight adjustments [68].

Bengio et al. [8] have shown that the RNN suffers from gradient problems during

gradient-based training where input sequences with longer-term dependencies are used.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 19

Figure 2.5: A recurrent neural network (left) and an unrolled recurrent neural network (right).

In this case, during backward propagation, the gradient values will either grow exponen-

tially, or go exponentially fast to zero, such that they become insignificant [8, 68]. These

problems are referred to as the exploding and vanishing gradients, respectively [8].

Pascanu et al. [68] proposed an approach called gradient-clipping to deal with the

exploding gradients. This approach is presented as a mechanism that quite simply

rescales the gradient values if they are larger than some predefined threshold value.

Hochreiter and Schmidhuber [33] proposed a new RNN architecture that is capable of

addressing the vanishing gradient problem. The architecture proposed by Hochreiter

and Schmidhuber [33] is discussed in the next section.

2.2.3 Long Short-Term Memory

In an attempt to address the recurrent network’s vanishing gradient problem, Hochreiter

and Schmidhuber [33] introduced a novel RNN architecture dubbed Long Short-Term

Memory (LSTM) [33]. The LSTM deals with the vanishing gradient problem by em-

ploying memory cells and gate units [33] with the intuition being that the respective

units can each form some type of oscillating mechanism, acting like soft switches, to

control the amount of information flowing through the network [43]. An illustration of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 20

the LSTM architecture can be seen in Figure 2.6.

The various gate units of the LSTM are defined by:

ft = σ(Wxfxt + Whfht−1 + bf), (2.16)

it = σ(Wxixt + Whiht−1 + bi), (2.17)

ot = σ(Wxoxt + Whoht−1 + bo), (2.18)

gt = tanh(Wxgxt + Whght−1 + bg), (2.19)

ct = ft · ct−1 + it · gt, (2.20)

ht = ot · tanh(ct), (2.21)

where ft is the forget gate, it the input gate, ot the output gate, and gt is called the

input modulation gate. The sigmoid activation function is used for the f , i, and o

gates, which allows the architecture to remain differentiable [40]. ct is often referred to

as the “memory cell” or “cell state”, and contains information (memory content) from

previously encountered inputs of a particular input sequence [19, 38].

The f , i, and o gates serve to control the memory cell where the f gate resets the

cell to zero, i controls when the memory cell is updated, and o controls how much of the

information is fed to the hidden state [40]. The input modulation gate, g, is responsible

for additively modifying the contents of the memory cell. The modulation of the g

gate is what allows the gradients of the memory cell to flow backwards through time

uninterrupted [38, 40].

The use of these various gate units in the LSTM architecture has inspired a number

of research publications related to RNN architectures [15, 38, 68]. Additionally, other

papers were published where the use of the LSTM on specific problems such as language

processing, were investigated [83]. Among these published works were approaches where

the LSTM was implemented in different configurations, such as using multiple stacked

LSTMs in one network [43], bi-directional LSTM networks for encoding and decoding in

translation tasks [15], LSTM networks that share embedding layers in language process-

ing tasks [58], combining the LSTM architecture with convolutional neural networks for

language model embedding [37], and more.

One notable alternative to the LSTM is the Gated Recurrent Unit (GRU) introduced

by Cho et al. [15] in 2014. The premise of the GRU is that it allows the recurrent unit

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 21

Figure 2.6: LSTM architecture [33].

to capture the dependencies of different time scales [18]. The GRU employs the same

gate-unit philosophy of the LSTM, and the GRU’s gate units are defined by:

zt = σ(Wxzxt + Whzht−1 + bz), (2.22)

rt = σ(Wxrxt + Whrht−1 + br), (2.23)

nt = tanh(Wxnxt + Wn(rt · ht−1)), (2.24)

ht = zt · ht−1 + (1− zt) · nt. (2.25)

Unlike the LSTM, the GRU does not have a separate memory cell. The GRU uses the

update gate zt and reset gate rt to maintain the unit’s memory content, which represents

the relevant information from previously encountered input steps of the particular input

sequence.

The GRU’s update gate zt controls how much of the unit’s memory content is retained

and when new content gets added to the hidden state ht [19]. The update gate zt is

therefore reminiscent of the input gate it of the LSTM. The reset gate rt of the GRU

serves to modulate the states of the previous step ht−1, thereby allowing the GRU to only

consider the previous hidden states if they are deemed necessary [15]. The functionality

of the GRU’s reset gate is therefore similar to that of the LSTM’s forget gate ft. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 22

LSTM uses its output gate ot to modulate the exposure of the memory cell’s content,

whereas the GRU does not have a gate unit responsible for controlling memory content

exposure, and instead exposes the full memory content at each time step [19]. The next

section discusses some specific applications of RNNs which include results from studies

where the LSTM and GRU were compared on specific machine learning tasks.

Applications of Recurrent Neural Networks

Both the LSTM and GRU architectures have been successfully used in a number of ma-

chine learning tasks, some of which include arithmetic problems of sequences of numbers

[38], sequence prediction in context-free languages [83], classification tasks in the medical

domain [5], and language modeling [19, 40], among others.

A standard language modeling task is often used for benchmarking RNN architecture

performance [37, 38, 59, 96], and the objective of the standard language modeling task is

to provide the model with some context, such as a sequence of consecutive words, which

the model should use to predict the next word in the sequence [61]. This task can also

be performed on the character-level as opposed to word-level modeling [83].

Calculating the performance of a model that is implemented for the standard lan-

guage modeling task is based on how well the model is able to predict the next word

(or character), which is commonly represented by a metric called perplexity [37, 39].

Perplexity measures how accurately a model can predict the next word, such that given

a test set DG = d1d2...dQ, the perplexity is calculated by:

PP (DG) = P (d1d2...dQ)−
1
Q

= Q

√
1

P (d1d2...dQ)

normalized by the number of words [39]. As noted by Jurafsky and Martin [39], the

chain rule can be used to expand the probability of DG such that:

PP (DG) = Q

√√√√ Q∏
i=1

1

P (di|d1...di−1)
(2.26)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Artificial Neural Networks 23

Zaremba et al. [92] have reported a 78.4 test perplexity using a large machine learning

model configuration based on the LSTM architecture, comprising 66M parameters [59],

after being trained on the Penn Treebank dataset [61]. In a later publication, Merity et

al. [59] have proposed an alternative configuration of an LSTM-based model, wherein a

test perplexity of 52.8 on the same dataset was achieved. Jozefowicz et al. [38] compared

the LSTM and GRU architectures on the same language modeling task, and found that

the GRU-based model achieved a test perplexity of 91.7 whereas the model with the

LSTM architecture in their study achieved a test perplexity of 81.4 [38].

These differences in model performance are noteworthy, as it shows the impact of

the overall machine learning model configurations, given that the same underlying RNN

architectures were used, such as the LSTM and GRU. Designing a machine learning

model implementation for such a task can be a difficult and time-consuming process

[96]. Apart from merely considering the test and validation metrics of the model to

evaluate the model’s performance, some real-world applications may also consider other

factors, such as the number of parameters a model has, the amount of computational

resources required by the model, and more [17, 24, 84], all of which could contribute

towards the complexity of designing and implementing the appropriate machine learning

model.

2.3 Summary

This chapter discussed the fundamentals of NNs and the different NN architectures that

exist. Additionally, the training of NNs was discussed along with the problems often

encountered when training specialized NN architectures such as RNNs. The importance

of NN architecture design was also highlighted in the context of overall machine learning

model performance.

The next chapter discusses evolutionary algorithms and how they can be used for

NN architecture design.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Evolutionary Algorithms

Natural evolution, or biological evolution, has successfully produced diverse species that

are capable of adapting to dynamic environments [81]. Fundamentally, natural evolution

is based on a number of principles, which include a trial-and-error problem solving strat-

egy that finds solutions by employing a survival of the fittest methodology in a process

called natural selection [62, 81].

Many computational problems require searching an exceptionally large number of

possibilities to find solutions [44, 62]. It is also often expected of the chosen search

methodology to be adaptive to changes in its environment, such as robotic controls in

variable environments [62], amongst others.

Evolutionary computation (EC) is a field of computer science research that comprises

a number of natural evolutionary inspired computer-based systems and techniques for

problem solving [26, 81]. Evolutionary algorithms (EAs) are a set of algorithms in EC

that were designed based on natural evolutionary principles for solving problems by

employing operators such as selection and recombination to find the fittest solutions in

a population-based environment [26, 81].

EAs have been used for solving a number of problems, which include mathemati-

cal problems [74, 95], optimisation problems [1, 11], and more. EAs have also been

successfully implemented for automated NN architecture design [3, 6].

This chapter provides an overview of EAs and how they are used for multi-objective

problem solving. Section 3.1 outlines the fundamental components of the EA. Multi-

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 25

objective EA-based problem solving is discussed in Section 3.2. Section 3.3 concludes

the chapter.

3.1 Evolutionary Algorithm Fundamentals

The EA describes a fundamentally stochastic search methodology for finding one or

more solution(s) to a given problem by employing the principles of natural evolution

[26, 62]. The general scheme of the EA involves an evolutionary search process that starts

by creating and initialising a population of individuals, i.e., a collection of candidate

solutions to the problem [26].

For each of the candidate solutions, a fitness value is evaluated, which represents

the quality of the particular solution to the problem [26]. The fittest individuals in

the population are then selected for reproduction; these individuals are referred to as

parents.

The EA includes a recombination stage that comprises crossover and mutation op-

erators for generating new individuals from the selected parents; the newly generated

individuals are referred to as offspring. The crossover and mutation operators are dis-

cussed in more detail in Section 3.1.5.

The fitness for each of the individuals in the offspring population is then evaluated,

and the offspring are introduced into the population to form a combined population. The

fittest individuals in the combined population are then selected to form the population

of the following generation. This evolutionary cycle is repeated until some predefined

termination condition is satisfied. The generic EA is outlined in Algorithm 1.

The EA explores the candidate solutions for a particular problem by using the fol-

lowing components [26, 62, 81]:

• the encoding method that provides a formal representation of solutions to the

particular problem;

• a function for evaluating the fitness of individuals;

• the method to use for creating and initialising the initial population;

• a strategy for selecting the parent solutions that will be used for recombination;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 26

Algorithm 1 Generic Evolutionary Algorithm [26, 81]

Initialization of population;

Evaluate fitness of population;

while termination condition(s) not met do

Select parents from population;

Recombination of selected parents to create offspring;

Evaluate the fitness of new offspring;

Select individuals that will form the population of the next generation;

end while

• the recombination operators to use for generating offspring;

• a strategy to select the surviving individuals from the combined population.

The rest of this section describes each of the aforementioned components in more detail.

Section 3.1.1 discusses the representation of individuals, Section 3.1.2 discusses the initial

population, Section 3.1.3 discusses the fitness evaluation of individuals, Section 3.1.4

discusses the selection of individuals, Section 3.1.5 discusses the recombination stage of

the EA, and Section 3.1.6 discusses the termination condition.

3.1.1 Representation of Individuals

The encoding strategy used for representing candidate solutions relates to the chromo-

somes of organisms found in nature [26]. Chromosomes contain a number of genes, and

organisms (individuals) pass their genes on to offspring through a recombination process,

also called reproduction [26, 81]. The genetic composition of an individual is referred to

as the genotype, whereas the phenotype describes the forming of the object within the

original problem context [26, 81].

The representation of individuals in the context of EAs for problem solving defines

how possible solutions should be specified and is responsible for defining the possible

collection of solutions that can exist, i.e., the search space [62, 81]. Representation of

individuals creates a link between the real world problem context and the solution search

space, where evolution happens [81].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 27

A class of genetically inspired EAs, called genetic algorithms (GAs), employs a repre-

sentation strategy where individuals in the search space are typically represented by a bit

string. The encoding of individuals is done using nx variables which describe an nx dimen-

sional search space [26]. If the variable values of the encoding structure are binary values,

an individual can be defined by b = (b1, ...,bi, ...,bnx), with bi = (b(i−1)nd+1, ..., bind
) such

that bl ∈ {0, 1} and nb = nxnd, the total number of bits [26]. The values of the encoded

bit string are not restricted to the binary domain, and there are methods for using bit

strings with integer or floating point values [26]. Other methods of representation include

permutations of integers [22], and trees [26], amongst others.

3.1.2 Initial Population

The first step of the EA search process involves creating and initialising the first set

of candidate solutions, called the initial population. It is commonly found that the

initial population is randomly generated from the defined search space [26]. Randomly

initialising the initial population introduces diversity into the population, and allows for

uniform sampling of the search space [22, 26]. If there exist some known solutions that

are considered good, they can be included in the initial population at the discretion of

the designer, given that the fitness of the known solutions is objectively good based on

the chosen fitness evaluation method [22].

3.1.3 Fitness Evaluation

The fitness evaluation function is used to evaluate the absolute measure of fitness of

a particular candidate solution, and the survival of an individual depends on its fitness

value as determined by the fitness evaluation function [62, 81]. More formally, the fitness

function, f , is used to map the individual candidate solution representation into a scalar

value such that:

f : Γnx → R (3.1)

for a given nx dimensional candidate solution, and the data type Γ of the elements of

the representation [26].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 28

The fitness function is used to assign a single fitness value to an individual, but can

represent a number of objectives, which is discussed in more detail in Section 3.2. It is

important for the fitness function to provide an accurate representation of a particular

individual’s fitness measure, as the fitness values of candidate solutions are used during

the selection phase of the evolutionary cycle.

3.1.4 Selection

The selection process of the EA is directly related to the process of natural selection as

described in the Darwinian evolution theory, and thereby has an inherent responsibility

of ensuring fit individuals for subsequent generations [26]. The chosen selection method

also contributes toward the diversity of candidate solutions in the population.

The selective pressure of a particular selection method directly influences how long it

takes for the EA to produce a uniformly distributed population [26]. Selection methods

with a low selective pressure may converge prematurely to solutions that can be improved

on, which are referred to as suboptimal solutions [26]. Selection methods with a high

selective pressure can lead to a decrease in diversity among the population [26].

There are two stages during the evolutionary cycle at which selection is performed:

the selection of candidate solutions that will be used for recombination, and the selection

of individuals that form the population of the following generation.

Selecting candidate solutions that will be used for recombination is done with the

intention of passing their characteristics on to newer generations, to possibly find better

solutions [22, 81]. In this case, the selected individuals are referred to as the parents and

after being selected, some operators are used to generate offspring from these parents

during the recombination (or reproduction) phase [81].

Survivor selection, on the other hand, happens at a later stage during the evolution-

ary cycle [81]. After the recombination phase has concluded, the fitness values of the

newly generated offspring are evaluated, and the offspring are introduced into the overall

population of candidate solutions to form a combined population. Survivor selection is

then performed to select the individuals from the combined population that will form

the population of the subsequent generation, such that a constant population size is

maintained [22, 81].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 29

Generally, candidate solutions that were not selected during the survivor selection

phase, or found to have performed insufficiently compared to the other surviving in-

dividuals, are disposed of and therefore excluded in the following selection stages [22].

To ensure that the fittest solutions of the population survive, a process called elitism

can be incorporated into the survivor selection stage, which essentially copies the fittest

individuals to the following generation’s population without changing any of their char-

acteristics [26]. Selecting the surviving individuals may not necessarily be done purely

based on their fitness, and will depend on the particular selection method, which is

discussed in more detail below.

Selection Methods

The random selection method selects individuals from the population at random, with

disregard to their respective fitness values. The random selection method has a very low

selective pressure, since each individual in an ns sized population has a 1
ns

probability of

being selected [26].

An alternative selection method, called tournament selection, starts by randomly

selecting nts individuals from the population, such that nts < ns [26]. Out of the nts

selected individuals, those with the best fitness values are returned, resulting in a relative

fitness selection as opposed to absolute fitness selection across the entire population [81].

This approach to selection allows for more control over the selective pressure compared

to random selection, since an increased tournament size will lead to a relative increase

in selection pressure [26, 81]. The appropriate value of nts needs to be carefully selected,

as an nts value that is proportionally large compared to the overall population size, will

result in only the best individuals being selected, whereas nts values that are too small

may result in poorly performing individuals being selected [26, 62, 81].

A number of alternative selection methods exist, refer to [26, 81] for more extensive

discussion. This study is concerned with tournament selection methods that include

rank-based selection strategies within a multi-objective EA paradigm, which is further

discussed in Section 3.2.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 30

3.1.5 Recombination

Recombination describes the process wherein the characteristics of the selected parent

solutions are used to generate new candidate solutions, so that the characteristics of the

superior solutions can be passed on to the following generations [22, 26]. At the recom-

bination stage, crossover and/or mutation operators are used to create new offspring

solutions from the selected parent solutions [26].

The crossover operator consists of selecting the characteristics of some predefined

number of parents, which are then combined to create one or more new individual can-

didate solution(s) [26]. The crossover operator includes an asexual operator wherein

a single candidate solution is generated from one parent candidate solution, a sexual

operator where one or two offspring candidate solutions are created from two parent

candidate solutions, and multi-recombination that generates one or more offspring can-

didate solutions from a selection of more than two parent candidate solutions [26].

With typical binary string representations of individuals, the application of the

crossover operator starts by selecting a position from the parent representation, which

is called a point [81]. When two parent solutions are used for generating two offspring

solutions, the encoding of the parent solutions are split at the selected point and the

offspring solutions are created by exchanging the tails of the split parent solutions [81].

This crossover implementation is referred to as One-Point crossover, and can be seen in

Figure 3.1 [81]. More than one point can be used for crossover, and offspring are then

generated by taking alternative segments from the parent encodings [81]. For a more

detailed discussion of alternative crossover operators, refer to [26, 81].

The mutation operator randomly changes some characteristics of a given candidate

solution, and is useful for promoting diversity in the population [22, 26]. Mutation during

the recombination stage is controlled by a probability value, which can be set to a higher

value when exploring the first few generations to further contribute towards diversity,

and the probability value can then be decreased over time as the algorithm progresses

[26]. When a binary string representation of individuals is used, some number of values

in the encoding are randomly selected, and the values are flipped, i.e., changed from 1

to 0 or 0 to 1 [81]. Figure 3.2 illustrates a bitwise mutation operator applied to a single

individual, where three values are mutated.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 31

Figure 3.1: One-Point crossover of two parent solutions to generate two offspring solutions.

Smith and Eiben [81] pointed out that the recombination process is considered an im-

portant feature of the EA in general, and it is often found that the implementation of the

recombination process may differ between EA subclasses. This study is concerned with

the use of EAs in the context of RNN architecture design, which has some complexities

associated with applying crossover and mutation operators during offspring generation.

These complexities are discussed in Chapter 4, along with the concept of network mor-

phism, which is a method that can be used for RNN architecture recombination, as

opposed to explicit crossover and mutation based recombination.

3.1.6 Termination Condition

The EA will cycle through the selection, recombination, and evaluation stages until a

predefined termination condition is met. This termination condition can be defined in

a number of ways, which include the maximum number of generations that the evo-

lutionary cycle should run for, or when an acceptable candidate solution was found

[26, 62, 81], amongst others. Additionally, when no significant changes or improvements

are observed across the population over a number of consecutive generations, the EA has

converged and should be terminated [81]. Ideally, the termination condition should not

cause the termination of the EA that is too early (depending on the particular problem

context), and should allow for sufficient exploration of the search space across a number

of generations [26].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 32

Figure 3.2: Before and after applying the mutation operator on a single candidate solution

representation.

3.2 Multi-Objective Evolutionary Algorithms

A number of EA approaches exist that are capable of solving multi-objective problems

[26]. In general, for multi-objective problems, assuming the goal is to minimize the

respective problems, a vector-valued objective function F : Ro → Rn is defined for n

objectives, where n > 1, and o is the dimension of the decision vector x. The aim is

then to minimize the y objective vector such that:

y = F (x) = (f1(x), ..., fn(x)), (3.2)

where

x = (x1, ..., xo) ∈ Ro,

y = (y1, ..., yn) ∈ Rn,

in an Ro parameter space and Rn objective space [74, 93, 95].

The rest of this section provides a discussion on specific EA approaches for solving

multi-objective problems. Section 3.2.1 discusses the concepts related to weighted aggre-

gation and Pareto-based approaches for multi-objective problem solving. Section 3.2.2

outlines genetic algorithms and how they can be used for solving multi-objective prob-

lems.

3.2.1 Multi-Objective Problem Solving Approaches

Smith and Eiben [81] have postulated that in practice there exist many applications of

EAs that search for solutions in a single-objective paradigm when, upon further investi-

gation, they are essentially searching for solutions that represent multiple objectives, but

have been adapted to the single-objective paradigm in favour of reduced complexity [81].

Methods exist for assigning weight values to multiple objectives and then calculating the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 33

weighted sum of the sub-objectives to obtain a single scalar-value surrogate objective

value [26, 74]. The weight values for each of the sub-objectives are therefore implicitly

assumed, and might have an impact on the diversity of solutions found [74, 81].

Zhang and Li [71] introduced an approach that employs a weighted aggregation

method for dealing with multi-objective problems, dubbed Multiobjective Evolutionary

Algorithm Based on Decomposition (MOEA/D). The MOEA/D algorithm relies on a

combination of conventional multi-objective weighted aggregation and population-based

approaches [81], along with the adoption of a neighbourhood relation [93]. The multi-

objective problem is decomposed into a set of organically organized subproblems, also

called scalar objective optimization problems (SOPs), that each represent a weighted

aggregation of the respective objectives [93]. New solutions for each of the individual

subproblems are generated through the use of evolutionary operators that are applied to

neighboring solutions found within some proximity of the particular subproblem, which

is based on the Euclidean distance between solutions [81]. If a newly generated solution

is found to have achieved the best result for a subproblem, that particular solution is

then kept in memory by the subproblem until a new one is found that performs better

[93].

Zhang and Li [71] have shown that the MOEA/D algorithm is able to scale well

with many-objective optimization problems, which generally refers to problems that

have four or more objectives [20]. Zhang and Li [71] also found that for many-objective

problems, the MOEA/D algorithm performs comparably to other algorithms that do not

use weighted aggregation approaches.

An alternative to the aggregated weighted approach for solving multi-objective prob-

lems is the Pareto-based approach that uses the concept of dominance. Dominance states

that when one solution dominates another, the dominant solution is at least as good as

the other solution for all objectives and additionally, has a strictly better value for at

least one of the objectives [77, 81]. Formally, given decision vector a ∈ Ro, and decision

vector b ∈ Ro, it is said that a dominates b if and only if

∀i ∈ {1, ..., n} fi(a) ≤ fi(b), and∃i ∈ {1, ..., n}, fi(a) < fi(b), (3.3)

which can be written as a ≺ b [95]. If it is the case that a ≺ b or F (a) = F (b), then a

covers b, which is written as a � b [81, 95].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 34

In the case where there are conflicting objectives, it is unlikely that one solution will

exist that dominates all other solutions in the population [71, 74, 81]. Thus, a decision

vector is considered nondominated if and only if it is not dominated by any of the other

solutions in the population [81]. Such a decision vector that is not dominated by any

other is called a Pareto optimal solution [71, 74]. A set of Pareto optimal solutions is

called the Pareto set, and the set of corresponding objective vectors is referred to as the

Pareto front [95]. Therefore, the Pareto front describes the set of objective vectors whose

solutions provide the best compromise among the respective objectives. An example of

a dominated and nondominated solution set for a multi-objective problem can be seen

in Figure 3.3. The next section discusses genetic algorithms that have been designed to

solve multi-objective problems using a Pareto-based approach.

3.2.2 Genetic Algorithms

Genetic algorithms (GAs) are a class of genetically inspired EAs [62, 81]. The classical

(canonical) implementation of the GA typically employs a binary bit-string candidate

solution representation structure, previously discussed in Section 3.1.1. The GA follows

a fixed evolutionary process that involves a proportional fitness selection process and a

recombination (reproduction) process [62, 81]. Offspring are therefore generated through

the use of both crossover and mutation operators as discussed in Section 3.1.5 [62, 81].

The survival selection process of the classical GA follows a generational approach, which

means the intermediary population of surviving candidate solutions replaces the previous

population entirely [81].

A number of GA variants have been introduced, some of which were specifically

designed and adapted so that they can be used for multi-objective problem solving. A

specific GA variant that employs a Pareto-based approach to multi-objective problem

solving is discussed in more detail below.

Nondominated Sorting Genetic Algorithms

The Nondominated Sorting Genetic Algorithm (NSGA) that is based on the classical

GA, was introduced by Srinivas and Deb [82] for multi-objective problem solving. In

contrast to the classical GA, the NSGA sorts individuals based on their nondomination

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 35

Figure 3.3: Example of a Pareto solution set with dominated and nondominated solutions for

a problem with two objectives [21, 81].

with respect to the multiple objectives by using the dominance operator described in

Section 3.2.1 [82]. The NSGA uses a sharing parameter to calculate a new fitness value

for each of the individuals by dividing the particular individual’s fitness by a value that

is proportional to some predefined number of neighbouring solutions; this approach was

later criticized by Deb et al. [21].

Deb et al. [21] also pointed out that the NSGA lacks elitism and has a higher

computational complexity than what is necessary [21]. Deb et al. [21] proposed a fast

and elitist nondominated sorting algorithm called NSGA-II to address the problems

of the NSGA. To ensure elitism, the NSGA-II performs nondominated sorting on the

combined population that includes the parents and offspring [21]. The NSGA-II does

not have the sharing parameter that is used by the NSGA, which makes the NSGA-II

more efficient compared to the NSGA [21]. Additionally, the NSGA-II uses a mechanism,

called crowding distance, with the aim of increasing the diversity of the population [21].

The crowding distance of the NSGA-II represents the Euclidean distance between

candidate solutions, and is used as a density estimator to guide the algorithm towards

a uniform population distribution [16, 21]. Calculating the crowding distance for one

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 36

individual is based on the absolute normalized difference in the objective values of two

adjacent individuals [21], which can be represented by a cuboid as illustrated in Fig-

ure 3.4. For one specific individual j with a sort sequence n, its crowding distance, disj,

for a single objective k is defined by:

disj = disj +
fkn+1 − fkn−1
fkmax − fkmin

(3.4)

where k ∈ m for m objectives, fkn refers to the k-th objective value of the n-th individual,

and fkmax and fkmin represent the maximum and minimum values of the k-th objective

function, respectively. The crowding distance is calculated for all the objectives, which

means that the disj value for individual j is updated as the calculation iterates through

all the objectives. Individuals with the minimum and maximum values for each of the

objectives are assigned an infinite crowding distance value, resulting in those individuals

always being selected [16]. Algorithm 2 provides the pseudocode of the nondomination

sorting function that is used by the NSGA-II algorithm. Pseudocode given in Algorithm 3

provides an overview of the NSGA-II algorithm.

Assigning the same crowding distance to individuals within a cuboid has been criti-

cized for not having any significant contribution towards the convergence of the algorithm

[16]. An alternative approach was proposed by Chu and Yu [16] wherein they suggested

replacing fkn−1 in the crowding distance function with fkn instead. This resulted in the

crowding distance for an individual calculated as:

disj = disj +
fkn+1 − fkn
fkmax − fkmin

. (3.5)

Chu and Yu [16] have reported that this change resulted in an improved convergence of

the Pareto front [16].

Deb and Jain [20] have proposed an extension of the NSGA-II algorithm, called

NSGA-III. The NSGA-III employs a nondominated sorting approach to solve many-

objective problems, and relies on predefined target objective values, called reference

points, to guide the search direction towards Pareto-optimal solutions [20]. According

to Deb and Jain [20], the need for such an algorithm stems from the increased demand

for algorithms that can solve four or more objectives [20]. It has been noted by Deb and

Jain [20] that the expectation of a single population-based algorithm to both maintain

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 37

Algorithm 2 Pseudocode of the nondominated sorting function that is used by the

NSGA-II algorithm [21]

Inputs: P ;

for each p ∈ P do

Sp ← ∅
np ← 0

for each q ∈ P do

if (p ≺ q) then

Sp ← Sp ∪ {q}
else if (q ≺ p) then

np ← np + 1

end if

if np = 0 then

prank ← 1

F1 ← F1 ∪ {p}
end if

end for

end for

i← 1

while Fi 6= ∅ do

Q← ∅
for each p ∈ Fi do

for each q ∈ Sp do

nq ← nq − 1

if nq = 0 then

qrank ← i+ 1

Q← Q ∪ {q}
end if

end for

end for

i← i+ 1

Fi ← Q

end while

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 38

Figure 3.4: Crowding distance calculation for the ith solution [21].

population diversity and reach population convergence close to the Pareto-optimal front

may be too optimistic.

Predefined reference points are provided to the NSGA-III, with the premise being

that the reference points would ensure diversity in the solutions found [20]. A reference

line is defined for each of the reference points, which starts from the origin and then

passes through the particular reference point; a visualization of this concept can be seen

in Figure 3.5. The perpendicular distance between each individual in the population is

calculated for each of the reference lines. A specific individual is then associated with its

closest reference line [11]. Individuals that are closest to the reference lines are selected

for recombination. NSGA-III performs recombination of parent solutions by using the

same crossover and mutation operators that are used by the NSGA-II [20].

The NSGA-II is capable of solving many-objective problems, and does not require

predefined reference points [11, 71]. The NSGA-III algorithm, on the other hand, was

specifically designed to solve many-objective problems, and should therefore outper-

form the NSGA-II when solving problems within a many-objective paradigm [20]. The

NSGA-III and MOEA/D algorithms are more efficient at solving many-objective prob-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 39

Algorithm 3 Pseudocode of the NSGA-II algorithm [21]

Inputs: N , g, objectives;

P ← randomly initialise parent population of size N ;

Q← initialise offspring population to ∅;
Evaluate fitness of P ; . For all objectives

Nondominated sorting of P based on fitness values; . Pareto-ranking

Q← generate offspring;

while termination condition g not met do

Evaluate fitness of Q; . For all objectives

R← P ∪Q; . Combine parent and offspring population

Nondominated sorting of R based on fitness values;

Crowding distance assignment for population R;

Sort solutions in nondominated fronts based on ranking;

Select N solutions starting from the first front and only select solutions from sub-

sequent fronts if all N population slots have not been filled;

Q← generate offspring from selected solutions;

end while

lems compared to the NSGA-II algorithm, however, the quality of the solutions found

by the NSGA-II algorithm is comparable to those found by the NSGA-III and MOEA/D

algorithms [11, 71].

This study is interested in the use of multi-objective EAs for automated NN archi-

tecture design. The number of objectives that will be considered for the NN architecture

candidate solution fitness evaluation are assumed to be low, with preliminary estima-

tions suggesting a maximum of five objectives [24]. Accurate NN architecture fitness

evaluation is a computationally expensive task [96], which would make the difference

between the execution time of the aforementioned EAs insignificant. Therefore, the

NSGA-II algorithm is the preferred candidate since it does not require predefined ref-

erence points, and it has already been successfully implemented in the context of NN

architecture design [6, 52]. A more detailed discussion related to the specific NN archi-

tecture related objectives and NN architecture candidate solution fitness evaluation is

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Evolutionary Algorithms 40

Figure 3.5: Normalized reference lines for three reference points of a two-objective problem

[47].

provided in Chapter 4.

3.3 Summary

This chapter discussed EAs and how they can be used for solving multi-objective prob-

lems. A number of genetically inspired EAs were also discussed along with their respec-

tive multi-objective problem solving approaches.

Multi-objective EAs can be used for population-based automated NN architecture

design. The next chapter discusses the different neural architecture search methods that

exist for automated NN architecture design.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Neural Architecture Search

Methods for automated NN architecture design have been around for a number of years

[3, 86]. More recently, in 2017, Zoph and Le [96] introduced the Neural Architecture

Search (NAS) paradigm, wherein they proposed a novel reinforcement learning method

to automatically find well-performing NN architectures for a provided dataset.

A number of different NAS methods have since been proposed, some of which have

already been successful in finding NN architectures that outperform state-of-the-art NN

architectures designed by human experts [24, 50, 88].

The purpose of this chapter is to provide an overview of NAS and review the evo-

lutionary NAS methods that exist for automated NN architecture design. Section 4.1

discusses NAS in more detail. Section 4.2 provides an overview of existing evolutionary

NAS methods. Section 4.3 concludes the chapter.

4.1 How Neural Architecture Search Works

Neural architecture search (NAS) aims to automatically find well-performing NN archi-

tectures for a provided dataset by casting NN architecture design as an optimisation

problem [86]. NAS works by optimising f(a) for a set of NN architectures A, where f(a)

represents an objective measure of performance for architecture a ∈ A [86, 91].

Elsken et al. [25] suggested that any given NAS method should define at least three

equally important components that describe how the particular method approaches NN

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 42

architecture design as an optimisation problem. The three components are: search space,

search strategy, and performance estimation strategy [25].

The search space component is responsible for defining the possible NN architectures

that can exist within the particular problem context, which is based on the provided

dataset [25, 88]. The search strategy explores the NN architecture search space by

generating NN architectures from the defined search space [25]. The performances of the

generated NN architectures are then evaluated by the performance estimation strategy

[25]. Figure 4.1 illustrates how the three components of NAS are related.

The rest of this section discusses each of the three NAS components in more detail.

Section 4.1.1 provides an overview of the NN architecture search space as a NAS com-

ponent. The search strategy of NAS is discussed in Section 4.1.2. Section 4.1.3 discusses

the performance estimation strategy component of NAS. An overview of the challenges

associated with reporting on NAS research is given in Section 4.1.4.

4.1.1 Search Space

The NAS search space is responsible for defining the NN architectures that can exist

in principle, thereby describing the structural paradigm that the search strategy can

explore [25, 32, 88]. Therefore, the NAS search space represents a subspace of the general

definition of a NN architecture, as it was given in Chapter 2.

Defining a good NAS search space can be challenging and should include prior knowl-

edge about the provided dataset [32]. For example, if the provided dataset contains

sequential data with significant time dependencies, an appropriate RNN architecture

search space should be defined [88].

He et al. [32] identified a number of different categorical NAS search spaces, which

include the global search space and the cell-based search space, amongst others. With

global search space approaches, the entire structure of the NN architecture is searched

for, which includes all units of the NN architecture, how these units are connected, and

the activation functions for each individual unit [32]. Thus, global search spaces are very

large, and exploring a global search space can be computationally expensive [25, 32].

The intuitive idea behind the cell-based search space is to generate cells from the

defined search space and then stack multiple cells to create a NN architecture [88]. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 43

Figure 4.1: The three components of Neural Architecture Search as presented by Elsken et

al. [25].

cell can be viewed as a miniature NN that accepts some inputs and contains a number

of connected units with combination methods and activation functions that eventually

produce an output [6]. A single cell can accept multiple inputs, which may include the

input of the NN and the output of other cells. A template can be specified that prescribes

the possible configurations or limitations of a cell, for example, restricting the number

of units that a cell can contain [86]. Methods that employ the cell-based search space

are considered more efficient compared to global search space methods, since cell-based

methods only search for individual cell configurations from the defined search space [32].

Figure 4.2 shows an example of a NN architecture that contains a number of stacked

cells and an example of a cell which contains a combination method and two activation

functions.

Zoph and Le [96] defined a cell-based search space for RNN architectures wherein a

single recurrent cell g is described by

ht = gθ,α(xt,ht−1, ct−1),

where θ represents the architecture of the cell g, α is the trainable parameters of the

architecture, ht is the hidden state, xt is the input, and ct is the cell state at time step

t. In their study, Zoph and Le [96] stacked two recurrent cells to make up the final

RNN architecture. Combining multiple inputs to a cell was limited to the use of either

addition or elementwise multiplication, and the activation functions were limited to the

identity, tanh, sigmoid, and ReLU activation functions [96].

Each cell that is constructed from the defined cell-based search space is represented

by some encoding scheme [86]. The encoding scheme is used to define the inputs of

the cell, how the inputs are combined if multiple inputs are used, and what activation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 44

Figure 4.2: A NN architecture containing k cells (left) and an example cell decomposition

(right).

functions are applied. Zoph and Le [96] opted for a string encoding scheme in their

reinforcement learning NAS approach, where a RNN controller was used as the agent.

The RNN controller explored the search space by generating a string of computation

steps, which included combination methods and activation functions that were allowed

according to the defined search space [96]. A cell was then created from the string

encoding, which was subsequently used for constructing the RNN architecture [96].

NAS methods that employ EAs as the underlying search strategy for search space

exploration should implement appropriate encoding schemes that can accommodate for

structural changes to the NN architectures during the recombination stage of the evo-

lutionary cycle. Previous EA-based NAS studies [52, 53] have been successful in using

string encoding schemes along with performing crossover on multiple parent architectures

to generate offspring architectures. However, those studies [52, 53] were specifically fo-

cused on CNN architecture search and not RNN architecture search. Angeline et al.

[3] and Bayer et al. [6] conjectured that there is a significant amount of complexity

involved with performing crossover on RNN architectures during evolutionary recombi-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 45

nation, which is discussed in more detail in Section 4.2.

The next section discusses the search strategy component of NAS which is used for

exploring the NN architecture search space.

4.1.2 Search Strategy

The search strategy is responsible for the efficient exploration of the NN architecture

search space, and for the automation of the process of constructing different NN archi-

tectures, which would otherwise be done manually by human experts [32].

Different NAS methods are typically distinguished based on the particular NN archi-

tecture search space exploration strategy that is implemented [25, 88]. The NN architec-

ture search space can be explored in many ways, which include reinforcement learning

(RL) based searching [96], evolutionary algorithm (EA) based searching [25], gradient-

based searching [79], and more.

RL based NAS methods often extend the approach from Zoph and Le [96], wherein

an RNN controller was used to generate NN architectures from the defined search space

[32]. With RL based methods, the validation accuracy of the trained models is typically

used as the reward signal for the agent to promote the generation of better performing

architectures [32].

EA-based NAS approaches search for NN architectures in a population-based paradigm

and employ an EA for search space exploration [88]. The NN architectures are treated

as individuals in the population and are evolved over a number of generations [50, 88].

This study deals with EA-based NAS methods only, which is discussed in more detail in

Section 4.2. For a more extensive discussion on different NAS search strategies, refer to

[32].

The NN architectures generated by the search strategy should be evaluated to de-

termine their respective performances, such that the best performing architectures can

be identified. The NAS performance estimation strategy component is responsible for

reporting on NN architecture performance and is discussed in the following section.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 46

4.1.3 Performance Estimation Strategy

The performance estimation strategy is responsible for reporting the objective measure of

the performance of the NN architectures that are constructed by the search strategy [25,

72]. Thus, an accurate measure of architecture performance is important for achieving

the goal of finding well-performing NN architectures [25, 72]. Model accuracy on some set

of unseen data from the provided dataset is a good measure of architecture performance

[25].

The simplest way to evaluate the performance of an architecture is to train and

evaluate the architecture on training and validation subsets of the provided dataset [25].

However, training and evaluating multiple architectures can become computationally

expensive. For example, Zoph and Le [96] trained and evaluated 12 800 architectures in

their study. The training of the models were distributed among 800 graphics processing

units (GPUs), which equates to a search cost of more than 22 000 GPU days [88, 96].

GPU days is a search cost measure used in NAS, which is calculated by multiplying the

number of GPUs used by the number of consecutive days that the search was running

for.

Several methods have been proposed to make the performance estimation component

of NAS more efficient, such as parameter sharing [24, 70], performance prediction [35],

and more. With parameter sharing, the parameters of the models that have already been

trained are used to initialise the parameters of newly constructed models [24]. Therefore,

the newly constructed models do not require training from scratch [25].

In general, performance prediction techniques attempt to predict the performance

of an architecture with minimal or no training [25]. White et al. [87] identified 31

performance prediction techniques, some of which have shown promising results. This

study did not implement any specific performance prediction techniques, and instead

relied on methods such as parameter sharing, early stopping, and reduced population

size techniques to improve the efficiency of the NAS method. The specific methods and

techniques employed in this study are discussed in more detail in Chapter 5.

It is often the case in real world applications where a reasonable trade-off between

architecture accuracy and architecture complexity is accepted [13, 24]. To account for

this, the performance evaluation of NN architectures can consider multiple objectives,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 47

such as the model’s achieved accuracy, the number of trainable parameters, and the

time it takes the model for a forward propagation of a single input, i.e., model inference

time [17, 24]. A number of NAS methods have already been implemented that consider

multiple objectives for architecture performance evaluation, instead of basing architec-

ture performance purely on model accuracy [13, 24, 53, 84]. These studies often report

reduced accuracy scores compared to other NAS methods, but the architectures found

have lower computational resource demand and shorter model inference times [17, 24].

NAS methods are typically judged based on the accuracy achieved by the best per-

forming architecture that the particular NAS method found [89, 42, 46, 48, 72]. The

next section discusses some concerns related to associating a NAS method’s quality with

the accuracy achieved by the method’s best performing architecture.

4.1.4 Neural Architecture Search Method Quality

One of the challenges in NAS research is the lack of an objective measure to represent

the quality of any given NAS method [42, 46, 89, 91]. The results reported by most

NAS publications are often found to be impossible to reproduce, due to the amount

of computational resource allocation for the experiments, insufficient details provided

regarding the experimental setup, and more [48, 89].

Given that NAS aims to automatically find well-performing architectures for a pro-

vided dataset, different NAS methods are being compared based on the accuracy achieved

by the best performing architecture that the NAS methods have found [25, 32, 50, 88].

Lindauer and Hutter [48] suggested that although most NAS publications report their

results on the same datasets, the NAS methods typically used different search spaces

and different model hyperparameter optimisation techniques, which make the results

incomparable.

Yang et al. [89] stated that the extensive hyperparameter optimisation performed

by some NAS methods resulted in the models achieving very high accuracy scores, and

therefore misrepresent the quality of the overall NAS method. Li and Talwalkar [46]

implemented a random search method that constructed NN architectures from the search

spaces defined by two separate NAS approaches, both of which had complex search

strategies for constructing NN architectures. The random search method implemented

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 48

by Li and Talwalkar [46] was able to find NN architectures that outperformed both NAS

approaches.

Following the aforementioned observations, Li and Talwalkar [46] suggested that the

evaluation of NAS methods should be based on the robustness and consistency of the

particular method across multiple independent runs. NAS methods that employ search

strategies such as RL based searching or EA-based searching should include ablation

studies that report on the results from performing a random search on the defined NN

architecture search space [46].

It is worth noting that the above concerns relate to NAS methods that consider

model accuracy as the single architecture performance objective [46]. It will be interest-

ing to compare the results from a multi-objective NAS method with a random search

implementation for the same search space.

Multi-objective EA-based NAS methods allow for generationally optimising the NN

architectures, which could give the particular approach an advantage over a random

search implementation. The use of multiple objectives in EA-based NAS methods are

discussed in the next section.

4.2 Evolutionary NAS Methods

EA-based NAS methods refer to those NAS methods that employ EAs as their core search

space exploration strategy, where NN architectures are searched for in a population-based

paradigm [50]. EA-based NAS methods have been successful in finding well-performing

NN architectures for a provided dataset [24, 51, 52, 53, 66].

Elsken et al. [24] proposed a Lamarckian Evolutionary algorithm for Multi-Objective

Neural Architecture Design, which they named LEMONADE. The LEMONADE algo-

rithm considered a cell-based CNN architecture search space, which was explored through

an evolutionary approach that approximated a Pareto front (refer to Section 3.2.1) [24].

The LEMONADE algorithm did not apply any specific recombination operators such

as crossover or mutation, and instead relied on the concept of network morphism for

offspring generation [24]. Network morphism describes the process whereby some net-

work transformations are performed to make structural changes to an architecture [24].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 49

Network transformations refer to the specific changes that are made to the architecture,

such as adding units or introducing new connections between units [10, 24].

Elsken et al. [24] noted that previous implementations of network morphism were

limited to constructive network transformations, which results in an increased NN archi-

tecture complexity. In a multi-objective paradigm where some NN architecture complex-

ity related objectives are considered, appropriate network transformations are required

to optimise NN architecture complexity objective(s), such as the removal of units from

the NN architecture.

Elsken et al. [24] proposed the concept of approximate network morphism to cater

for destructive network transformations. Destructive network transformations in the

LEMONADE algorithm allowed for the removal of units in the architecture and the

removal of connections between units [24].

The network morphism approach employed by the LEMONADE algorithm for off-

spring generation started by duplicating a parent architecture to construct the offspring

architecture, and then performing network transformations on the offspring architecture

[24]. A parameter sharing mechanism was also implemented that used the parameters

of the trained parent models to initialise the parameters of the corresponding offspring

models [24].

The specific experiments conducted by Elsken et al. [24] were focused on finding

CNN architectures, and the objectives they considered included the accuracy of the

models on image classification tasks, the number of parameters of the models, and the

inference time of the models. Elsken et al. [24] reported that the architectures found by

the LEMONADE algorithm achieved comparable accuracy to architectures from other

related NAS studies. In terms of parameters and inference time, the architectures found

by LEMONADE dominated the architectures from other studies, which demonstrates

the real-world benefits associated with multi-objective NAS approaches [24].

Lu et al. [52] proposed a multi-objective evolutionary NAS method called NSGA-Net.

The NSGA-Net algorithm is based on the NSGA-II algorithm, and searches specifically

for CNN architectures in a global search space [52]. Lu et al. [52] implemented both

crossover and mutation operators for NSGA-Net to create offspring architectures.

During their experimentation, Lu et al. [52] considered two objectives for representing

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 50

architecture performance, which was based on the model’s classification error on an image

classification task and an architecture complexity objective [45]. Lu et al. [52] stated

that they found the number of floating-point operations needed to execute the forward

pass of a CNN to be the most reliable objective measure of network complexity. The

results reported by Lu et al. [52] showed that the CNN architectures found by NSGA-Net

significantly outperform CNN architectures that were designed by human experts.

The use of EA-based NAS methods to search for RNN architectures are scarce in the

current literature, and Liu et al. stated that the majority of EA-based NAS approaches

are focused on searching for CNN architectures.

Conceptually, the LEMONADE [24] and NSGA-Net [52] algorithms can be used to

search for RNN architectures, but will require significant adaptation in terms of their

respective search spaces and network transformations so that they can be used to search

for RNN architectures. For example, the LEMONADE algorithm included appropriate

network transformations that allowed for the optimisation of NN architecture complexity

objectives, but was specifically developed for CNN architectures. Therefore, the trans-

formations implemented by the LEMONADE algorithm can not be used for optimising

RNN architecture complexity-related objectives due to the structural differences between

CNN architectures and RNN architectures, as discussed in Chapter 2.

Angeline et al. [3] proposed an EA approach that simultaneously searched for RNN

architectures and their weight values, which resulted in a representation of individuals

that defines both the architecture of the RNN and its corresponding weight values.

Angeline et al. [3] based the fitness of individuals in the population on a single objective

that represented the individual’s performance on a specific machine learning task. One

of the tasks that they considered was based on a dataset that comprised a number of

strings, which was randomly generated from seven different regular languages [3]. An

individual’s fitness represented the corresponding model’s loss value after training and

evaluation on the particular dataset [3].

Angeline et al. [3] stated that the individuals of the population were sorted based on

their fitness values and the top 50% were selected as the parents [3]. For each parent,

a single offspring was generated, after which parametric and structural mutations were

applied to the individual [3]. Parametric mutations involved changes to the parameters

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 51

of the RNN, whereas structural mutations refer to changes that were applied to the RNN

architecture [3].

The structural mutations applied to the RNN architectures were limited to the adding

and removing of neurons in the hidden layer, and neurons in the input and output

layers were considered immutable [3]. All neurons in the hidden layer used the sigmoid

activation function by default, which could not be changed during structural mutation

[3].

Angeline et al. [3] excluded the use of a crossover operator during the recombination

phase, which they motivated by noting that performing crossover on RNN architecture

topological representations is a nontrivial and complex task, since the architectures in

the population could vary significantly [3]. Additionally, by not performing crossover,

the individuality of the architectures are respected [3]. Therefore, Angeline et al. [3]

indicated that they have specifically avoided a GA-based approach and instead employed

a more general EA approach that does not involve explicit crossover.

The results reported by Angeline et al. [3] showed that their approach was able to

find RNN architectures that outperformed the RNN architectures from other studies

related to RNN architecture design at the time.

Chihi and Arous [14] developed a NSGA inspired multi-objective method to search

for RNN architectures and parameters, similar to the method constructed by Angeline

et al. [3]. The objectives they considered were related to model accuracy, and included

a specialised metric developed to measure the average of mutual information between a

pair of models [14].

Chihi and Arous [14] did not implement a crossover operator for RNN architecture

evolution, and instead only allowed for the adding and removal of a hidden unit in

the hidden layer during recombination. Although a mutation was included that could

reduce the RNN architecture complexity, an architecture complexity objective was not

considered during selection [14]. Chihi and Arous [14] reported that the best performing

RNN architecture found by their method was able to outperform a manually designed

RNN architecture on a specific speech corpus.

Bayer et al. [6] proposed an approach for finding RNN architectures that is based on

the NSGA-II algorithm. In their study, Bayer et al. [6] used a cell structure representa-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 52

tion of the individuals. The representation of an individual comprises a set of cells, where

each cell represents a topology that contains multiple neuron units with different activa-

tion functions and different methods for combining multiple inputs from other units [6].

They have also incorporated the use of flags as part of the cell structure representation,

where each flag represents a specific property such as whether the activation functions of

the cell have trainable parameters, and whether the cell is an input or output to another

cell in the RNN architecture [6].

The fitness of the individuals were based on multiple objectives that represented an

individual’s ability to recognize context-free and context-sensitive languages [6]. They

also iteratively increased the complexity of the regular languages based on the achieved

performance of the individuals in the population as the GA progressed [6]. Bayer et al. [6]

did not implement a specific selection strategy, and instead performed recombination on

the entire population of individuals to produce individuals for the following generation.

It is worth noting that Bayer et al. [6] decided to exclude the implementation of a

crossover operator in their algorithm for the sake of simplicity, a sentiment shared by the

previously discussed study that was done by Angeline et al. [3]. Thus, recombination

consists of applying some mutations to each of the individuals in the population [6].

Bayer et al. [6] allowed their algorithm to select a mutation from a list of available

mutations, whereby each of the mutations had a predefined probability of being selected.

The list of allowable mutations included the addition of new units to the architecture,

the addition of connections between two existing units in the architecture, and the mod-

ification of the combination and activation functions of randomly selected units in the

architecture [6].

The lack of survival selection along with the exclusion of mutation operators that

could reduce the number of units in a RNN architecture, resulted in an approach whereby

RNN architectures can only grow in size [6]. Smaller RNN architectures from previous

generations can therefore not be revisited.

Bayer et al. [6] reported that its NSGA-II based approach for RNN architecture

design was able to find RNN architectures that outperform the LSTM architecture after

being trained on datasets that were generated from context-free and context-sensitive

languages such as anbn, n ∈ [1, 5] and anbncn, n ∈ [1, 5], respectively. However, their

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Neural Architecture Search 53

approach was unable to find a RNN architecture that could outperform the LSTM on

the more complicated language anbmcn, (m,n) ∈ [1, 4] [6].

Ortego et al. [65] implemented a genetic algorithm (GA) based NAS method to search

for the hyperparameters related to connecting a CNN model and an LSTM model. The

hyperparameters that their NAS method searched for were only used to define how the

output of the CNN model is fed into the LSTM model as input, and therefore did not

search for novel RNN architectures [65]. A similar implementation was done by Almalaq

and Zhang [2], wherein they used a GA to optimise the number of hidden neurons and

input sequence length for an LSTM model.

To the best of the author’s knowledge, no dedicated studies of a multi-objective

EA-based NAS method for novel RNN architecture search exist, that also considers an

architecture complexity objective. Existing EA-based RNN architecture search methods

have also not been implemented to search for well-performing RNN architectures on the

Penn Treebank dataset [55]. Furthermore, since RNN architecture complexities have

not been considered in existing EA-based NAS methods, the use of destructive network

transformations has not been studied for RNN architecture evolution.

4.3 Summary

This chapter discussed NAS in detail and the EA-based NAS methods that exist. Al-

though multi-objective EA-based RNN architecture search methods exist in the current

literature, the use of multi-objective EAs for RNN architecture search specifically within

the NAS paradigm has not been investigated along with relevant RNN architectural com-

plexity objectives. The next chapter proposes a multi-objective EA-based NAS approach

for RNN architectures, in the form of a framework.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Framework

In Chapter 4 it was observed that a multi-objective EA-based RNN architecture search

method that considers architecture complexity objectives and relevant transformations

to optimise architecture complexity objectives, has not been studied before. The network

morphism approach implemented by Elsken et al. [24] for evolutionary CNN architec-

ture search can be adapted to the RNN architecture domain, which would allow for

an RNN architecture complexity objective to be optimised along with relevant model

accuracy objectives. A template-driven RNN architecture cell-based search space can

be defined that would allow for sufficient modularity to support destructive network

transformations.

This chapter proposes a Multi-Objective Evolutionary algorithm for Recurrent Neu-

ral Architecture Search, dubbed MOE/RNAS, to automatically construct RNN archi-

tectures for a provided dataset. The proposed method is presented in the form of a

framework that searches for RNN architectures in a modular template-driven cell-based

search space with an efficient architecture performance estimation strategy. The remain-

der of this chapter is organized as follows: Section 5.1 provides an overview of the RNN

architecture search space and the encoding structure that is used by the framework.

The EA-based search space exploration strategy is discussed in Section 5.2. Finally, the

chapter is summarised in Section 5.3.

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 55

5.1 Search Space

The cell-based RNN architecture search space considered by the MOE/RNAS algorithm

draws inspiration from the recurrent cell defined by Zoph and Le [96]:

ht = gθ,α(xt,ht−1, ct−1), (5.1)

where θ represents the architecture of the cell g, α the trainable parameters of the

architecture, ht the hidden state, xt the input, and ct the cell state at time step t.

The particular search space defined by Zoph and Le [96] considered the addition and

elementwise multiplication combination methods. Activation functions were limited to

the identity, tanh, sigmoid, and ReLU activation functions [96].

The search space of the MOE/RNAS algorithm built in this study considers the

addition, subtraction, and elementwise multiplication combination methods. The acti-

vation functions that the MOE/RNAS algorithm allows for are the linear, identity, tanh,

sigmoid, ReLU, and leaky ReLU activation functions.

The encoding scheme employed by the MOE/RNAS algorithm works as follows. A

directed acyclic graph (DAG) representation of a RNN architecture is assumed, where

each node of the DAG is encoded by a block encoding structure. The block encoding

structure developed for the MOE/RNAS algorithm represents a simplified version of

the cell that is typically used in cell-based search space implementations, as previously

discussed in Chapter 4. Therefore, a RNN architecture can be encoded using a number

of blocks. A block is smaller compared to a cell and is constrained in terms of the

operations that it supports, which is discussed in more detail below.

An input to a block is the output of a previous block in the architecture. A single

block must have at least one input and can accept a maximum number of two inputs. If

a block accepts two inputs, a combination method is required to specify how the inputs

should be combined. The result from the combined inputs is then returned as the output

of the block. When a block combines two inputs, the use of an activation function is

optional. If an activation function is applied to the result of the block’s combined inputs,

the output of the activation function is returned as the output of the block. If the block

accepts a single input value, an activation function must be specified and the output of

the activation function is then returned as the output of the block. Figure 5.1 illustrates

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 56

Figure 5.1: Block encoding.

the block encoding that is used by the MOE/RNAS algorithm.

The MOE/RNAS algorithm is developed such that it is capable of handling blocks

that simultaneously combine two inputs and then apply an activation function to the

result of the combined inputs. However, in this study, the combination and activation

responsibilities are decoupled, which results in two separate blocks instead. A block that

combines two inputs is referred to as a combination block, whereas a block that applies

an activation function to the single input of the block is referred to as an activation block.

This convention is adopted to allow for a more detailed discussion of the transformations

that can be performed on an architecture, which is further discussed in Section 5.2. The

distinction between combination and activation blocks also allows for a more detailed

analysis of architectures during the empirical analysis process, which is discussed in

Chapter 6.

The MOE/RNAS algorithm’s search space is driven by a template that prescribes

the following properties of the RNN architecture, which is assumed to contain an input

layer, a hidden layer, and an output layer. The units found at each of the three layers

will be encoded by the block encoding structure. The input layer has three immutable

blocks, which represent the input, the previous hidden state, and the previous memory

state, respectively. The three input blocks are activation blocks that apply the linear

activation function to their respective inputs, and these blocks may only be used as

inputs to subsequent blocks in the hidden layer of the architecture. The block that

represents the input xt is referred to as the xt block. The blocks that represent the

previous hidden state ht−1 and the previous memory state ct−1 are referred to as the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 57

ht−1 block and the ct−1 block, respectively.

The output layer of the RNN architecture has two blocks, ht and ct, which represent

the hidden state and memory state at time step t, respectively. The output layer blocks

do not have any combination or activation functions, and can therefore only accept a

single input, which is then used directly as the particular block’s output value. The

block that serves as the input to these output blocks can be changed during evolution.

The output values of the ht and ct blocks are used as the inputs to the ht−1 and ct−1

input layer blocks at the following time step.

For a RNN architecture to be considered valid, both the xt and ht−1 blocks must

be used as inputs to at least one block in the hidden layer. The use of the ct−1 block

is optional and has no impact on the validity of an architecture. The MOE/RNAS

algorithm defines appropriate transformations that can be performed on the architecture

so that the use of the ct−1 block can be altered during evolution; an architecture can

therefore initially include the ct−1 block and after evolution exclude the ct−1 block as an

input to blocks in the hidden layer.

An additional requirement specified by the template is that the ht output layer block

must have a valid input, which should be a block from the hidden layer. The ct output

layer block does not affect the validity of an architecture, and the architecture’s use of

the ct output layer block depends on whether the ct−1 input layer block is used by a

block in the hidden layer. The transformations responsible for altering the use of the

ct−1 and ct blocks are discussed in more detail along with the other transformations in

Section 5.2.

An example of a block encoding representation of the basic RNN architecture,

ht = fh(Whxt + bx + Uhht−1 + bh),

with a tanh activation function can be seen in Figure 5.2. For the xt input to the RNN,

an xt input layer block is created. Similarly, an ht−1 input layer block was created for the

ht−1 input to the RNN. The linear b block that accepts the xt input layer block as its

input, represents the weighted linear activation and bias of the Whxt + bx inputs to the

basic RNN architecture. A separate weighted linear activation and bias is used for the

ht−1 input layer block. The outputs of the two linear activation blocks are then combined

using an addition combination block. A tanh activation function is then applied to the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 58

Figure 5.2: Basic RNN architecture block encoding structure.

output of the combination block, which represents the fh activation function of the basic

RNN architecture. The ht output of the RNN architecture at time step t is represented

by the hnext output layer block, which simply returns the output of the preceding tanh

activation block. Note that since the basic RNN architecture does not use the ct−1 input

layer block, it is simply ignored.

A simplified illustration of the architecture from Figure 5.2 can be seen in Figure 5.3,

which is how RNN architectures will be presented for the remainder of this dissertation.

Table 5.1 lists the node values and their respective relationship to the RNN architecture

encoding structure.

The next section discusses the evolutionary search strategy used in the MOE/RNAS

algorithm for exploring the RNN architecture search space, and how the search strategy

works to optimise RNN architecture-related objectives.

5.2 Search Strategy

Some NAS methods that consider a single architecture performance related objective

have been criticised for their unfounded complexity and insignificant contribution to-

wards the final architecture performance [46, 89]. Multi-objective EA-based NAS meth-

ods generationally evolve architectures with the goal of optimising more than a single

architecture performance-related objective, which justifies a search strategy component

that can be considered at least more complicated compared to a random architecture

search approach. Multi-objective driven architecture evolution should therefore have a

more significant contribution towards the final architecture performance than what can

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 59

Figure 5.3: Basic RNN architecture.

be achieved with a random architecture search approach.

The underlying search strategy that is implemented by the MOE/RNAS algorithm

is based on the NSGA-II algorithm. A population of RNN architecture candidate solu-

tions are generationally evolved for a predefined number of generations to find the best

performing architecture for the provided dataset, where architecture performances are

based on multiple objectives. The MOE/RNAS algorithm maintains a Pareto-optimal

front and employs the rank-based selection operator from the NSGA-II algorithm. Un-

like the NSGA-II algorithm, the MOE/RNAS algorithm relies on a network morphism

approach to generating offspring as opposed to a multi-parent recombination component.

Pseudocode for the MOE/RNAS algorithm can be seen in Algorithm 4.

The rest of this section discusses the multi-objective EA-based search strategy that

is implemented by the MOE/RNAS algorithm. Section 5.2.1 discusses the MOE/RNAS

algorithm’s network morphism approach for generating offspring. The initial population

generation procedure is described in Section 5.2.2. Section 5.2.3 discusses the fitness

evaluation of architectures in more detail. The MOE/RNAS algorithm’s architecture

selection strategy is discussed in Section 5.2.4.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 60

Node value Description Inputs Outputs

x The xt input at step t. 0 1

h The ht−1 input at step t. 0 1

c The ct−1 input at step t. 0 1

h next The new ht hidden state for step t. 1 -

c next The new ct memory state for step t. 1 -

add Addition combination function. 2 1

sub Subtraction combination function. 2 1

elem mul Elementwise multiplication combination function. 2 1

linear b
Weighted linear activation function that includes

a bias unit.
1 1

linear
Weighted linear activation function without a

bias unit.
1 1

identity Identity activation function. 1 1

sigmoid Unipolar sigmoid (logistic) activation function. 1 1

tanh Hyperbolic tangent activation function. 1 1

relu Rectified Linear Unit (ReLU) activation function. 1 1

leaky relu Leaky ReLU activation function. 1 1

1 Integer value.

Table 5.1: Descriptions of node values in architecture representation.

5.2.1 Recurrent Neural Network Morphism

The NSGA-II based search space exploration strategy implemented by the MOE/RNAS

algorithm employs a network morphism approach instead of a recombination stage with

crossover and mutation operators. With network morphism, a single offspring archi-

tecture is generated from a single parent architecture, which avoids the complexities

associated with performing crossover on multi-parent RNN architectures, as observed in

[3, 6].

Elsken et al. [24] postulated that the difference in performance between parent and

offspring architectures should be low when a maximum number of three network transfor-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 61

Algorithm 4 MOE/RNAS Algorithm

Inputs: N , φ, termination condition, objectives, seeds;

i← 0; . initialise generation counter

Υ← ∅; . initialise empty archive for keeping track of previously evaluated

architectures

P ← initialisePopulation(N, seeds) . initialise parent population of size N, include

seed architectures

Q← initialise offspring population to ∅;
f ← evaluateF itness(P);

[F1, F2, ...]← nondominatedSort(f, f̂(P)) . calculate and construct Pareto-fronts

based on nondomination

Υ← Υ ∪ P ;

p← tournamentSelection(P, [F1, F2, ...])

Q← generateOffspring(p, φ) . generate φ number of offspring architectures

while termination condition not met do

f ′ ← evaluateF itness(Q);

[F1, F2, ...]← nondominatedSort(f ∪ f ′, f̂(P) ∪ f̂(Q))

dist← crowdingDistanceAssignment(F1, F2, ...)

P ← survivorSelection(P ∪Q, [F1, F2, ...], dist,N)

i← i+ 1; . update generation counter

Υ← Υ ∪Q;

Q← generateOffspring(P, φ)

end while

mations are performed on the offspring architecture. This would allow for a more efficient

performance evaluation strategy, since offspring models that share trained parameters

with their parent models can be trained for fewer epochs [24].

The aforementioned parent-offspring performance difference postulation has only

been tested in the case where up to three network transformations are performed on

the offspring architectures [24]. Although the assumption allows for an efficient per-

formance evaluation strategy, it may lead to a slower search space exploration when

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 62

architectures are only changed with a low number of network transformations after each

generation. Therefore, the MOE/RNAS algorithm includes an input parameter that can

be used to specify the maximum number of consecutive network transformations that are

allowed to be performed on an individual architecture. If the input parameter value is

greater than one, the number of consecutive network transformations that are performed

on an architecture is randomly selected from the range between one and the specified

number; a random number in this range is selected for each individual architecture. The

network transformations included in the MOE/RNAS algorithm are described in detail

below.

Recurrent Neural Network Transformations

1. add unit : inserts a new activation block between two existing blocks in the ar-

chitecture. A new block is created and assigned an activation function, which is

randomly chosen from: [linear b, linear, identity, sigmoid, tanh, relu, leaky relu]

(see Table 5.1 for descriptions). An existing block br is randomly selected from

the hidden layer. The newly created block is then inserted between block br and

one of its inputs; if block br has two inputs, one is randomly selected. The effect

of this transformation is that an activation will now be applied to selected input

from block br before the input is passed into block br. This transformation is an

adaptation of the add unit mutation developed by Bayer et al. [6]. Bayer et al.

[6] restricted the activation function to the linear activation function whereas the

MOE/RNAS algorithm randomly selects an activation function that is applied to

the newly created block.

2. remove unit : removes a randomly selected activation block from the hidden layer.

The remove unit transformation is effectively the inverse of the add unit transfor-

mation. The single input of the activation block to be removed is set as the input

to the subsequently connected blocks that expected the removed block as one of

their inputs; this procedure ensures that there are no dangling blocks in the archi-

tecture. The remove unit transformation is a destructive network transformation

that allows for the optimisation of an architecture complexity objective.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 63

3. add connection: two randomly selected hidden layer blocks are combined. A con-

straint is enforced to ensure that the two blocks are not already combined or directly

connected to each other. A new combination block is then created that accepts

both the selected blocks as its inputs; the addition combination method is used for

combining the two inputs. All the blocks in the architecture that expect the first

of the two randomly selected blocks as their input are identified, and the newly

created combination block is set as the replacement input to the identified blocks

instead. This transformation is an adaptation of the add connection mutation de-

veloped by Bayer et al. [6]. Bayer et al. [6] stated that they connected the two

units with an identity connection, whereas the MOE/RNAS algorithm introduces

the new connection by using the elementwise addition combination method.

4. remove connection: removes a randomly selected combination block from the hid-

den layer; only combination blocks with an addition combination method are con-

sidered. When a combination block is removed, it is possible that both of its inputs

will be left unused.

To deal with this, a procedure is implemented that inspects the architecture to iden-

tify the consequences of removing the selected combination block. If it is found

that both of the selected combination block’s inputs are used by other blocks

in the architecture, then the combination block is a good candidate for the re-

move connection transformation, and the transformation may therefore proceed

without leaving unused blocks in the architecture. If no blocks can be found in the

architecture that are good candidates for the remove connection transformation,

then the transformation is simply ignored.

5. add recurrent connection: introduces a connection between a randomly selected

block br and either one of the ht or ct output layer blocks. This transformation

is similar to the add connection transformation, but aims to specifically add a

connection between the randomly selected block and one of the output layer blocks.

A newly created combination block with the addition combination method is set as

the input to one of the output layer blocks, which is randomly selected. The input

from the randomly selected output layer block is assigned as one of the inputs to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 64

the newly created combination block. The randomly selected block br is then set

as the second input to the newly created combination block.

This transformation provides for the ability to change an architecture so that it can

start using the ct−1 input layer block if it has not done so previously, as discussed

in Section 5.1.

6. change activation: this transformation consists of randomly selecting an activation

block from the hidden layer and then simply changing the block’s specific activa-

tion function to a different activation function, which is randomly selected from

the list of allowable activation functions as defined by the search space. The par-

ticular block’s original activation function is excluded from the list of activation

functions to choose from. This transformation was inspired by the change connec-

tion mutation developed by Bayer et al. [6]. However, Bayer et al. [6] considered

the identity and linear activation functions exclusively, whereas the MOE/RNAS

algorithm considers a wider range of activation functions.

7. change combination: this transformation consists of randomly selecting a combi-

nation block in the hidden layer and then simply changing the block’s specific

combination method to a different combination method, which is randomly se-

lected from the list of allowable combination methods as defined by the search

space. The particular block’s original combination method is excluded from the

list of combination methods to choose from.

During generation of the initial population, the MOE/RNAS algorithm relies on net-

work transformations for uniformly sampling architectures from within the defined search

space. The MOE/RNAS algorithm’s procedure for generating the initial population is

discussed in the next section.

5.2.2 Initial Population

The MOE/RNAS algorithm employs a procedure that randomly generates architectures

to make up the initial population. Existing architectures, such as the LSTM or GRU,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 65

can be supplied to the MOE/RNAS algorithm, which are then included in the initial

population.

If existing architectures are supplied, they are added to the initial population, after

which new architectures are randomly generated until the size of the initial population

equals the specified population size N . The MOE/RNAS algorithm’s procedure for ran-

domly generating an architecture starts with a base RNN architecture and then performs

a number of consecutive network transformations on the architecture. The number of

consecutive network transformations that are performed on the architecture is randomly

selected from the range [1, 10]. The base RNN architecture includes the following blocks:

• b1, the xt input layer block;

• b2, the ht−1 input layer block;

• b3, the ct−1 input layer block;

• b4, a linear activation block that receives b1 as input;

• b5, a linear activation block that receives b2 as input;

• b6, a linear activation block that receives b3 as input;

• b7, a block that receives blocks b4 and b5 as inputs and combines these inputs, the

combination function is randomly chosen from [add, sub, elem mul] (see Table 5.1);

• b8, an activation block that receives b7 as input, the activation function is ran-

domly chosen from [linear b, linear, identity, sigmoid, tanh, relu, leaky relu] (see

Table 5.1);

• b9, the ht output layer block that receives b8 as input;

• b10, the ct output layer block that receives b6 as input.

The remove unit and remove connection network transformations are excluded when

randomly generating architectures for the initial population. This is done so that only

constructive network transformations are allowed, which will effectively promote a more

diverse initial population.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 66

Each architecture in the population is assigned a unique identifier. The unique iden-

tifier is generated using the template X c, where X is a short string that is assigned

to the initial architecture, and c is an integer to represent the count of the particular

architecture. The initial architectures will start with a c value of 0, and subsequently

generated offspring architectures will have increased values for c. Randomly generated

architectures are assigned an X value of rdmY , where Y represents a unique integer

assigned to that particular architecture. Therefore, the first randomly generated ar-

chitecture in the initial population will be assigned the identifier rdm0 0, the second

randomly generated architecture in the initial population rdm1 0, and so on. If existing

architectures are supplied to be included in the initial population, they will be assigned

appropriate identifiers. For example, if the LSTM architecture is supplied to be included

in the initial population, the architecture’s identifier will be LSTM 0.

After the initial population generation procedure has concluded, the fitness values for

each of the individual architectures are evaluated based on the provided objectives. The

MOE/RNAS algorithm’s fitness evaluation process is described in detail in the following

section.

5.2.3 Fitness Evaluation

The fitness evaluation procedure implemented by the MOE/RNAS algorithm assumes

the responsibility of the NAS performance estimation component. Thus, the perfor-

mances of the architectures are based on the fitness values calculated by the MOE/RNAS

algorithm’s EA fitness evaluation method.

The fitness of architectures in the population are calculated based on the objectives

provided. It is expected for one of the objectives to represent an architecture’s achieved

accuracy after being trained and validated on relevant subsets of the provided dataset.

Furthermore, at least one objective should be included that relates to architecture com-

plexity. The MOE/RNAS algorithm supports the following architecture complexity re-

lated objectives:

• the number of blocks that the architecture contains;

• the number of parameters of the model;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 67

• the model inference time, i.e., how long the model takes for a forward propagation

of a single input pattern.

The MOE/RNAS algorithm does not implement any specific techniques that predict

model accuracy. Instead, the MOE/RNAS algorithm relies on existing methods to make

the training and testing of models more efficient. As a result of the network morphism

approach for generating offspring architectures along with parameter sharing between

parents and offspring, the offspring models can be trained for fewer epochs, due to

the difference between parent and offspring model performance previously discussed in

Section 5.2.1. The performance difference between parents and offspring is based on the

observations reported by Elsken et al. [24].

The MOE/RNAS algorithm allows for a threshold value to be specified, which is

used to decide whether offspring models should be trained for a reduced number of

epochs. After the offspring model has been trained for the reduced number of epochs,

the performance of the offspring model is compared to the performance of the parent

model. If the performance difference between the parent and offspring model is more

than the specified threshold value, training of the offspring model will resume, and the

offspring model will be trained for the same number of epochs that the parent model

was trained for.

During the training of any given model, the performance of the particular model can

be analysed after each epoch. If it is found that the performance of a particular model

does not improve after each epoch, for a specified number of consecutive epochs, an

early stopping procedure can be executed that will terminate the training of the model.

Furthermore, if an offspring model is being trained for the same number of epochs than

its parent, the performance of the offspring model can be compared to the performance of

its parent after each epoch. If the offspring model does not exhibit improved performance

compared to its parent for a specified number of consecutive epochs, an early stopping

procedure can be executed, which will terminate the training of the offspring model. Both

aforementioned early stopping mechanisms are optional and only provided for improved

efficiency during model accuracy evaluation.

The MOE/RNAS algorithm performs the selection of architectures based on their

respective fitness values and ranking during the evolutionary cycle, which is done ac-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 68

cording to the selection operators of the NSGA-II algorithm. The next section provides

an overview of how architecture selection is performed by the MOE/RNAS algorithm.

5.2.4 Selection

After the fitness values for each of the individuals in the population have been evaluated,

the individuals are sorted based on their nondomination and placed into appropriate

Pareto fronts. The nondominated sorting of individuals in the population based on

their objective values is done according to the NSGA-II nondominated sorting method,

without any adaptation. Similarly, the crowding distance assignment method from the

NSGA-II is used verbatim. However, the MOE/RNAS algorithm includes an optional

parameter to specify whether the original NSGA-II distance metric calculation should

be used or whether the distance metric calculation

disj = disj +
fkn+1 − fkn
fkmax − fkmin

, (5.2)

which was proposed by Chu and Yu [16], should be used instead. The inclusion of the

alternative distance metric calculation is motivated by the results published by Chu and

Yu [16], wherein they have provided empirical evidence that the alternative distance

metric calculation leads to a faster convergence of the Pareto-front, which was tested on

nine different benchmark problems.

Survivor selection is performed in the same way as it is done by the NSGA-II al-

gorithm, as previously discussed in Chapter 3. The NSGA-II algorithm generates N

offspring, which results in a 2N sized combined population from which survivor selection

is performed. With larger values of N , a significant number of models need to be trained

and validated. The MOE/RNAS algorithm has an input parameter that can be used

to specify the maximum number of parents to select for offspring generation. The top

performing architectures are selected as parents if the aforementioned input parameter

is smaller than N .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Framework 69

5.3 Summary

This chapter proposed the MOE/RNAS algorithm for multi-objective evolutionary RNN

architecture search. The MOE/RNAS algorithm considers a template-driven RNN archi-

tecture search space and employs a modular block-based architecture encoding method.

Destructive network transformations were defined that allow for the optimisation of RNN

architecture complexity objective(s).

The effectiveness of the MOE/RNAS algorithm is evaluated in the next chapter by

performing an empirical analysis on the RNN architectures found by the MOE/RNAS

algorithm for natural language processing datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6

Empirical Analysis

This chapter discusses the experimental procedure followed and the experimental results

obtained for this study. The MOE/RNAS algorithm proposed in Chapter 5 was imple-

mented to find RNN architectures for two natural language processing (NLP) tasks. The

purpose of the experimental work was to evaluate the effectiveness of the MOE/RNAS

algorithm to find RNN architectures for the NLP tasks. The ability of the proposed

MOE/RNAS algorithm to optimise RNN architecture complexity related objectives dur-

ing evolution was also investigated.

The rest of this chapter is structured as follows. Section 6.1 provides an overview

of the experimental method and Section 6.2 discusses the results of the experiments.

Lastly, the chapter is concluded in Section 6.3.

6.1 Empirical Procedure

Designing an RNN architecture for a particular problem is a complex task, as discussed in

Chapter 2. Current methods [6, 42, 46, 49, 96] for automated RNN architecture consider

the accuracy of the model as the single objective to evaluate the performance of the RNN

architecture. Since current methods for automated RNN architecture design disregard

any objectives related to RNN architecture complexity, RNN architectures only grow in

size, resulting in large models with many parameters [46]. Therefore, finding a reasonable

trade-off between model performance and model computational resource demand is not

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 71

possible with the existing methods for automated RNN architecture design.

This section describes the experimental procedure followed in this study to evaluate

the effectiveness of the MOE/RNAS algorithm proposed in Chapter 5. The effectiveness

of the MOE/RNAS algorithm is judged on the basis of the MOE/RNAS algorithm’s abil-

ity to automatically design well-performing RNN architectures for a particular problem

while maintaining a reasonable trade-off between model accuracy and model computa-

tional resource demand.

The experimental results report on the proposed MOE/RNAS algorithm’s ability to

find and optimise RNN architectures for two separate NLP datasets. The following NLP

tasks were considered:

1. A standard word-level language modeling task based on the Penn Treebank dataset.

The Penn Treebank dataset is often used as a benchmark in RNN NAS research

[42, 46, 49, 96]. Although it is unlikely for any current NAS method to find a

novel RNN architecture that outperform state-of-the-art RNN architectures that

were designed by human experts [32, 42], an EA-based RNN architecture search

method has not been implemented on the Penn Treebank dataset.

2. A standard character-level language modeling task based on artificially generated

strings from a context-sensitive language, which was previously used in the study

published by Bayer et al. [6]. The training and testing datasets consisted of strings

that were generated from the anbncn context-sensitive language, where the value

of n was randomly selected from the range 1..10 for each string. The training and

testing datasets are discussed in more detail in Section 6.2.2.

The Penn Treebank dataset contains 10 000 unique words, and is therefore a good can-

didate for testing whether the RNN architectures evolved by the MOE/RNAS algorithm

can learn from the provided dataset. Since the models are expected to predict the next

word in the sequence, model accuracy highly depends on what the model has learned

from the data during training.

By artificially generating the character-level language modeling task’s dataset from

a context-sensitive language, the MOE/RNAS algorithm is inadvertently presented with

a challenge to evolve RNN architectures with sufficient memory capabilities, such that

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 72

they can learn the significance of the determinism of the particular context-sensitive

language. Therefore, this dataset is useful for gaining a better understanding of the

relationship between multi-objective RNN architecture evolution and model accuracy.

Technical implementation details for this study are as follows:

1. All the source code implementations of this study were developed using the Python

programming language. The PyTorch [69] framework was used for machine learning

model training only.

2. The MOE/RNAS algorithm was built entirely from scratch, which includes the

block encoding scheme and how a model is constructed from an encoding, the

transformations and how these transformations were applied to the individuals,

and the multi-objective EA (see Algorithm 4). Source code implementation of the

MOE/RNAS algorithm is available at https://github.com/reinn-cs/rnn-nas.

3. Experiments were run on a single Nvidia V100 16GB GPU cluster at the Centre

for High Performance Computing (CHPC).

6.2 Empirical Study

This section presents the empirical analysis of the results obtained after implementing the

proposed method to automatically find and optimise RNN architectures. Section 6.2.1

discusses the word-level NLP task results. The character-level NLP task results are

discussed in Section 6.2.2.

6.2.1 Word-Level Language Modeling Task

This section discusses the results obtained after implementing the MOE/RNAS algo-

rithm to search for and optimise RNN architectures for a standard word-level language

modeling task based on the Penn Treebank dataset. The model accuracy objective that

is relevant to the Penn Treebank dataset is discussed below.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/reinn-cs/rnn-nas

Chapter 6. Empirical Analysis 73

Evaluation of the Model Accuracy Objective

Existing NAS studies that use the Penn Treebank dataset for RNN architecture search

based the model accuracy objective on the test perplexity achieved by the model after

being trained on the training dataset [38, 42, 49, 96]. The test perplexity achieved by

the model for the test set DG = d1d2...dQ is calculated by

PP (DG) = Q

√√√√ Q∏
i=1

1

P (di|d1...di−1)
, (6.1)

which is described in more detail in Section 2.2.3.

Klyuchnikov et al. [42] adopted the RNN model training settings from Merity et al.

[59], and found that a model comprised of three stacked cells (RNN architectures), a hid-

den layer unit dimension of 600, and a batch size of 20, yielded the best test perplexity

on the Penn Treebank dataset. An LSTM model with the aforementioned hyperparam-

eter setup has more than 10 million trainable parameters, which can take multiple hours

to train, as observed in [49]. Furthermore, Klyuchnikov et al. [42] performed the same

extensive hyperparameter optimisation as observed in [49, 59].

In this experiment, the RNN architectures created by the MOE/RNAS algorithm

were not stacked, and each model contained a single instance of the corresponding RNN

architecture. The models were implemented with a hidden layer dimension of 650, and a

batch size of 20 was used during model training. Models were trained by a backpropaga-

tion training algorithm, and hyperparameter optimisation was done using optimisation

techniques as provided by the PyTorch [69] framework; no further extensive hyperpa-

rameter optimisation was performed during the model accuracy evaluation stage. RNN

models were unrolled for 35 time steps during backpropagation training.

To determine the best model training configuration, an LSTM model was trained for

50 epochs on the Penn Treebank dataset. Four different optimisation techniques were

used to determine which yields the lowest test perplexity. The four different optimisation

techniques and the corresponding LSTM model test perplexities achieved are listed in

Table 6.1. From the results listed in Table 6.1, it can be seen that the standard stochastic

gradient descent optimisation technique resulted in the LSTM model achieving the lowest

test perplexity of 82.82.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 74

Figure 6.1 illustrates the validation perplexity of the LSTM model during training, for

each of the respective optimisation techniques considered. It can be seen in Figure 6.1a

that the stochastic gradient descent optimisation technique converged soon after the 20th

epoch.

In consideration of the aforementioned observations, all models in this experiment

were trained using the PyTorch provided stochastic gradient descent optimisation tech-

nique. All models in the initial population were trained for 30 epochs, and offspring

models were trained for 5 epochs if a reduced number of epochs could be justified (see

Section 5.2.3). The Penn Treebank dataset is already split into a training dataset which

consists of 912 344 words, a validation dataset with 131 768 words, and a testing dataset

that consists of 129 654 words.

Four different experiments were run to test the MOE/RNAS algorithm’s ability to

find RNN architectures for the Penn Treebank dataset. The differences between the

four experiments relate to the parameters of the multi-objective EA implemented by

the MOE/RNAS algorithm, such as the population size, termination condition, initial

population seeds, and more. With four different experiments, a sufficient number of

permutations of the MOE/RNAS algorithm’s configurable parameters can be studied in

relation to the MOE/RNAS algorithm’s ability to find RNN architectures, while also

taking the inherently high computational resource demand of NAS into account.

Each of the four different experiments are discussed below, under scenarios A1-A4, re-

spectively. In summary, each of the scenarios report on the results of the MOE/RNAS al-

gorithm’s ability to find and optimise RNN architectures for the Penn Treebank dataset,

but with different configurations; each of the scenarios provide a more detailed discussion

on their respective implementation details and configuration.

Scenario A1

This scenario considered a population size of 100 architectures. The basic RNN, LSTM,

and GRU architectures were included in the initial population, which resulted in 97

RNN architectures being randomly generated from the defined search space. 100 off-

spring architectures were generated for each generation. A maximum number of three

consecutive network transformations were allowed during offspring generation. Objec-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 75

Optimisation technique Test perplexity

Stochastic gradient descent 82.82

Averaged stochastic gradient descent 89.35

Adam 108.66

Stochastic gradient descent with momentum 138.05

Table 6.1: Comparison of LSTM model test perplexities achieved after being trained with

four different PyTorch optimisation techniques.

tives considered for this scenario were the model’s test perplexity and the architecture’s

number of blocks. The rest of the MOE/RNAS algorithm implementation configuration

that was used for this scenario is listed in Table 6.2.

During the run of this scenario, the MOE/RNAS algorithm succeeded in optimis-

ing the architecture complexity objective by maintaining a consistent decrease in the

average number of blocks across the population of architectures per generation, which

can be seen in Figure 6.2a. However, the average test perplexity per generation does

not exhibit a similar trend, but did not worsen across the generations, as illustrated in

Figure 6.2b. Therefore, the MOE/RNAS algorithm was able to optimise the architecture

complexity objective without negatively influencing the model accuracy objective across

the 30 generations.

From the Pareto front illustrated in Figure 6.3, it can be seen that the LSTM and

basic RNN architectures were dominated by other architectures, which includes the GRU

architecture. The performances of the Pareto front architectures are listed in Table 6.3,

which includes the performance of the LSTM 0 architecture for reference. After 30 gen-

erations, the MOE/RNAS algorithm was only able to optimise a single architecture that

outperformed the original LSTM in terms of test perplexity. However, this particular

architecture was an offspring architecture generated from the original LSTM 0 architec-

ture.

As observed in Table 6.3, the LSTM 58 architecture has one block less compared to

the original LSTM 0. This was due to a remove connection transformation that was

performed on the architecture, which led to the removal of the memory gate’s combina-

tion block that combined the xt and ht−1 input layer blocks. Since a combination block

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 76

(a) Stochastic gradient descent (b) Stochastic gradient descent with momen-

tum

(c) Averaged stochastic gradient descent (d) Adam

Figure 6.1: LSTM model optimiser validation perplexity results.

Parameter Value

Population size 100

Offspring generation 100

Generations 30

Maximum transformations 3

Alternative crowding distance True

Seed architectures RNN, GRU, LSTM

Objectives Number of blocks and test perplexity

Table 6.2: Scenario A1 MOE/RNAS algorithm implementation configuration.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 77

Architecture Test perplexity Blocks Parameters Training time

(seconds)

LSTM 58 83.782 25 3 385 200 2 761.47

LSTM 0 83.945 26 3 385 200 3 948.45

GRU 0 89.766 23 2 538 900 3 089.10

rdm68 45 92.704 12 846 300 1 024.99

rdm8 0 99.625 10 846 300 1 103.25

rdm8 3 169.047 9 846 300 818.49

rdm8 190 172.487 8 846 300 914.77

Table 6.3: Scenario A1 Pareto front architecture performances.

was removed from the architecture, the total number of parameters remained unchanged.

An additional change combination transformation was performed on the LSTM 58 archi-

tecture, which changed the combination method of the forget gate’s combination block

from an addition combination to an elementwise multiplication combination method.

The aforementioned transformations led to an initial perplexity difference between the

LSTM 0 parent architecture and the LSTM 58 offspring architecture of more than 5

perplexity points, which resulted in the LSTM 58 offspring architecture being trained

for a total number of 30 epochs. The LSTM 58 offspring architecture’s corresponding

model parameters were initialised using the parent model’s parameters, and the training

time of the LSTM 58 offspring model was reduced by nearly 20 minutes. The LSTM 0

and LSTM 58 architectures can be seen in Figure 6.4 and Figure 6.5, respectively.

The rdm8 190 architecture had a total of eight blocks, and no other architectures

were found with fewer blocks. The rdm8 190 architecture achieved a test perplexity

of 172.48 as seen in Table 6.3, which is close to 100 perplexity points worse than the

LSTM 0 architecture. However, the rdm8 190 architecture was only able to achieve a

test perplexity of 172.48 due to the parameter sharing that is implemented with the

network morphism approach of the MOE/RNAS algorithm. Illustrated in Figure 6.6, it

can be seen that the rdm8 190 architecture merely combines the two linear activation

nodes from the xt and ht−1 input layer nodes. The basic RNN architecture, which

can be seen in Figure 6.7, has an additional activation node after combining the xt

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 78

(a) Average number of blocks per generation

for A1.

(b) Average test perplexity per generation for

A1.

Figure 6.2: Average number of blocks and average test perplexity per generation for scenario

A1.

and ht−1 input layer nodes, yet it was only able to achieve a test perplexity of 730.94.

Therefore, the rdm8 190 architecture was able to survive selection with its low perplexity

score, which it was able to achieve due to the knowledge that was transferred from the

parent models during the evolutionary cycle. This presents an interesting application

of the MOE/RNAS algorithm to leverage the knowledge from large pre-trained models

to evolve smaller models that can achieve marginally good accuracy, but with reduced

computational demand.

During the experimental run of scenario A1, a total number of 2 836 constructive

network transformations were performed and 1 619 destructive network transformations

were performed, which is illustrated in Figure 6.8. It is expected for the number of

constructive network transformations to be higher compared to the number of destruc-

tive network transformations, which is due to the exclusion of the destructive network

transformations during the generation of the initial population, as previously discussed

in Section 5.2.2.

The rdm68 45 architecture achieved the best test perplexity of 92.704 across all ar-

chitectures that were generated and evolved by the MOE/RNAS algorithm in A1; the

rdm68 45 architecture is illustrated in Figure 6.9. The LSTM outperformed the rdm68 45

architecture by 8.76 perplexity points, however, the rdm68 45 architecture has 14 blocks

less compared to the LSTM. Furthermore, the rdm68 45 architecture has 2 538 900

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 79

Figure 6.3: Scenario A1 Pareto front.

fewer parameters compared to the LSTM, which makes the rdm68 45 architecture sig-

nificantly more efficient compared to the LSTM. The reduced computational demand of

the rdm68 45 architecture justifies the reasonable 8.76 perplexity point trade-off com-

pared to the better performing LSTM architecture.

Thus, in scenario A1, the MOE/RNAS algorithm succeeded in constructing novel

RNN architectures capable of learning from the provided dataset, and was able to evolve

the architectures such that the complexities of the architectures were optimised during

the evolutionary cycle.

The total 30 generation search for A1 took 198 hours, which equates to a search cost

of 8.25 GPU days (see Section 4.1.3).

Scenario A2

As observed in scenario A1, the LSTM architecture dominated the MOE/RNAS algo-

rithm’s generated RNN architectures in terms of test perplexity. A2 implemented the

same MOE/RNAS algorithm implementation configuration as A1, except for including

the LSTM and GRU architectures in the initial population. The rest of the MOE/RNAS

algorithm implementation configuration that was used for this scenario is listed in Ta-

ble 6.4.

The performances of the Pareto front architectures for A2 are listed in Table 6.5.

It can be seen from Table 6.5 that the rdm35 108 architecture achieved the best test

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 80

Figure 6.4: LSTM 0 architecture.

perplexity of 94.318 across all architectures found during the run for A2.

Similar to scenario A1, scenario A2 was able to find an architecture with 8 blocks, as

shown in Table 6.5. It was observed that the rdm28 26 architecture was able to achieve a

low perplexity due to the parameter sharing mechanism implemented by the MOE/RNAS

algorithm, which is the same reason for the rdm8 190 architecture’s achieved test per-

plexity as previously discussed in A1.

During this experiment, a similar consistency to that of A1 was observed in terms

of the average number of blocks per architecture, which can be seen in Figure 6.10a.

Optimisation of the architecture complexity objective is reflected in the network trans-

formations that were performed in A2. A total number of 2 809 constructive network

transformations were performed, whereas a total number of 1 852 destructive network

transformations were performed, which can be seen in Figure 6.11. The average number

of blocks for the final generation of A2 was 13.0 across all 100 architectures, whereas A1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 81

Figure 6.5: The LSTM 58 architecture evolved in scenario A1.

had an average number of 13.4 blocks after the final generation. The total number of

destructive network transformations performed in A2 was higher compared to the 1 619

destructive network transformations performed in A1.

Although the average test perplexity per generation of scenario A2 exhibits some

improvement, as shown in Figure 6.10b, the average test perplexity across all 30 genera-

tions did not go below 400 perplexity points. The average test perplexity per generation

observed in A1 was better compared to what was observed in A2.

The rdm35 108 architecture achieved the best test perplexity across all architectures

in A2. However, the best performing architecture generated by the MOE/RNAS algo-

rithm in A1 outperformed the rdm35 108 architecture by 2 perplexity points.

An interesting observation can be made by analysing the rdm35 108 architecture,

which is shown in Figure 6.12. The MOE/RNAS algorithm evolved a gate-like unit,

similar to the gate units typically found in the LSTM and GRU architectures. This

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 82

Figure 6.6: The rdm8 190 architecture evolved in scenario A1.

Figure 6.7: BASIC 0 architecture.

Parameter Value

Population size 100

Offspring generation 100

Generations 30

Maximum transformations 3

Alternative crowding distance True

Seed architectures RNN

Objectives Number of blocks, test perplexity

Table 6.4: Scenario A2 MOE/RNAS algorithm implementation configuration.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 83

Figure 6.8: Total number of constructive and destructive network transformations that were

performed during scenario A1.

gate-like unit is formed from the xt and ht−1 input layer linear activation nodes that are

combined by an elementwise multiplication combination node. The output of the combi-

nation node is then used as the input to a sigmoid activation node, and is also introduced

into the path of the ct−1 memory state. Unfortunately, the ct−1 input layer node does

not have any impact on the output of the architecture, since there are no paths from the

ct−1 input layer node to the ht output layer node. Therefore, the addition combination

node that combines the output of the elementwise multiplication combination node and

the ct−1 input layer node introduces unnecessary computation for calculating the output

of the architecture.

Another noteworthy observation from the rdm35 108 architecture is the output of the

two subsequently connected sigmoid activation nodes that are subtracted from the xt−1

input layer node. This is an unconventional configuration for a RNN architecture, when

compared to hand-crafted architectures such as the LSTM and GRU, which highlights

the stochastic nature of the EA driven RNN architecture offspring generation.

A2 had a total search cost of 6.25 GPU days, which is better compared to the 8.25

GPU days search cost of scenario A1. The search costs observed for scenarios A1 and

A2 are relatively high, considering the efficiency techniques that are implemented, as

previously discussed in Chapter 5. The stochastic nature of the EA contributes towards

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 84

Figure 6.9: The rdm68 45 architecture evolved in scenario A1.

the higher search costs observed. This is because the recombination stage, which is im-

plemented through network morphism, randomly selects the network transformations to

perform, as previously discussed in Chapter 5. With the random network transforma-

tions that are performed on the architectures, it is more likely for the difference between

offspring and parent model test perplexities to be higher than the threshold of 5 perplex-

ity points. Thus, offspring models are trained for 30 epochs, since training the offspring

models for a reduced number of epochs can no longer be justified.

Scenario A3

High search costs were observed in scenarios A1 and A2, where the searches were run

for 30 generations and with population sizes of 100. In scenario A3, the search was run

for 50 generations and with a population size of 30 instead. The LSTM and GRU archi-

tectures were included in the initial population. The rest of the MOE/RNAS algorithm

implementation configuration that was used for this scenario is listed in Table 6.6.

After 50 generations and a total search cost of 7.5 GPU hours, no architectures were

found that outperformed the original LSTM 0 architecture in terms of test perplexity

achieved. Additionally, from the Pareto front illustrated in Figure 6.13, it can be seen

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 85

Architecture Test perplexity Blocks Parameters Training time

(seconds)

rdm35 108 94.318 14 846 300 1 166.56

rdm35 116 96.588 15 846 300 1 160.75

rdm21 62 97.318 19 2 114 450 2 228.25

rdm21 40 99.476 17 2 114 450 2 016.04

rdm5 0 101.313 10 846 300 1 022.03

BASIC 18 165.862 9 846 300 370.34

rdm28 26 170.537 8 846 300 215.42

Table 6.5: Scenario A2 Pareto front architecture performances.

that the LSTM architecture was included in the non-dominated set after the run was

terminated. Furthermore, from the performances of the architectures in the Pareto front

listed in Table 6.14, it is observed that three architectures in the Pareto front are related

to the LSTM architecture.

Contrary to what was observed in scenarios A1 and A2, the average number of blocks

per generation increased across the 50 generations in scenario A3, which can be seen in

Figure 6.14a. This is due to the smaller population size that was used, which resulted in a

less diverse population. The LSTM 0 architecture was the better performing architecture

in terms of test perplexity and eventually started dominating the population, which is

also reflected in the Pareto front listed in Table 6.7. The LSTM 0 architecture has many

blocks, and therefore the offspring generated from the LSTM 0 had similar numbers of

blocks, which leads to the increasing number of average blocks per generation.

A total number of 1 255 constructive network transformations were performed and

a total number of 789 destructive network transformations were performed, which can

be seen in Figure 6.15. Although A3 was run for more generations compared to A1 and

A2, the total number of transformations performed in A3 were expected to be lower

compared to A1 and A2, since a population size of 30 was considered.

Although the average test perplexity per generation did not exhibit any consistent

improvement over the 50 generations for scenario A3 as shown in Figure 6.14b, the

average test perplexity for generation 8 was below 260 perplexity points, which is the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 86

(a) Average number of blocks per generation

for A2.

(b) Average test perplexity per generation for

A2.

Figure 6.10: Average number of blocks and average test perplexity per generation for scenario

A2.

lowest average test perplexity for a generation observed among scenarios A1-A3.

The rdm19 69 architecture was the best performing novel architecture created by the

MOE/RNAS algorithm during the experiment run for A3; the rdm19 69 architecture

can be seen in Figure 6.16. The rdm19 69 architecture does not present any interesting

RNN architecture differences compared to the previous architectures encountered from

A1 and A2. However, during evolution, the rdm19 69 architecture started using the ct−1

input layer node, which was subsequently added to the path of the xt and ht−1 input

layer nodes. Unfortunately, the architecture’s use of the ct−1 node does not have any

impact on the output of the architecture, since there are no connections from the ct−1

path that were introduced into the ht output layer node’s path.

Overall, A3 did not perform as well as A1 and A2, and a reduced population size

meant that a smaller area of the search space was explored during A3. Although the

experiment was run for 50 generations, the better performing LSTM and GRU architec-

tures could not be outperformed in terms of test perplexity. However, the MOE/RNAS

algorithm was still able to construct novel RNN architectures that are capable of learning

from the provided dataset, and sufficient architecture complexity objective optimisation

was observed, which was reflected by the evolution of the rdm19 69 architecture with 14

blocks that achieved a test perplexity of 94.088.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 87

Figure 6.11: Total number of constructive and destructive network transformations that were

performed during scenario A2.

Figure 6.12: The rdm35 108 architecture evolved in scenario A2.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 88

Parameter Value

Population size 30

Offspring generation 30

Generations 50

Maximum transformations 3

Alternative crowding distance True

Seed architectures RNN, GRU, LSTM

Objectives Number of blocks, test perplexity

Table 6.6: Scenario A3 MOE/RNAS algorithm implementation configuration.

Scenario A4

Scenario A4 implemented the same MOE/RNAS algorithm search configuration as A2

with the only exception being the original NSGA-II algorithm’s crowding distance calcu-

lation was used instead. A2 resulted in a better average number of blocks per generation

and exhibited a more consistent improvement of the average test perplexity per gener-

ation compared to A1 and A3. From Figure 6.17a it can be seen that A4 achieved a

similar consistency regarding the average number of blocks per generation as observed in

A2. However, the average number of blocks per generation in A4 were higher compared

to the average number of blocks per generation in A2.

Although the average test perplexity per generation for A4 was lower than what

was observed in A2, A2 exhibited a more consistent decrease in average test perplexity

per generation as the evolutionary cycle progressed. Furthermore, the majority of the

top performing architectures in terms of test perplexity observed in A2 were offspring

architectures, whereas the best performing architecture in terms of test perplexity in A4

was an architecture generated during the initial population.

Table 6.9 lists the performances of the architectures of the Pareto front, which shows

that after 30 generations, no architectures were found that outperformed the rdm76 0

architecture’s achieved test perplexity. However, the rdm47 58 architecture had a much

shorter training time compared to the rdm76 0 architecture, even though the rdm47 58

architecture had more trainable parameters. This was due to the rdm47 58 architecture

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 89

Architecture Test perplexity Blocks Parameters Training time

(seconds)

LSTM 0 83.945 26 3 385 200 3 928.27

GRU 10 84.048 22 2 538 900 2 323.99

LSTM 176 84.352 26 3 385 200 3 012.34

LSTM 92 84.381 26 3 385 200 2 682.04

LSTM 105 84.653 26 3 385 200 2 319.65

rdm19 69 94.088 14 1 268 800 1 492.20

rdm19 0 95.310 11 846 300 1 107.66

rdm11 105 99.321 10 846 300 1 111.05

rdm11 55 172.809 8 846 300 727.38

Table 6.7: Scenario A3 Pareto front architecture performances.

Parameter Value

Population size 100

Offspring generation 100

Generations 30

Maximum transformations 3

Alternative crowding distance False

Seed architectures RNN

Objectives Number of blocks, test perplexity

Table 6.8: Scenario A4 MOE/RNAS algorithm implementation configuration.

Architecture Test perplexity Blocks Parameters Training time

(seconds)

rdm76 0 92.46 13 846 300 1 380.75

rdm47 58 99.036 22 1 268 800 277.29

rdm34 24 99.448 16 846 300 1 561.85

BASIC 31 100.051 10 846 300 959.98

rdm4 46 169.556 9 846 300 480.02

Table 6.9: Scenario A4 Pareto front architecture performances.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 90

Figure 6.13: Scenario A3 Pareto front.

being trained for a reduced number of epochs, since the initial perplexity difference

between the rdm47 58 architecture and its parent was low enough to justify training the

offspring model for a reduced number of epochs (refer to Section 5.2.3).

Overall, the use of the original NSGA-II algorithm’s crowding distance calculation

did not yield any promising results in A4. The best performing architecture in A4 was

not evolved over a number of generations, and instead the best performing architecture

was an architecture randomly generated during the initialisation of the initial population.

Thus, based on the results obtained from A1-A3, the alternative crowding distance metric

yielded better convergence of the Pareto front, and was able to evolve better performing

architectures in terms of the model accuracy objective that was considered.

Summary

From scenarios A1-A4, it was observed that the MOE/RNAS algorithm can easily find

architectures that dominate the LSTM when multiple objectives are considered. How-

ever, among the total of 10 830 architectures evaluated throughout scenarios A1-A4,

the LSTM architecture remains superior regarding the model test perplexity achieved,

which also reflects the results from [38, 42]. The destructive network transformations

that were included during offspring generation were successful in optimising the architec-

ture complexity objective. Furthermore, it was observed that the MOE/RNAS algorithm

is capable of constructing RNN architectures that can learn from the provided dataset.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 91

(a) Average number of blocks per generation

for A3.

(b) Average test perplexity per generation for

A3.

Figure 6.14: Average number of blocks and average test perplexity per generation for scenario

A3.

Although the MOE/RNAS algorithm implements techniques that make the RNN

architecture search method more efficient, such as parameter sharing and early stopping,

the search costs observed across scenarios A1-A4 were still relatively high compared to

the 1 GPU day search cost of the DARTS algorithm [49]. However, the best performing

novel RNN architecture evolved by the MOE/RNAS algorithm achieved a test perplexity

of 92.704 with 846 300 parameter, after being trained for less than 20 minutes (with

parent parameter sharing). In comparison, the LSTM achieved a test perplexity of

83.945 with more than 3 million parameters, after being trained for more than one hour

(see Table 6.3). Thus, the MOE/RNAS algorithm is clearly capable of catering for a

reasonable trade-off between model accuracy and model computational resource demand.

The results observed from scenarios A1 and A2 were relatively similar, whereby both

scenarios achieved a similar consistency in terms of the optimisation of the RNN architec-

ture complexity-related objective. Scenario A1 achieved a better average test perplexity

per generation compared to scenario A2, which is attributed to the difference in con-

figuration between the two scenarios. The only difference between the configuration of

scenarios A1 and A2 was that A1 included the LSTM and GRU architectures in the

initial population. The LSTM and GRU architectures are expected to perform better

with the model accuracy objective compared to the smaller RNN architectures gener-

ated by the MOE/RNAS algorithm. Therefore, the offspring architectures generated

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 92

Figure 6.15: Total number of constructive and destructive network transformations that were

performed during scenario A3.

from the LSTM and GRU architectures achieved comparable results to their respective

parent architectures, resulting in a lower average test perplexity per generation than

what was observed in A2 where the LSTM and GRU architectures were excluded from

the population entirely.

Scenario A3 tested the MOE/RNAS algorithm with a smaller population size com-

pared to the 100 population size that were used in scenarios A1 and A2. It was observed

that the MOE/RNAS algorithm was still able to construct and evolve novel RNN archi-

tectures that are capable of learning from the provided dataset, but the smaller popu-

lation size resulted in an expected decrease in diversity among the population. Scenario

A4 implemented the same configuration for the MOE/RNAS algorithm that was used in

scenario A2, except for the use of the crowding distance calculation. Scenario A4 consid-

ered the original NSGA-II crowding distance calculation as opposed to the alternative

crowding distance calculation of Chu and Yu [16] that was used in scenarios A1-A3.

Compared to scenario A2, scenario A4 performed worse and did not achieve a similar

consistency in terms of the optimisation of either objectives. Therefore, based on the

observations from scenarios A1-A3, the alternative crowding distance calculation of Chu

and Yu [16] is preferred when implementing the MOE/RNAS algorithm for evolving

RNN architectures.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 93

Figure 6.16: The rdm19 69 architecture evolved in scenario A3.

6.2.2 Character-Level Language Modeling Task

This section discusses the results obtained after implementing the proposed MOE/RNAS

algorithm to search for and optimise RNN architectures for a character-level language

modeling task. The dataset used for this character-level language modeling task was gen-

erated from the anbncn context-sensitive language, which is the same context-sensitive

language used by Bayer et al. [6] in their multi-objective EA-based RNN architecture

search method. The approach from Bayer et al. [6] did not consider any RNN ar-

chitecture complexity-related objectives. Therefore, Bayer et al. [6] did not develop

any transformations that are capable of optimising RNN architecture complexity-related

objectives, whereas the MOE/RNAS algorithm is fully capable of optimising RNN ar-

chitecture complexity-related objectives (see Chapter 5).

The training and testing datasets consisted of strings that were generated from the

anbncn context-sensitive language. The training dataset consisted of 500 strings gener-

ated from the language anbncn, where the value of n was randomly selected from the

range 1..10 for each string. The testing dataset was limited to 100 strings, and the

values for n randomly chosen from the range 1..10. For example, n = 3 results in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 94

(a) Average number of blocks per generation

for A4.

(b) Average test perplexity per generation for

A4.

Figure 6.17: Average number of blocks and average test perplexity per generation for scenario

A4.

string aaabbbccc being generated. One single input sequence from either the training

or testing datasets consisted of a string where each character of that particular string

was considered an input in the input sequence. For each of the input sequences, the

model was presented with an arbitrary sub-string of the particular input sequence and

the model was then expected to predict the remaining characters of the string from that

particular input sequence.

Evaluation of the Model Accuracy Objective

The model accuracy objective considered throughout this experiment was based on the

mean squared error (MSE) loss obtained by the model on the generated testing dataset,

after the model was trained on the training dataset. In this experiment, the RNN

architectures created by the MOE/RNAS algorithm were not stacked, and each model

contained a single instance of the corresponding RNN architecture. The models were

implemented with a hidden layer dimension of 128, and since the dataset is relatively

small, batching was not implemented during training. The models were unrolled for the

full length of the input sequence, which was up to a maximum of 10 steps. Training of

the models was done using a backpropagation training algorithm that used a PyTorch

stochastic gradient descent optimisation technique.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 95

Figure 6.18: The rdm76 0 architecture evolved in scenario A4.

Similar to Section 6.2.1, four different experiments were run to test the MOE/RNAS

algorithm’s ability to find and optimise RNN architectures for the character-level NLP

task. Each of the four different experiments are discussed below, under scenarios B1-B4,

respectively. The differences between the four scenarios relate to the configuration of the

multi-objective EA implemented by the MOE/RNAS algorithm. More specifically, the

differences between the four scenarios were implemented such that the impact of the pop-

ulation size and the number of offspring architectures generated for each generation can

be studied. Additionally, the different scenarios considered more aggressive RNN archi-

tecture evolution by allowing more consecutive network transformations during network

morphism compared to what was previously considered in Section 6.2.1. Each of the

scenarios provide a more detailed discussion on their respective implementation details

and configuration.

Scenario B1

For this scenario, a population size of 100 architectures were considered. Parent selection

were limited to the top 25 architectures of the Pareto front (see Section 5.2.4). Thus, only

25 offspring architectures were generated for each generation. During offspring genera-

tion, up to ten network transformations were allowed per architecture (see Section 5.2.1).

Bayer et al. [6] stated that they found the best performing RNN architectures within 10

generations. For this scenario, the run was terminated after 15 generations. The rest of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 96

Parameter Value

Population size 100

Offspring generation 25

Generations 15

Maximum transformations 10

Alternative crowding distance True

Seed architectures RNN, GRU, LSTM

Objectives Number of blocks, MSE loss

Table 6.10: Scenario B1 MOE/RNAS algorithm implementation configuration.

the MOE/RNAS algorithm implementation configuration used for this scenario is listed

in Table 6.10.

According to Figure 6.19a, the MOE/RNAS algorithm struggled to maintain an

optimised RNN architecture complexity objective across the population of RNN archi-

tectures, since the average number of blocks per generation increased as the evolution-

ary cycle progressed. This was a result of the increased number of consecutive network

transformations allowed during network morphism. The increased number of consecutive

network transformations led to a total number of 1 346 constructive network transfor-

mations performed, whereas a total number of 570 destructive network transformations

were performed, which can be seen in Figure 6.20.

Although the average MSE per generation shown in Figure 6.19b does not exhibit

a noticeable trend, the MOE/RNAS algorithm was able to successfully optimise the

model accuracy objective. According to the performances of the architectures of the

Pareto front listed in Table 6.11, it is observed that the MOE/RNAS algorithm was able

to find and evolve a novel RNN architecture that outperformed the LSTM in both the

model accuracy and architecture complexity objectives.

The rdm82 21 architecture shown in Figure 6.21 is particularly interesting. During

the network morphism, the validity of an architecture is determined based on its use of

the hidden state blocks, as previously discussed in Section 5.2.1. There is no verification

performed to verify that a path exists exactly from the ht−1 input layer block to the ht

output layer block. The evolutionary algorithm exploited this during the evolution of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 97

(a) Average number of blocks per generation

for B1.

(b) Average MSE loss per generation for B1.

Figure 6.19: Average number of blocks and average MSE loss per generation for scenario B1.

the architecture rdm82 21. The ht output layer block has at least one input, and there

is at least one other block that uses the ht−1 block as its input. Thus, the generation of

this particular architecture did not violate any of the predefined constraints.

The interesting observation from the rdm82 21 architecture is that it still maintains

a recursive structure through the path of the ct−1 input layer block, which eventually

reaches the ht output layer block. The output of the ht output layer block at the last input

of the input sequence is used as the output of the architecture. Thus, the architecture

effectively used the ct output layer block as a substitute for the hidden state.

The total search time for scenario B1 was eight hours. This shorter search time

compared to the search time of the experiments in Section 6.2.1 was due to a significantly

smaller training dataset. Additionally, since only 25 offspring architectures were created

per generation, fewer models had to be trained per generation.

Overall, scenario B1 yielded interesting results in terms of the architectures found

during the search. Despite being unable to optimise the average number of blocks per

generation, the MOE/RNAS algorithm was able to find and evolve a novel RNN archi-

tecture that dominated the LSTM in less than 15 generations.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 98

Figure 6.20: Total number of constructive and destructive network transformations that were

performed during scenario B1.

Scenario B2

Scenario B2 used the same MOE/RNAS algorithm implementation configuration that

was used for scenario B1, which is listed in Table 6.10. This was done in an attempt to

reproduce the observations from B1, which included the MOE/RNAS algorithm’s ability

to find and evolve a novel RNN architecture that dominates the LSTM.

From Figure 6.23a it can be seen that the average number of blocks across the popu-

lation increased as the evolutionary cycle progressed, similar to what was observed in B1.

Additionally, a total number of 1 345 constructive network transformations were per-

formed and a total number of 622 destructive network transformations were performed,

as shown in Figure 6.24.

According to Figure 6.23b, the average MSE per generation observed in B2 was

more inconsistent than what was observed in B1. This observation is reflected in the

performances of the architectures in the Pareto front, which are listed in Table 6.12. As

shown in Table 6.12, the MOE/RNAS algorithm was unable to find and evolve a novel

RNN that outperformed the LSTM in terms of MSE achieved.

Although the average number of blocks per generation increased in scenario B2, the

MOE/RNAS algorithm was able to optimise the architecture complexity objective. As

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 99

Architecture MSE loss Blocks Parameters Training Time

(seconds)

rdm82 21 0.000014 16 50 692 108.200

LSTM 0 0.000157 26 133 252 700.270

rdm82 18 0.000939 14 50 692 71.739

rdm1 21 0.001806 11 34 180 43.140

rdm43 0 0.017431 10 34 180 221.099

BASIC 29 0.064309 9 34 180 42.937

Table 6.11: Scenario B1 Pareto front architecture performances. The performance of the

LSTM architecture is included for reference.

shown in Table 6.12, the RNN architectures generated by the MOE/RNAS algorithm

have fewer blocks compared to the other top performing architectures, and the corre-

sponding models of the RNN architectures generated by the MOE/RNAS algorithm were

able to achieve marginally good accuracies.

The rdm44 6 architecture is the only noteworthy RNN architecture constructed by

the MOE/RNAS algorithm in B2. Although the rdm44 6 architecture did not make

it to the Pareto front, it was able to achieve an MSE of 0.007755. For the rdm44 6

architecture, the MOE/RNAS algorithm evolved an interesting path for the ct−1 input

node to the ht output layer node, which can be seen in Figure 6.25. Although the

ct−1 input layer node has no impact on the output of the architecture, evolution of the

architecture happened such that the xt input layer node was introduced into the ct−1

input layer node’s path to the ht output layer node, which ensured that the xt input

layer node maintains some contribution towards the final output of the architecture.

After 15 generations and a total search time of 8.5 hours, the MOE/RNAS algorithm

was unable to produce a novel RNN architecture that outperformed the LSTM in terms

of both objectives considered. However, the RNN architectures found during B2 had

significantly fewer trainable parameters compared to the LSTM and GRU architectures,

which resulted in reduced computational resources demanded by the models and quicker

training times, as shown in Table 6.12.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 100

Figure 6.21: The rdm82 21 architecture evolved in scenario B1.

Scenario B3

For scenario B3, a population size of 100 was considered and parent selection was limited

to the top 40 architectures of the Pareto front. Additionally, the experiment for B3 was

run for 50 generations, and the LSTM and GRU architectures were excluded from the

initial population. The rest of the MOE/RNAS algorithm implementation configuration

for scenario B3 is listed in Table 6.13.

During B3, the MOE/RNAS algorithm faced a similar difficulty observed in scenar-

ios B1 and B2 regarding the optimisation of the average number of blocks across the

population, which is shown in Figure 6.26a. After 50 generations, a total number of 5

244 constructive network transformations were performed and a total number of 3 241

destructive network transformations were performed, which are illustrated in Figure 6.27.

According to Figure 6.26b, B3 exhibited a similar inconsistency regarding the average

MSE per generation across the population compared to scenarios B1 and B2. Therefore,

it is clear that when a higher number of consecutive network transformations are con-

sidered, the network morphism phase is too aggressive, which leads to an inconsistent

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 101

Figure 6.22: The rdm82 28 architecture evolved in scenario B1.

(a) Average number of blocks per generation

for B2.

(b) Average MSE loss per generation for B2.

Figure 6.23: Average number of blocks and average MSE loss per generation for scenario B2.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 102

Figure 6.24: Total number of constructive and destructive network transformations that were

performed during scenario B2.

multi-objective optimisation of the RNN architectures. In Section 6.2.1, RNN architec-

ture optimisation exhibited a more favorable trend when a maximum of three consecutive

network transformations were considered.

Table 6.14 lists the performances of the architectures in the Pareto front. The afore-

mentioned observations regarding the effect of the high number of consecutive network

transformations on the MOE/RNAS algorithm’s multi-objective optimisation capabili-

ties are confirmed in Table 6.14. The rdm28 0 architecture, which was randomly gener-

ated during the initialisation of the initial population, achieved the best MSE among all

RNN architectures in the population. The other architectures in the Pareto front listed

in Table 6.14 performed much worse in terms of the model accuracy objective, despite

being offspring architectures. Therefore, when the evolution of the RNN architectures

are too aggressive, the NAS method does not have any more contribution towards RNN

architecture performance than what can be achieved with a random search in the RNN

architecture search space.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 103

Architecture MSE loss Blocks Parameter Training time

(seconds)

LSTM 32 0.000067 27 133 252 261.053

GRU 45 0.000124 24 100 228 118.556

LSTM 0 0.000157 26 133 252 700.270

rdm77 0 0.001957 11 34 180 96.643

rdm46 4 0.019962 10 34 180 80.566

rdm12 15 0.064543 9 34 180 52.817

Table 6.12: Scenario B2 Pareto front architecture performances.

Scenario B4

For scenario B4, a population size of 100 was considered, and 100 offspring architectures

were created for each generation. A maximum number of three consecutive transforma-

tions were considered during network morphism. The rest of the MOE/RNAS algorithm

implementation configuration for scenario B4 is listed in Table 6.15.

The first observation that can immediately be made from Figure 6.28 is the favourable

trend in terms of the average number of blocks per generation, as well as the average MSE

per generation across the 15 generations. Furthermore, the MOE/RNAS algorithm was

able to maintain a consistent decrease in the average number of blocks per generation

while simultaneously optimising the model accuracy objective. Thus, the number of

consecutive network transformations considered during network morphism has a clear

contribution towards the multi-objective optimisation of the RNN architectures.

After 15 generations, a total number of 3 844 constructive network transformations

were performed and a total number of 1 059 destructive network transformations were

performed, as seen in Figure 6.29. The total search time for B4 was 42.67 hours, or 1.78

GPU days, which is higher compared to the search costs observed in scenarios B1-B3

due to the 100 offspring architectures that were created for each generation in B4.

Table 6.16 lists the performances of the architectures in the Pareto front. Apart

from the BASIC 0 architecture, all other architectures in the Pareto front listed in Ta-

ble 6.16 are offspring architectures. Thus, the MOE/RNAS algorithm is clearly capable

of outperforming a random search method when the appropriate configuration is consid-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 104

Figure 6.25: The rdm44 6 architecture evolved in scenario B2.

ered, such as the number of consecutive network transformations allowed during network

morphism.

Although the model accuracies obtained during B4 were not as good as those observed

in scenarios B1-B3, B4 has provided insight into the MOE/RNAS algorithm’s multi-

objective RNN architecture optimisation capabilities.

Summary

The MOE/RNAS algorithm was able to find and evolve a novel RNN architecture that

outperformed the LSTM architecture in terms of both model accuracy and architecture

complexity related objectives. The MOE/RNAS algorithm performed better compared

to the approach presented by Bayer et al. [6], since the MOE/RNAS algorithm was able

to optimise an RNN architecture complexity-related objective while maintaining a good

model accuracy objective for the particular dataset. Additionally, some interesting evo-

lutionary behaviour was observed, where the MOE/RNAS algorithm effectively evolved

substitutes for the hidden state component of the RNN architecture to maintain some

form of memory in the architecture.

From scenarios B1-B3 it was observed that the number of consecutive network trans-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 105

Parameter Value

Population size 100

Offspring generation 40

Generations 50

Maximum transformations 10

Alternative crowding distance True

Seed architectures RNN

Objectives Number of blocks, MSE loss

Table 6.13: Scenario B3 MOE/RNAS algorithm implementation configuration.

(a) Average number of blocks per generation

for B3.

(b) Average MSE loss per generation for B3.

Figure 6.26: Average number of blocks and average MSE loss per generation for scenario B3.

Architecture MSE loss Blocks Parameter Training time

(seconds)

rdm28 0 0.000049 13 34 180 77.483

rdm47 264 0.056667 29 83 460 126.185

rdm50 360 0.064212 22 83 716 105.520

rdm50 348 0.068592 20 99 972 86.510

rdm47 266 0.093367 16 67 076 46.015

Table 6.14: Scenario B3 Pareto front architecture performances.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 106

Figure 6.27: Total number of constructive and destructive network transformations that were

performed during scenario B3.

formations considered during network morphism has a significant contribution towards

the MOE/RNAS algorithm’s ability to optimise multiple RNN architecture objectives.

When the maximum number of consecutive network transformations considered are too

high, the RNN architectures created by the MOE/RNAS algorithm do not outperform

those created through random search of the RNN architecture search space.

In scenario B4, the MOE/RNAS algorithm was implemented with a configuration

similar to that used in scenario A2 for the word-level language modeling task. Compared

to the multi-objective optimisation results from A2, B4 achieved a similar consistency

in terms of the optimisation of both the RNN architecture complexity-related objective

and the model accuracy objective.

6.3 Summary

This chapter presented the empirical study done to evaluate the effectiveness of the

proposed MOE/RNAS algorithm for multi-objective evolutionary algorithm based RNN

architecture search. The experimental procedure was described, and the results obtained

from implementing the proposed MOE/RNAS algorithm to search for RNN architectures

were discussed.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 107

Parameter Value

Population size 100

Offspring generation 100

Generations 15

Maximum transformations 3

Alternative crowding distance True

Seed architectures RNN

Objectives Number of blocks, MSE loss

Table 6.15: Scenario B4 MOE/RNAS algorithm implementation configuration.

The experimental results obtained showed that the MOE/RNAS algorithm was able

to automatically construct novel RNN architectures that can learn from the provided

dataset. Additionally, it was observed that the MOE/RNAS algorithm is fully capable

of optimising RNN architecture complexity related objectives, and when a reasonable

trade-off is accepted between model accuracy and the computational resources demanded

by the model, the MOE/RNAS algorithm can evolve computationally efficient RNN

architectures that achieve reasonably good model accuracy.

The MOE/RNAS algorithm was unable to find and evolve a novel RNN architec-

ture that outperformed the LSTM architecture in terms of test perplexity on the Penn

Treebank dataset, which reflects the observations from [32, 38, 42]. However, RNN archi-

tectures that achieved comparable perplexity, but with lower computational cost, were

discovered.

For the character-level NLP task considered in Section 6.2.2, the MOE/RNAS algo-

rithm was able to find and evolve RNN architectures that outperformed the LSTM in

terms of model accuracy and architecture complexity objectives.

In Section 6.2.2 it was observed that higher numbers of consecutive network transfor-

mations during network morphism negatively impact the MOE/RNAS algorithm’s abil-

ity to optimise RNN architectures. This was confirmed by scenario B4 in Section 6.2.2

along with the multi-objective optimisation trends observed in Section 6.2.1, where a

maximum number of three consecutive network transformations was considered. There-

fore, lower numbers of consecutive network transformations result in a more consistent

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 108

(a) Average number of blocks per generation

for B4.

(b) Average MSE loss per generation for B4.

Figure 6.28: Average number of blocks and average MSE loss per generation for scenario B4.

generational optimisation of the multiple objectives considered.

Although the MOE/RNAS algorithm implements techniques that make the RNN

architecture search method more efficient, the search costs observed during experimen-

tation were still relatively high compared to other RNN NAS studies.

The next chapter presents the conclusions of this study and provides potential topics

for future research.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Empirical Analysis 109

Figure 6.29: Total number of constructive and destructive network transformations that were

performed during scenario B4.

Architecture MSE loss Blocks Parameter Training time

(seconds)

rdm32 45 0.00115 18 50 692 73.775

rdm32 32 0.00272 17 50 692 68.944

rdm32 26 0.03956 16 34 180 63.643

rdm72 41 0.04896 14 50 564 77.642

rdm54 29 0.06305 13 50 692 53.498

BASIC 20 0.07508 12 50 564 36.200

BASIC 0 0.13433 10 34 180 71.210

Table 6.16: Scenario B4 Pareto front architecture performances.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7

Conclusions

This chapter concludes the main part of the dissertation. The findings of the dissertation

are summarised in Section 7.1, and directions for future work are discussed in Section 7.2.

7.1 Summary of Conclusions

The main objective of this work was to develop a novel multi-objective EA-based method

for automated RNN architecture search. This was accomplished as follows:

The first sub-objective of the dissertation was to provide an overview of NNs and

EAs that were used in this study. Chapter 2 discussed the fundamentals of NNs and the

importance of NN architecture design. RNN architectures were discussed, and it was

shown that the recursive nature of the RNN architecture makes them more complicated

and difficult to train compared to feed-forward NN architectures. Chapter 3 discussed

the EAs that were used in this study, and how EAs can be used for multi-objective

optimisation.

The second sub-objective of the dissertation was to provide an overview of existing

NAS methods. NAS for automated NN architecture design was discussed in Chapter 4,

which included a review of existing EA-based NAS methods. It was found that the use

of multi-objective EAs has not been extensively studied for RNN architecture search,

specifically within the NAS paradigm where architecture complexity objectives were

considered. Some complexities related to performing crossover on RNN architecture in-

110

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Conclusions 111

dividual representations in GA based recombination were observed from existing studies,

and network morphism was identified as an alternative method to generate offspring RNN

architectures. Network morphism approaches that exclusively consider constructive net-

work transformations are unable to optimise architecture complexity related objectives,

since the architectures can only grow in size. Destructive network transformations were

successfully implemented in existing EA-based NAS methods to optimise CNN architec-

ture complexity objectives. Furthermore, Chapter 4 discussed existing NAS methods for

RNN architecture search as well as the techniques that exist to make NAS more efficient,

which addressed the third and fourth sub-objectives, respectively.

The fifth sub-objective of this study was to propose a modular RNN architecture

search space and encoding scheme. In Chapter 5, a template-driven RNN architecture

cell-based search space was proposed, along with a modular block-based RNN archi-

tecture encoding scheme. The sixth sub-objective of the dissertation was to propose

a multi-objective EA-based search method to explore the proposed RNN architecture

search space. Chapter 5 proposed the MOE/RNAS algorithm: a multi-objective EA-

based NAS method for RNN architecture search. The fundamental search strategy that

is employed by the proposed MOE/RNAS algorithm is largely based on the NSGA-II

algorithm. Furthermore, the proposed MOE/RNAS algorithm includes appropriate net-

work transformations, which allow for the optimisation of RNN architecture complexity

related objectives during RNN architecture evolution. The seventh sub-objective of this

work was to investigate techniques that can be implemented to make the MOE/RNAS

algorithm more efficient. The MOE/RNAS algorithm employs techniques such as pa-

rameter sharing and early stopping to make the RNN model accuracy evaluation stage

more efficient.

The eighth sub-objective of the dissertation was to implement the MOE/RNAS al-

gorithm to search for RNN architectures for NLP datasets. An empirical study was

conducted in Chapter 6 to evaluate the effectiveness of the proposed MOE/RNAS algo-

rithm for RNN architecture search, and the findings can be summarised as follows:

1. The MOE/RNAS algorithm is able to find RNN architectures that outperform

hand-crafted RNN architectures such as the LSTM and GRU, when architecture

performance is based on multiple objectives.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Conclusions 112

2. The MOE/RNAS algorithm was unable to find novel RNN architectures that out-

perform the LSTM in terms of test perplexity achieved after being trained on a

standard word-level language modeling task that is based on the Penn Treebank

dataset.

3. For a character-level language modeling task, the MOE/RNAS algorithm was able

to find novel RNN architectures that outperform the LSTM in terms of architecture

complexity and model accuracy objectives.

4. Destructive network transformations are successful in optimising RNN architecture

complexity related objectives, and a consistent improvement was observed during

generational RNN architecture evolution.

5. The maximum number of consecutive network transformations allowed during net-

work morphism has a clear impact on the MOE/RNAS algorithm’s ability to op-

timise RNN architectures. When the maximum number of consecutive network

transformations allowed during network morphism is too high, RNN architecture

evolution is too aggressive, which reduces the model accuracies achieved by off-

spring architectures.

6. Parameter sharing and early stopping techniques improved the efficiency of the

model accuracy evaluation stage.

7. The computational resource demand of the proposed MOE/RNAS algorithm is

relatively high compared to existing NAS methods. This is attributed to the ran-

domness of the network transformations performed on the offspring architectures,

which leads to a significant model accuracy difference between the offspring and

parent models. When the difference between the offspring and parent model accu-

racy is too high, training the offspring model for a reduced number of epochs can

no longer be justified.

Overall, the MOE/RNAS algorithm developed in this study deepens the understand-

ing of evolving RNN architectures using network morphism, and contributes towards

making progress on fundamental questions related to RNN architecture complexity op-

timisation in an architecture search paradigm.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Conclusions 113

7.2 Future Work

This study considered a method for RNN architecture search that is exclusively driven

by a multi-objective EA. The use of EAs for RNN architecture search in existing studies

is scarce, and there are multiple research directions for future work that can build on

the research done in this dissertation.

The obvious avenue to pursue that relates to the work done in this dissertation is

to research a hybrid approach that employs an EA-based search strategy with a more

complex network morphism stage, where the effects of previous network transformations

are considered when selecting network transformations for future offspring generation.

This can be done by adapting existing reinforcement learning NAS methods such that

the RL agent is used for generating a sequence of network transformations instead, using

the EA for maintaining a population of fit architectures based on the defined multiple

objectives.

The problems considered in this study were limited to language modeling tasks. It

would be interesting to perform an analysis on the effectiveness of the proposed NAS

method on other machine learning tasks with sequential datasets that are unrelated to

the natural language processing domain.

This study avoided model accuracy prediction techniques and instead relied on ex-

isting techniques to make model accuracy evaluation more efficient. Future work may

examine the use of performance prediction techniques, such as learning curve extrapola-

tion [4], to further improve the efficiency of the model accuracy evaluation stages.

The selection strategy implemented by the EA of the proposed NAS method was

taken from the NSGA-II algorithm’s selection strategy. Future work may examine the

use of a density estimator to reduce the number of architectures selected for training, as

observed in [24].

The network morphism approach implemented by the proposed NAS method in this

study considered network transformations that make low-level changes to the RNN ar-

chitecture, such as adding and removing units in the architecture. Future work may

consider network transformations that could introduce entire gate units instead, such as

the gate units of the LSTM and GRU architectures. This can be done by defining a gate

unit template and considering the particular gate unit as a cell. The search space can

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Conclusions 114

then be explored on a cell-based gate unit level as opposed to the low-level search that

was done in this study.

In general, the research presented in this dissertation indicated that multi-objective

EA-based RNN architecture search is able to optimise RNN architectures for multiple

objectives. However, the proposed method was unable to find and optimise a novel

RNN architecture that outperforms the LSTM architecture in terms of test perplexity

on the Penn Treebank dataset. Future work that attempts multi-objective EA-based

RNN architecture search can therefore address the shortcomings related to word-level

language modeling tasks, such that the particular method can be compared to current

state-of-the-art RNN architecture search methods.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh

Tran, Bing Xue, and Mengjie Zhang. A survey on evolutionary machine learning.

In Journal of the Royal Society of New Zealand, volume 49, pages 205–228. Taylor

& Francis, 2019.

[2] Abdulaziz Almalaq and Jun Jason Zhang. Evolutionary Deep Learning-Based En-

ergy Consumption Prediction for Buildings. IEEE Access, 7:1520–1531, 2019.

[3] P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evolutionary algorithm that con-

structs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1):54–

65, 1994.

[4] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural

architecture search using performance prediction. arXiv preprint arXiv:1705.10823,

2018.

[5] Imon Banerjee, Yuan Ling, Matthew C. Chen, Sadid A. Hasan, Curtis P. Langlotz,

Nathaniel Moradzadeh, Brian Chapman, Timothy Amrhein, David Mong, Daniel L.

Rubin, Oladimeji Farri, and Matthew P. Lungren. Comparative effectiveness of

convolutional neural network (CNN) and recurrent neural network (RNN) archi-

tectures for radiology text report classification. Artificial Intelligence in Medicine,

97(August):79–88, 2019.

[6] Justin Bayer, Daan Wierstra, Julian Togelius, and Jürgen Schmidhuber. Evolving

Memory Cell Structures for Sequence Learning. In Artificial Neural Networks -

ICANN 2009, pages 755–764. Springer, Berlin, Heidelberg, 2009.

115

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 116

[7] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1):1–127, 2009.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE Transactions on Neural Networks,

5(2):157–166, 1994.

[9] Christopher M. Bishop. Neural Networks for Pattern Recognition. Advanced Texts

in Econometrics. Oxford University Press, Inc., USA, 1995.

[10] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient Archi-

tecture Search by Network Transformation. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 32, pages 2787–2794. AAAI Press, 2018.

[11] Guillermo Campos Ciro, Frédéric Dugardin, Farouk Yalaoui, and Russell Kelly. A

NSGA-II and NSGA-III comparison for solving an open shop scheduling problem

with resource constraints. IFAC-PapersOnLine, 49(12):1272–1277, 2016.

[12] Gang Chen. A Gentle Tutorial of Recurrent Neural Network with Error Backprop-

agation. arXiv preprint arXiv:1610.02583, 2016.

[13] Zewei Chen, Fengwei Zhou, George Trimponias, and Zhenguo Li. Multi-objective

Neural Architecture Search via Non-stationary Policy Gradient. arXiv preprint

arXiv:2001.08437, 2020.

[14] Hanen Chihi and Najet Arous. Recurrent neural networks design by means of

multi-objective genetic algorithm. IJCSI International Journal of Computer Science

Issues, 8(3):296–302, 2011.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. In Proceedings of

the Empirical Methods in Natural Language Processing, pages 1724–1734. ACL,

2014.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 117

[16] Xiangxiang Chu and Xinjie Yu. Improved Crowding Distance for NSGA-II. arXiv

preprint arXiv:1811.12667, 2018.

[17] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Hailong Ma. Multi-objective reinforced

evolution in mobile neural architecture search. In Proceedings of the European Con-

ference on Computer Vision, pages 99–113, Cham, 2020. Springer.

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. In

Proceedings of the NIPS 2014 Workshop on Deep Learning, December 2014, pages

1–9, 2014.

[19] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated

feedback recurrent neural networks. In Proceedings of the 32nd International Con-

ference on Machine Learning, volume 37, pages 2067–2075. PMLR, 2015.

[20] Kalyanmoy Deb and Himanshu Jain. An Evolutionary Many-Objective Optimiza-

tion Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part

I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary

Computation, 18(4):577–601, 2014.

[21] Kalyanmoy Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[22] Aguston Eiben and Marc Schoenauer. Evolutionary computing. Information Pro-

cessing Letters, 82(1):1–6, 2002.

[23] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[24] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-

objective neural architecture search via lamarckian evolution. arXiv preprint

arXiv:1804.09081, 2018.

[25] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 118

[26] Andries P. Engelbrecht. Computational Intelligence: An Introduction. Wiley Pub-

lishing, 2 edition, 2007.

[27] Stuart Geman, Elie Bienenstock, and René Doursat. Neural Networks and the

Bias/Variance Dilemma. Neural Computation, 4(1):1–58, 1992.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,

2018.

[29] Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In Proceedings of the 2013 IEEE international

conference on acoustics, speech and signal processing, number 3, pages 6645–6649.

IEEE, 2013.

[30] Frauke Günther and Stefan Fritsch. Neuralnet: Training of neural networks. R

Journal, 2(1):30–38, 2010.

[31] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.

Inverse Problems, 34(1):1–23, 2018.

[32] Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art.

Knowledge-Based Systems, 212(Dl), 2021.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780, 1997.

[34] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[35] Shengran Hu, Ran Cheng, Cheng He, and Zhichao Lu. Multi-objective neural archi-

tecture search with almost no training. Evolutionary Multi-Criterion Optimization,

2020.

[36] Michael I. Jordan. Serial order: a parallel distributed processing approach. Advances

in Psychology, 121(C):471–495, 1986.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 119

[37] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

Exploring the Limits of Language Modeling. arXiv preprint arXiv:1602.02410, 2016.

[38] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An Empirical Exploration

of Recurrent Network Architectures. In Proceedings of the 32nd International Con-

ference on Machine Learning, volume 37, pages 2332–2340, Lille, France, 2015.

JMLR.org.

[39] Daniel Jurafsky and James Martin. Speech and Language Processing. Prentice-Hall,

Inc., 2008.

[40] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and Understanding

Recurrent Networks. arXiv preprint arXiv:1506.02078, 2015.

[41] Youngkee Kim, Won Joon Yun, Youn Kyu Lee, Soyi Jung, and Joongheon Kim.

Trends in Neural Architecture Search: Towards the Acceleration of Search. In Pro-

ceedings of the 2021 International Conference on Information and Communication

Technology Convergence (ICTC), pages 421–424. IEEE, oct 2021.

[42] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim

Fedorov, Alexander Filippov, and Evgeny Burnaev. NAS-Bench-NLP: Neural Ar-

chitecture Search Benchmark for Natural Language Processing. IEEE Access,

10:45736–45747, 2022.

[43] Weicong Kong, Zhao Yang Dong, Youwei Jia, David J. Hill, Yan Xu, and Yuan

Zhang. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural

Network. IEEE Transactions on Smart Grid, 10(1):841–851, 2019.

[44] Richard E Korf. Artificial Intelligence Search Algorithms. Algorithms and Theory

of Computation Handbook, pages 1–40, 1996.

[45] Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi. Simple recurrent

units for highly parallelizable recurrence. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, pages 4470–4481, Brussels,

Belgium, 2020. Association for Computational Linguistics.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 120

[46] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural ar-

chitecture search. Uncertainty in artificial intelligence, pages 367–377, 2020.

[47] You Li, Yingxin Kou, and Zhanwu Li. An Improved Nondominated Sorting Genetic

Algorithm III Method for Solving Multiobjective Weapon-Target Assignment Part

I: The Value of Fighter Combat. International Journal of Aerospace Engineering,

2018:1–23, 2018.

[48] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural

architecture search. Journal of Machine Learning Research, 21:1–18, 2020.

[49] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. arXiv preprint arXiv:1806.09055, 2018.

[50] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and Kay Chen

Tan. A Survey on Evolutionary Neural Architecture Search. IEEE Transactions on

Neural Networks and Learning Systems, pages 1–21, 2021.

[51] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and

Vishnu Naresh Boddeti. NSGANetV2: Evolutionary Multi-objective Surrogate-

Assisted Neural Architecture Search. In Proceedings of the European Conference on

Computer Vision, pages 35–51, Cham, 2020. Springer.

[52] Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, Wolf-

gang Banzhaf, and Vishnu Naresh Boddeti. NSGA-Net: Neural architecture search

using multi-objective genetic algorithm. In Proceedings of the Twenty-Ninth Inter-

national Joint Conference on Artificial Intelligence, pages 4750–4754. International

Joint Conferences on Artificial Intelligence Organization, 2020.

[53] Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb, Erik D. Goodman,

Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Multiobjective Evolutionary Design

of Deep Convolutional Neural Networks for Image Classification. IEEE Transactions

on Evolutionary Computation, 25(2):277–291, 2021.

[54] Danilo P Mandic and Jonathon A Chambers. Recurrent Neural Networks for Pre-

diction, volume 4 of Wiley Series in Adaptive and Learning Systems for Signal

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 121

Processing, Communications, and Control. John Wiley & Sons, Ltd, Chichester,

UK, 2001.

[55] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a

large annotated corpus of English: The Penn Treebank. Computational linguistics,

19:313, 1993.

[56] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[57] L. R. Medsker and L. C. Jain. Recurrent Neural Networks: Design and Applications.

CRC Press, 1st edition, 2001.

[58] Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic

context embedding with bidirectional LSTM. In Proceedings of the 20th SIGNLL

conference on computational natural language learning, pages 51–61, 2016.

[59] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and opti-

mizing LSTM language models. arXiv preprint arXiv:1708.02182, 2018.

[60] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,

Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,

and Babak Hodjat. Evolving deep neural networks. In Artificial Intelligence in the

Age of Neural Networks and Brain Computing, pages 293–312. Elsevier, Amsterdam,

2018.

[61] Tomaš Mikolov, Martin Karafiát, Lukaš Burget, Cernocky Jan, and Sanjeev Khu-

danpur. Recurrent neural network based language model. In Proceedings of the

11th Annual Conference of the International Speech Communication Association,

Interspeech 2010, number September, pages 1045–1048, 2010.

[62] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[63] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 122

[64] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation Functions: Comparison of trends in Practice and Research for Deep

Learning. arXiv preprint arXiv:1811.03378, 2018.

[65] Patxi Ortego, Alberto Diez-Olivan, Javier Del Ser, Fernando Veiga, Mariluz Pe-

nalva, and Basilio Sierra. Evolutionary LSTM-FCN networks for pattern classifi-

cation in industrial processes. Swarm and Evolutionary Computation, 54:100650,

2020.

[66] Kang-moon Park, Donghoon Shin, and Yongsuk Yoo. Evolutionary Neural Architec-

ture Search (NAS) Using Chromosome Non-Disjunction for Korean Grammaticality

Tasks. Applied Sciences, 10(10):3457, 2020.

[67] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to

construct deep recurrent neural networks. In Proceedings of the Second International

Conference on Learning Representations (ICLR 2014), 2014.

[68] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-

ing recurrent neural networks. In Proceedings of the International conference on

machine learning, pages 1310–1318. PMLR, 2013.

[69] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. PyTorch: An imperative style, high-performance deep learning library.

Advances in Neural Information Processing Systems, 2019.

[70] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient

Neural Architecture Search via Parameters Sharing. In Proceedings of the 35th In-

ternational Conference on Machine Learning, volume 80, pages 4095–4104. PMLR,

2018.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 123

[71] Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algo-

rithm Based on Decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007.

[72] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li, Xiaojiang

Chen, and Xin Wang. A Comprehensive Survey of Neural Architecture Search.

ACM Computing Surveys, 54(4):1–34, 2022.

[73] F Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain

mechanisms. Spartan Books, Washington DC, 1962.

[74] Gunter Rudolph. On a multi-objective evolutionary algorithm and its convergence

to the Pareto set. In Proceedings of the IEEE Conference on Evolutionary Compu-

tation, ICEC, pages 511–516. IEEE, 1998.

[75] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal

Representations by Error Propagation. 1985.

[76] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pear-

son, USA, 3rd edition, 2009.

[77] SanYou Zeng, LiXin Ding, LiShan Kang, and Yuping Chen. A new multiobjective

evolutionary algorithm: OMOEA. Congress on Evolutionary Computation, 2003.

CEC ’03, 2:898–905, 2003.

[78] Siddharth Sharma, Simone Sharma, and Athaiya Anidhya. Activation Functions

in Neural Networks. International Journal of Engineering Applied Sciences and

Technology, 4(12):310–316, 2020.

[79] Xian Shi, Pan Zhou, Wei Chen, and Lei Xie. Darts-Conformer: Towards Efficient

Gradient-Based Neural Architecture Search For End-to-End ASR. arXiv preprint

arXiv:2104.02868, 2021.

[80] P. Sibi, S. Allwyn Jones, and P. Siddarth. Analysis of different activation func-

tions using back propagation neural networks. Journal of Theoretical and Applied

Information Technology, 47(3):1264–1268, 2013.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 124

[81] J E Smith and A.E. Eiben. Introduction to Evolutionary Computing. Springer

Publishing Company Inc., 2nd edition, 2015.

[82] N. Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

[83] Mirac Suzgun, Yonatan Belinkov, and Stuart M. Shieber. On evaluating the gen-

eralization of LSTM models in formal languages. In Proceedings of the Society for

Computation in Linguistics, volume 2, pages 277–286, 2019.

[84] Chunnan Wang, Hongzhi Wang, Guosheng Feng, and Fei Geng. Multi-Objective

Neural Architecture Search Based on Diverse Structures and Adaptive Recommen-

dation. arXiv preprint arXiv:2007.02749, 2020.

[85] Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha. Interval Universal

Approximation for Neural Networks. In Proceedings of the ACM on Programming

Languages, volume 6, pages 1–29. ACM New York, NY, USA, 2022.

[86] Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A Study on Encod-

ings for Neural Architecture Search. arXiv preprint arXiv:2007.04965, 2020.

[87] Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How Pow-

erful are Performance Predictors in Neural Architecture Search? arXiv preprint

arXiv:2104.01177, 2021.

[88] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A Survey on Neural

Architecture Search. arXiv preprint arXiv:1905.01392, 2019.

[89] Antoine Yang, Pedro M Esperanca, and Fabio Maria Carlucci. NAS evaluation is

frustratingly hard. arXiv preprint arXiv:1912.12522, 2019.

[90] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu,

Qi Tian, and Chang Xu. Cars: Continuous evolution for efficient neural architec-

ture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 1829–1838, 2019.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 125

[91] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and

Frank Hutter. NAS-BENCH-101: Towards reproducible neural architecture search.

In Proceedings of the International Conference on Machine Learning, pages 7105–

7114. PMLR, 2019.

[92] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Network

Regularization. arXiv preprint arXiv:1409.2329, 2014.

[93] Aimin Zhou, Bo Yang Qu, Hui Li, Shi Zheng Zhao, Ponnuthurai Nagaratnam Sug-

anthan, and Qingfu Zhangd. Multiobjective evolutionary algorithms: A survey of

the state of the art. Swarm and Evolutionary Computation, 1(1):32–49, 2011.

[94] Yanqi Zhou and Gregory Diamos. Neural Architect: A Multi-objective Neural

Architecture Search with Performance Prediction. MLSys 2019, pages 1–3, 2019.

[95] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–

195, 2000.

[96] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learn-

ing. arXiv preprint arXiv:1611.01578, 2016.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A

Acronyms

BPTT Back Propagation Through Time

CNN Convolutional Neural Network

EA Evolutionary Algorithm

EC Evolutionary Computation

ELU Exponential Linear Unit

GA Genetic Algorithm

GRU Gated Recurrent Unit

LReLU Leaky Rectified Linear Unit

LSTM Long Short-Term Memory

NAS Neural Architecture Search

NLP Natural Language Processing

NN Artificial Neural Network

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

TanH Hyperbolic Tangent

SOP Scalar Objective Optimisation Problems

SRN Simple Recurrent Neural Network

126

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B

Symbols

This appendix lists the important symbols used throughout the thesis, as well as their

corresponding meanings. The symbols are divided according to the chapter in which the

symbols were first introduced.

B.1 Chapter 2: Artificial Neural Networks

w An artificial neuron’s weight vector

xn The nth input

n Index of an input unit

N Total number of examples in a labeled training dataset

net Weighted sum of outputs

θ The bias threshold

f Activation function of a neuron

ŷ The output of a neuron

M Total number of hidden units

j Index of a hidden unit

aj The weighted sum of the jth hidden unit’s inputs

g Activation function of a hidden unit

zj Output of the jth hidden unit

127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 128

K Total number of output units

k Index of an output unit

g̃ Activation function of an output unit

m number of input patterns to consider for error value aggregation

Em NN error per m number of input patterns

wkj Weight between the kth and jth unit

∆wkj Update of the weight value between the kth and jth unit

υ Learning rate

T Total time steps in an input sequence

t Time step

ht RNN hidden state at time step t

W RNN input weight matrix

U RNN hidden state weight matrix

b RNN bias threshold

· Element-wise multiplication of matrices

DG Testing dataset

Q Index of an input pattern in the testing dataset

dQ The Qth input pattern in the testing dataset

B.2 Chapter 3: Evolutionary Algorithms

nx The dimensional search space of individuals in a population

b Binary-valued individual in the population

f Fitness function

Γ Data type of the elements of an individual’s representation

R Set of all real numbers

ns Population size

nts Population size of individuals selected through tournament selection

F Vector-valued objective function

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 129

Ro Parameter space

Rn Objective space

x Decision vector

y Objective vector

a Individual in population

b Individual in population

≺ Domination symbol

� Non-domination symbol

m Total number of objectives used to represent individual fitness

k An objective

j An individual’s rank

disj Crowding distance of the jth ranked individual

fkn The kth objective value for the nth individual.

P Population of candidate solutions

np The number of solutions which dominate the solution p

Sp A set of solutions that the p solution dominates

Fi The ith Pareto-front

B.3 Chapter 4: Neural Architecture Search

f NN architecture performance measure

A Set of NN architectures

f(a) The performance measure of architecture a

t Time step

g A recurrent cell

ht RNN hidden state at time step t

θ RNN architecture

α Trainable parameters of the RNN architecture

xt The input at time step t

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 130

ct The cell state at time step t

k The number of cells that a final RNN architecture comprise

B.4 Chapter 5: Framework

t Time step

g A recurrent cell

ht RNN hidden state at time step t

θ RNN architecture

α Trainable parameters of the RNN architecture

xt The input at time step t

ct The cell state at time step t

fh RNN activation function

W RNN input weight matrix

U RNN hidden state weight matrix

b RNN bias threshold

br Randomly selected block from an RNN architecture

N Population size

i Generation counter

φ Number of offspring to generate

Υ Archive that contains previously evaluated RNN architectures

P Parent population

Q Offspring population

f Multi-objective fitness values for provided candidate solutions

Fn The nth Pareto front

p Selected parent solutions

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Symbols 131

B.5 Chapter 6: Empirical Analysis

t Time step

ht RNN hidden state at time step t

xt The input at time step t

ct The cell state at time step t

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Dissertation Outline

	2 Artificial Neural Networks
	2.1 Neural Network Structures
	2.1.1 Artificial Neuron
	2.1.2 Activation Functions
	2.1.3 Neural Network Architectures
	2.1.4 Training Neural Networks

	2.2 Recurrent Neural Networks
	2.2.1 Recurrent Neural Network Architecture
	2.2.2 Training Recurrent Neural Networks
	2.2.3 Long Short-Term Memory

	2.3 Summary

	3 Evolutionary Algorithms
	3.1 Evolutionary Algorithm Fundamentals
	3.1.1 Representation of Individuals
	3.1.2 Initial Population
	3.1.3 Fitness Evaluation
	3.1.4 Selection
	3.1.5 Recombination
	3.1.6 Termination Condition

	3.2 Multi-Objective Evolutionary Algorithms
	3.2.1 Multi-Objective Problem Solving Approaches
	3.2.2 Genetic Algorithms

	3.3 Summary

	4 Neural Architecture Search
	4.1 How Neural Architecture Search Works
	4.1.1 Search Space
	4.1.2 Search Strategy
	4.1.3 Performance Estimation Strategy
	4.1.4 Neural Architecture Search Method Quality

	4.2 Evolutionary NAS Methods
	4.3 Summary

	5 Framework
	5.1 Search Space
	5.2 Search Strategy
	5.2.1 Recurrent Neural Network Morphism
	5.2.2 Initial Population
	5.2.3 Fitness Evaluation
	5.2.4 Selection

	5.3 Summary

	6 Empirical Analysis
	6.1 Empirical Procedure
	6.2 Empirical Study
	6.2.1 Word-Level Language Modeling Task
	6.2.2 Character-Level Language Modeling Task

	6.3 Summary

	7 Conclusions
	7.1 Summary of Conclusions
	7.2 Future Work

	Bibliography
	A Acronyms
	B Symbols
	B.1 Chapter 2: Artificial Neural Networks
	B.2 Chapter 3: Evolutionary Algorithms
	B.3 Chapter 4: Neural Architecture Search
	B.4 Chapter 5: Framework
	B.5 Chapter 6: Empirical Analysis

