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ABSTRACT
We assess the performance of a discrete-time queueing sys-
tem with train arrivals. Arrivals at the queue stem from a
number of active sessions, each generating a packet in a slot
with fixed probability q. Since an exact analysis is not fea-
sible for q 6= 1, we rely on Taylor-series expansions around
q = 0 of the joint probability generating functions of the
number of active sessions and the queue content. These ex-
pansions are then either combined with the known generat-
ing function for q = 1 if the system is stable for q = 1, or with
heavy-traffic results if this is not the case. In both cases, we
obtain expressions for the moments of queue content and
packet delay and assess the accuracy of our approximations
by means of simulation.

1. INTRODUCTION
Input traffic at various nodes in packet switched telecommu-
nication networks typically exhibits various levels of corre-
lation. It is well known that input correlation significantly
affects queueing performance and hence there is a continu-
ing interest in analytically tractable queueing models which
can accurately capture arrival correlation. There is a partic-
ular interest in Markovian arrival models, including models
with a finite state space such as the discrete-time batch-
Markovian arrival model [1, 2], or with a structured infinite
state space such as the discrete autoregressive arrival models
[3, 4], branching arrival models [5] and train arrival models
[6, 7, 8, 16].

Train arrival models, which are also referred to as session-
based arrivals or queueing models with M/G/∞-input, are
a particular type of two-level models: arriving packets are
organized in larger entities denoted by sessions or trains.
The exhibited time correlation then follows from the intri-
cate interplay between the arrival process of new sessions,
the duration of these sessions, and the packet arrival process
within a single session. While train-arrival models come nat-
ural — the concept of sessions is omnipresent at higher layers
of the network protocol stack — applicability of train-arrival

models in literature is somewhat limited by the implicit as-
sumption that the load associated to a single session should
equal or exceed the service speed. Albeit implicit, this as-
sumption is key to the tractability of the queueing analysis:
it implies that the arrival process is in a fixed (Markovian)
state when the queue is empty which facilitates the queueing
analysis. Lifting this assumption poses some mathematical
difficulties and is the subject of this paper.

To the best of our knowledge, the queueing problem at hand
cannot be solved by exact analytical techniques. Therefore,
heavy-traffic techniques have been applied to models with
a related arrival model [9, 10]. Heavy-traffic results offer a
good deal of insight in the performance model and reason-
able numerical agreement of systems operating near their
maximal capacity. In this paper, we focus on light-traffic
approximations. In particular, we develop a Taylor-series
expansion in the probability with which an active session
produces packets. Some previous work on Taylor-series ex-
pansions for queueing models has been reported. Overviews
are given in [15, 17]. A variety of techniques have been ap-
plied to this problem as well as to related topics such as per-
turbation theory and light-traffic approximations. Sample-
path based techniques [18], Palm theory [19], ladder-height
distributions [20] have been reported in the literature. In
this paper, we take the functional equation of the joint gen-
erating function as a starting point, and we find expansions
of the generating function (thus, of the entire distribution),
instead of just in the expected value.

The remainder of this paper is organised as follows. In the
next section, the queueing model under study is described in
detail and the necessary notation is introduced. The anal-
ysis of this model is then presented in section 3 while our
approximations are numerically evaluated in section 4. Fi-
nally, we justify our Taylor series expansions in section 5,
and draw conclusions in section 6.

2. QUEUEING MODEL
We consider a discrete-time queueing system. Time is di-
vided into fixed-length intervals, called slots. During the
consecutive slots, packets arrive at the queueing system, are
stored in an infinite capacity buffer and are transmitted in
order of arrival. The transmission times of the consecutive
packets are fixed and equal to the slot length. Moreover,
transmission of packets is synchronised with respect to slot
boundaries which implies that packets cannot be transmit-
ted during their arrival slot. We investigate a single-server
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system: if packets are present in the buffer at the beginning
of the slot, only a single packet leaves the system at the end
of the slot.

The packets that arrive in the queueing system are gener-
ated by a number of active sessions; while being active, a
session generates a single packet in a slot with a fixed prob-
ability q or no packet with probability 1− q, independently
from slot to slot. The number of new sessions that start
in slot k is denoted by Nk. The consecutive Nk constitute
a sequence of independent and identically distributed ran-
dom variables with common probability generating function
N(z). For further use, let λi = E[N i

0] denote the ith mo-
ment of the number of new sessions in a slot, also let λ = λ1.
Sessions typically span multiple slots. The length (in slots)
of a session is an independent geometrically distributed ran-
dom variable. Let p denote the probability that an active
session continues during the next slot. The probability mass
function of the session length then equals s(n) = pn−1(1−p)
for n = 1, 2, . . .

We now relate the number of active sessions at consecu-
tive slots, as well as the number of active sessions in a slot

and the number of arrivals that they generate. Let B
(q)
k (t)

(B̂
(p)
k (t)) be a sequence of counting functions of independent

and identically distributed Bernoulli processes, q (p) being

the success probability. For a fixed t, B
(q)
k (t) is a binomially

distributed random variable with parameters t (the number
of trials) and q (the success probability). The number of
active sessions in slot k is denoted by Xk In view of the de-
scription of the arrival model above, the number of active
sessions in slot k+1 can be expressed in terms of the number
of active sessions in slot k as follows,

Xk+1 = B
(p)
k (Xk) +Nk+1 . (1)

Finally, the number of packet arrivals Ak in a slot can be
expressed in terms of the number of active sessions during
slot k as follows,

Ak = B̂
(q)
k (Xk) . (2)

These equations describe the arrival process and comple-
ment the evolution of the queue size, described in the fol-
lowing section.

3. QUEUEING ANALYSIS
Having settled the notation and the details of the model at
hand, we now proceed to the Taylor-series approximations.
In section 3.1, we first establish the system equations of the
queueing model and the functional equation for the probabil-
ity generating function of the (Markovian) state of this sys-
tem in equilibrium. By means of a Taylor-series expansion
of this functional equation in the probability q around q = 0,
light-traffic approximations are extracted for the probability
generating function, mean and variance of the queue content
(and packet delay) in Section 3.2. For q = 1, the queueing
system is either stable or not. If the system is not stable for
q = 1, there exists a value 0 < qm < 1 such that the queue-
ing system is stable for q < qm. Therefore, the heavy-traffic
approximation for q → qm is considered in Section 3.3. If
the system is stable for q = 1, we recall the known analyt-
ical results for this case in section 3.4. In either case, we
obtain an approximant for the different moments of queue

content and packet delay by combining these results with
our light-traffic approximation.

3.1 Functional equation
Let Uk denote the queue content at the beginning of slot
k. If there are packets in the queue at the beginning of slot
k, a single packet departs at the end of this slot, whereas
no packet departs if the queue is empty at the beginning of
slot k. Moreover, all packet arrivals during slot k are in the
queue at the beginning of slot k + 1. Hence, we have the
following system equation,

Uk+1 = (Uk − 1)+ +Ak , (3)

where the notation (·)+ is the usual shorthand notation for
max(0, ·).

It is easy to verify that the queue content Uk and the number
of active sessions Xk−1 completely describe the state (in the
Markovian sense) of the queueing system at the beginning
of slot k. Therefore, let

Pk(x, z) = E
h
xXk−1zUk

i
(4)

denote the joint probability generating function of the num-
ber of active sessions during slot k−1 and the queue content
at the beginning of slot k. We now express the correspond-
ing generating function at the beginning of slot k+1 in terms
of this generating function,

Pk+1(x, z) = E[xXkzUk+1 ] = E[xXkz(Uk−1)++Ak ]

=
1

z

h
Pk(1− p+ px(1− q + qz), z)

+ (z − 1)Pk(1− p+ px(1− q + qz), 0)
i

×N(x(1− q + qz)) . (5)

Here, the last equation follows from the observation that Ak
is binomially distributed with success probability q, and with
the number trials equal to Xk, where Xk is the sum of Nk
and a binomially distributed term with success probability
p and number of trials equal to Xk−1.

As the queue under study belongs essentially to the broad
class of G/G/1-systems with a stationary input process, it
is straightforward to show (e.g. by means of a Loynes ap-
proach) that the queueing system under investigation reaches
equilibrium if,

ρ =
λ q

1− p < 1 . (6)

Under this assumption, there exists a stationary ergodic pro-
cess (U∗k , X

∗
k) to which the process (Uk, Xk−1) convergences

almost surely, starting from any initial state (U1, X0). Let
P (x, z) denote the joint probability generating function of
the number of active sessions X∗0 and the queue content U∗1
in equilibrium. In view of (5), this probability generating
function then satisfies the following functional equation,

P (x, z) =
1

z

h
P (p+ px(q + qz), z)

+ (z − 1)P (p+ px(q + qz), 0)
i
N(x(q + qz)) . (7)



Here we introduced p = 1 − p and q = 1 − q to simplify
notation. Despite its apparent simplicity, this functional
equation cannot be solved in closed form for general q to
the best of our knowledge. Therefore, we focus on Taylor-
series expansions in the next section.

3.2 Taylor series around q = 0
In the remainder, it is assumed that the generating function
P (x, z) is analytic in x, z and q in a neighbourhood of x =
z = q = 0. It is shown in section 5 that this assumption
is indeed justified. For ease of notation, let Mi,j(x) denote
the coefficient in the term [qizj ] of the expansion of P (x, z)
in q and z. In other words, by the assumed analyticity, the
probability generating function P (x, z) can be expressed as
follows,

P (x, z) =

∞X
i=0

∞X
j=0

Mi,j(x)zjqi . (8)

Proving that Mi,j(x) = 0 for j > i. We now show by in-
duction that Mi,j(x) = 0 for j > i. That is, the ith term in
the expansion of P (x, z) in q is a polynomial of order i in z.
By plugging in the expansion (8) in the functional equation
(7), and by comparing terms in [q0zk] on either side of the
equation, we find,

M0,0(x) = N(x)(M0,1(p+ px) +M0,0(p+ px)) ,

M0,k−1(x) = N(x)M0,k(p+ px) , for k > 1.

By construction, M0,1(x) is a partial probability generat-
ing function: all coefficients in its series expansion are non-
negative. Moreover, from the first equality above, we find
M0,1(1) = 0. This immediately impliesM0,1(x) = 0 for |x| <
1. The second equality above then shows that M0,k(x) = 0
as well for all k > 1. This is the base case of our proof by
induction (i.e. for i = 0).

For the inductive step, assume thatMi,j(x) = 0 for j > i and
i < k, i.e. that the terms in q0 to qk−1 are polynomials in z
of order 0 to k−1. We show that then also Mk,j(x) = 0. For
ease of notation, let [X][qkzl] denote the coefficient of qkzl

in the Taylor series expansion of X. From the functional
equation we find for m ≥ 1,

[P (x, z)][qkzk+m] =h
P (p+ px(q + qz), z)N(x(q + qz))

i
[qkzk+m+1]

+
h
P (p+ px(q + qz), 0)N(x(q + qz))

i
[qkzk+m]

−
h
P (p+ px(q + qz), 0)N(x(q + qz))

i
[qkzk+m+1]

. (9)

The two last terms of the former equation are zero. This
follows from the observation that the coefficients of zn in
P (p+ px(q + qz), 0)N(x(q + qz)) are at least of the order n
in q (for any n ≥ 0). By this observation and by plugging

in the Taylor series expansion (8), we get,

Mk,k+`(x)

=

∞X
i=0

∞X
j=0

h
Mi,j(p+ px(q + qz))N(x(q + qz))

i
[qk−izk+`+1−j ]

=

k−1X
i=0

iX
j=0

h
Mi,j(p+ px(q + qz))N(x(q + qz))

i
[qk−izk+`+1−j ]

+

k+`+1X
j=0

h
Mk,j(p+ px(q + qz))N(x(q + qz))

i
[q0zk+`+1−j ]

=

k+`+1X
j=0

h
Mk,j(p+ px(q + qz))N(x(q + qz))

i
[q0zk+`+1−j ]

.

(10)

The second equality uses the fact that the Mi,j(x) = 0 for
i < k and j > i, while the first summation again disappears
in the third equation by the observation that the coefficients
of zn are at least of the order n in q. Finally, we find,

Mk,k+`(x) = Mk,k+`+1(p+ px)N(x) , for ` ≥ 1. (11)

By construction,
P
`Mk,k+`(x) converges for x = 1. This

is only possible if Mk,k+`(1) = 0 for ` ≥ 1 since equation
(11) implies Mk,k+`(1) = Mk,k+`+1(1) for ` ≥ 1. Repeated
application of equation (11) further shows,

Mk,k+1(x) = Mk,k+`(f`(x))

`−1Y
m=1

N(fm(x)) (12)

with f1(x) = x and fn(x) = 1 − p + pfn−1(x), n > 1.
Taking the limit for n → ∞, the product on the right-
hand side of (12) converges for all |x| < 1. Moreover,
lim`→∞Mk,k+`(f`(x)) = lim`→∞Mk,k+`(1) = 0 which in
turn implies Mk,k+1(x) = 0 for all |x| < 1. By equation
(11), we finally find that Mk,k+`(x) = 0 for |x| < 1 and
` ≥ 1. Hence, given that Mi,j(x) = 0 for i < k and j > i, we
have shown that Mk,j(x) = 0 for j > k. We conclude that
the probability generating function P (x, z) can be expressed
as follows,

P (x, z) =

∞X
i=0

iX
j=0

Mi,j(x)zjqi . (13)

Functional equations for Mi,j(x). In view of this expres-
sion, the functional equation (7) can be rewritten as follows,

∞X
i=0

iX
j=0

Mi,j(x)zjqi =
1

z

h ∞X
i=0

iX
j=0

Mi,j(p+ px(q+ qz))zjqi

+ (z − 1)

∞X
i=0

Mi,0(p+ px(q + qz))qi
i
N(x(q + qz)) . (14)

Collecting the terms in qizj (i = 0, 1, . . . and j = 0, . . . , i) on
both sides of the former equation, we then obtain a system
of functional equations. This system can be used to find the
series expansion in q of the moments of the queue content
as will be shown in the following subsection. For ease of



notation, let cMi,j(x) = Mi,j(1 − p + px). The systems of
functional equations corresponding to i = 0, i = 1 and i = 2
are displayed below. For i = 0, we have,

M0,0(x) = cM0,0(x)N(x) .

For i = 1, we have,8>><>>:
M1,0(x) = cM1,1(x)N(x) + cM1,0(x)N(x)

−cM0,0(x)xN ′(x)− pxN(x)cM ′0,0(x)

M1,1(x) = cM0,0(x)xN ′(x) + pxcM ′0,0(x)N(x)

For i = 2, we have,8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

M2,0(x) = cM2,1(x)N(x) + cM2,0(x)N(x)

−cM1,1(x)xN ′(x)− pxcM ′1,1(x)N(x)

−cM1,0(x)xN ′(x)− pxcM ′1,0(x)N(x)

+2(px)2cM ′′0,0(x)N(x) + px2cM ′0,0(x)N ′(x)

+2x2cM0,0(x)N ′′(x)

M2,1(x) = cM2,2(x)zN(x) + cM1,1(x)xN ′(x)

+pxcM ′1,1(x)N(x) + cM1,0(x)xN ′(x)

+pxcM ′1,0(x)N(x)− 4(px)2cM ′′0,0(x)N(x)

−2px2cM ′0,0(x)N ′(x)− 4x2cM0,0(x)N ′′(x)

M2,2(x) = 2(px)2cM ′′0,0(x)N(x) + px2cM ′0,0(x)N ′(x)

+2x2cM0,0(x)N ′′(x)

As already illustrated by the systems above, the systems of
equations grow quickly in size and manual calculation be-
comes tedious. Higher-order expressions are omitted but
can be easily calculated with Mathematica or Maple. The
numerical evaluation of the series expansion in section 4 in-
cludes higher-order terms. For now, we only mention that
these functional equations have the following form,

Mi(x) = Mi(1− p+ px)Ai(x) + Ni(x) , (15)

with,

Ni(x) =

i−1X
k=0

iX
l=0

M
(l)
k (1− p+ px)Bk,l(x) . (16)

Here Mi is a row vector with entries Mi,j (j = 0, . . . , i) and

Ai and Bj,k are known matrices. Furthermore, M
(l)
k is the

lth derivative of Mk. Notice that Ni(x) is a vector which
can be expressed in terms of known functions and in terms
of Mk, k < i. Hence, Ni is known if one solves the equations
(15) for consecutive i.

The functional equation (15) can be solved by repeated ap-
plication of this equation. We have,

Mi(x) = Mi(1)

∞Y
`=1

Ai(f`(x)) +

∞X
j=1

Ni(fj(x))

j−1Y
`=1

Ai(f`(x)) .

(17)
The unknown vectors Mi(1) can be determined as follows.
Plugging x = 1 into the matrix representation (15) of the
functional equations yields,

Mi(1) = Mi(1)Ai(1) + Ni(1) . (18)

For all i, the matrix Ai(1) is singular such that the former
expression does not allow to solve for Mi(1). However the

normalisation condition yields an extra equation for each
i. In view of equation (13), the normalisation condition
P (1, 1) = 1 yields

P (1, 1) =

∞X
i=0

iX
j=0

Mi,j(1)qi , (19)

such that

M0,0(1) = 1 ,

iX
j=0

Mi,j(1) = 0 , (20)

for i ≥ 1.

Moments. We now focus on the Taylor series expansion in
q of the nth moment of the queue content. By the represen-
tation (13), this expansion can be expressed as follows,

E[UnLT] =

∞X
i=1

θi,n q
i , θi,n =

iX
j=0

jnMi,j(1) . (21)

In other words, for the calculation of the nth order expan-
sion, the unknown values Mi,j(1) need to be determined for
i = 0, . . . , n and j = 0, . . . , i. For the calculation of the
kth coeffcient, equation (16) shows that we need to deter-
mine the values of the derivatives up to order k of Mi(x) for
x = 1, i < k. These can be found by differentiating either
equation (17) or — more conveniently — equation (15) and
by evaluating in x = 1. In particular, the 3rd order Tay-
lor series expansion of the first two moments of the queue
content are displayed below,

E[ULT] =
λ1

1− pq +

„
λ2

2(1− p2)
+

2pλ2
1 − (1− p)λ1

2(1 + p)(1− p)2

«
q2

+

„
p

2(1− p)(p2 + p+ 1)
λ3

+
(5p3 + 3p2 + 1)λ1 − p(1 + 2p)(1− p)2

2(1− p)2(p2 + p+ 1)(1 + p)
λ2

+
4 p4 − p3 + p2 − 1

2(1 + p)(p2 + p+ 1)(1− p)2 λ
2
1

+
2p(1 + 2 p3)λ2

1 − 2 p3(1− p)2

2(1 + p)(p2 + p+ 1)(1− p)3 λ1

«
q3 +O(q4) , (22)

E[U2
LT] =

λ1

1− pq +

„
3λ2

2(1− p2)
+

6pλ2
1 − 3(1− p)λ1

2(1 + p)(1− p)2

«
q2

+

„
(15p3 + 13p2 + 2 p+ 3)λ1 − 6p4 + 6p

2(1− p)2(1 + p)(1 + p+ p2)
λ2

− (9p+ 2)

3(1− p)(p2 + p+ 1)
λ3

+
2p(6p3 + 2p2 + 3)λ1 − 12p5 + 15p4 − 2p3 + p2 + p− 3

2(1 + p)(p2 + p+ 1)(1− p)3 λ2
1

− 9p3 − 2p− 2

3(p2 + p+ 1)(1− p2)
λ1

«
q3 +O(q4) . (23)

The accuracy of these expressions is evaluated in section 4.

Packet delay. We consider a discrete-time queueing system
with single-slot packet transmission times. Hence, the prob-



ability generating functions of queue content P (1, z) and
delay D(z) relate as follows [11]:

D(z) =
P (1, z)− P (1, 0)

1− P (1, 0)
, (24)

where 1− P (1, 0) equals the load ρ of the queueing system:

1− P (1, 0) =
λq

1− p .

Therefore, the Taylor-series expansion in q of the n moment
of the delay is expressed as follows,

E[Dn
LT] =

∞X
i=0

θ̂i,n q
i . (25)

where the coefficients θ̂i,n are

θ̂i,n = θi+1,n
1− p
λ

(26)

3.3 Heavy-traffic analysis
In this section, we assume that λ ≥ 1− p. In this case, the
queueing system is not stable for q = 1 and the moments of
the queue content diverge to∞ for q → qm = 1−p

λ
. Hence, in

this case, we aim for heavy-traffic limit results, as pioneered
by Kingman in the seminal paper [21].

The performance measures are given in terms of the load
and the asymptotic variance. The load ρ = λ q

1−p is given as
before; the asymptotic variance is defined as follows. Con-
sider the random variable Sκ denoting the total number of
arrivals during a period of κ slots, say slot 1 to slot κ. The
asymptotic variance is then given by,

V = lim
κ→∞

1

κ
Var[Sκ] . (27)

Let Y
(κ)
k denote the number of arrivals in slots 1 to κ that

belong to a session that started in slot k and recall that
Nk denotes the number of new sessions started in slot k.
Moreover, let Bm,n denote a doubly indexed sequence of
Bernoulli distributed random variables with success proba-
bility qm and let Gm be the duration of the mth session that

starts in slot k. Then Y
(κ)
k distributes as,

Y
(κ)
k

d
=

NkX
m=1

bG(κ−k+1)
mX
n=1

Bm,n , bG(`)
m = max(Gm, `) , (28)

and hence,

Var[Y κk ] = λVar[ bGm]q2m + λE[ bGm]qm(1− qm)

+ (λ2 − λ2) E[ bGm]2q2m . (29)

Taking the limit for κ→∞, we have,

V = lim
κ→∞

Var[Y
(κ)
k ] = λ

p

(1− p)2 q
2
m

+ λ
1

1− pqm(1− qm) + (λ2 − λ2)
1

(1− p)2 q
2
m , (30)

which further simplifies to,

V =
2p− 1

λ
+
λ2

λ2
. (31)

The first two moments of the buffer content under heavy
traffic can then be found to be equal to (using eg. [21]):

E[UHT] =
V

2(1− ρ)
= (1− p) (2p− 1)λ+ λ2

2λ2(1− p− qλ)
,

E[U2
HT] =

V 2

2(1− ρ)2
= 2

„
(1− p) (2p− 1)λ+ λ2

2λ2(1− p− qλ)

«2

.

(32)

In order to combine the Taylor expansion in the neighbour-
hood of q = 0 (light traffic) and the heavy-traffic results we
use an idea proposed by [22]: as light-traffic approximations
of the nth order provide the exact expressions for the first k
derivatives around ρ = 0, and heavy-traffic approximations
provide the exact asymptote around ρ = 1, an expression of
the form

E[UnLT+HT] = θ1,nq + θ2,nq
2 + · · ·

+ θk,nq
k +

„
qλ

1− p

«k+1

E[UnHT ] (33)

retains all the information contained in the two approxima-
tions. Note that due to the aforementioned result of [11],
we see that in heavy traffic and for one-slot service times,
the distributions of buffer content and packet delay coincide.
Hence a similar combination of light-traffic and heavy-traffic
results can be obtained for the moments of the packet delay.

3.4 The case q = 1
As already mentioned, assuming λ/(1 − p) < 1, one can
explicitly solve the functional equation for q = 1. Equation
(7) then simplifies to,

P (x, z) =
N(xz)

z

“
P (1−p+pxz, z)+(z−1)P (1−p+pxz, 0)

”
.

(34)
For q = 1, active sessions imply arrivals such that there are
no active sessions if the queue is empty. This means that the
unknown function P (x, 0) is a constant: P (x, 0) = P (0, 0) =
1−λ/(1−p). By this observation, all moments of the queue
content can be found; see [6] for details. For example, the
mean queue content equals,

E[U1] =
λp(1− p) + λ2(1− 5p)− λ2(1− p)

(1− p)2(2λ− 1 + p)
. (35)

Expressions for higher-order moments are rather spacious
and are therefore omitted. As for the heavy-traffic results
presented above, results for q = 1 can be combined with
light-traffic results into an approximant for all q ∈ [0, 1]. In
particular, Padé approximants [23] that additionally satisfy
the values of the performance measures at hand for q = 1
can be used to this end. A number of numerical examples
are displayed in the following section.

4. NUMERICAL EVALUATION
In this section, we provide a number of numerical examples
and verify our approximants by means of simulation. In
order to limit the number of parameters, we make the ad-
ditional assumption that the number of new sessions that
start in a slot is a Poisson distributed random variable with
mean λ. Hence, the arrival process is characterised by the
triple (λ, p, q).
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Figure 1: Taylor-series expansion for the mean queue content up to different orders as depicted versus q.

Figure 1 depicts the mean queue content versus q. We as-
sume p = 0.9 and λ = 0.08 such that the mean session
duration is 10 slots and such that the load is 80% if ses-
sions always produce packets (q = 1). Figure 1(a) depicts
the light-traffic approximation curves as obtained in section
3.2 as well as simulation results for this performance mea-
sure. To illustrate the accuracy for small q, we enlarged the
curves for 0 ≤ q ≤ 0.4 in the subplot. Higher-order approx-
imants are more accurate for small q. However, for larger
q, this is not necessarily the case. Since light-traffic results
are inaccurate for larger q, we combine them with the exact
expression for q = 1 by means of a Padé approximant (see
section 3.4). The best results were obtained by Padé ap-
proximants with a first order denominator. The results are
depicted in figure 1(b). For all orders of LT approximants,
we depict both the original approximant and the Padé ap-
proximant (an arrow points from the original approximant
to the Padé approximant). This approach improves the ac-
curacy of the approximants for all orders of the expansions.
In particular, the 7th order expansion yields a very accurate
approximant.

While the queue was stable for q = 1 in the preceding ex-
ample, this is not the case in Figure 2. Here, we assume
p = 0.99 and λ = 0.02 such that the mean session duration
is 100 slots and such that the load is 100% if sessions produce
packets with probability qm = 0.5. Figures 2(a) and 2(b) de-

pict the mean and variance of the queue content versus the
probability q. Curves of the various approximants — we here
consider the combination of light-traffic and heavy-traffic re-
sults, see section 3.3 — are depicted as well as simulation
results. To facilitate the display of the heavy-traffic results,
we scale mean and variance with (1−ρ) and (1−ρ)2, respec-
tively. Moreover, we again zoom in (without scaling) on the
values for small q to assess the accuracy of the approxima-
tion in this region. From Figure 2(a), we observe that our
approximants for the mean queue content are accurate for
loads up to ρ = 40% (q = 0.2). For higher-order moments,
the approximants are less accurate though, see Figure 2(b).

5. AN ANALYTICITY PROOF
In this section we show that it is justified to perform the
Taylor-series expansions. The analyticity of a stationary so-
lution is not automatic and is in general not as straightfor-
ward to establish as one may be inclined to think [17]. The
basic problem is that the analyticity of finite-horizon queue-
ing characteristics (which is easier to establish) does not au-
tomatically extend to stationary characteristics. To estab-
lish analyticity of the latter, there are broadly speaking two
approaches. The first, developed by Malyshev, Menshikov
and Fayolle [12], is an extension to the Foster-Lyapunov ap-
proach to the ergodicity of Markov chains, and makes use
of some Banach spaces. It is restricted to Markovian sys-
tems, see also [13]. The other approach was developed by
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Figure 2: LT+HT approximant for the mean and variance of the queue content up to different orders as
depicted versus q.

B laszczyszyn in the more general framework of stationary
point processes, and makes use of Palm theory. In this pa-
per, we have opted for the former approach.

For the purpose of this section, we view the stochastic model
of this paper as a family of Markov chains {Lq} (parametrised
by the parameter q). The goal of this section is to establish
the following theorem:

Theorem 1. The family {Lq} of Markov chains admits
a unique stationary distribution πq(.) in a neighbourhood of
q = 0. Moreover πq(.) depends analytically on q.

In the proof of this theorem, we make use of a general
theorem reported by Fayolle et al. in [12], more precisely
Theorem 7.3.2. It is based on the uniform convergence
of operators associated with the family of Markov chains
{Lq} (parametrised by the parameter q) on a countable two-
dimensional state space A = N × N. We denote a generic
element of A as (s, u), where s denotes the number of active
sessions and u denotes the buffer content.

For convenience, we include the formulation of Theorem 7.3.2
in [12] here. It makes use of some Banach-space machinery,
and hence we must state some definitions. Let M be the Ba-

nach space of real measures on A with the variation norm,
defined as follows:

||µ|| = sup{|µ(E)| : E ⊂ A}. (36)

Further, let B be the Banach algebra of linear bounded op-
erators M → M. A Markov chain Lε induces the operator
Pε ∈ B in the usual sense. A set M ⊂ M is called a set of
uniform convergence for an operator (P ∈ B) if PM ⊂ M
and there exists a function φ(n) exist such that

∞X
n=1

φ(n) =: φ <∞, (37)

and a y ∈M exist such that

||Pnx− y|| < φ(n), (38)

for all n and x ∈M .

Theorem 2. Let Pq depend analytically on q as a func-
tion taking its values in the Banach algebra of operators B,
and assume that the following conditions are met.

(i) For the operator P0 there exist two sets M0 and M1

of uniform convergence such that M1 ⊂ M2 and such
that infx∈M2 ||x|| > 0.



(ii) There is a q0 > 0 such that Pqx ∈M2, for all |q| < q0
and any x ∈M1.

(iii) There is a q1 > 0 such that

x1 +
(Pq − P0)x2

||Pq − P0||
∈M2,

for |q| < q1 and any x1, x2 ∈M1.

Then there is a q2 > 0 such that, for |q| < q2 and x ∈ M1,
the limit

lim
n→∞

Pnq x = r(q)

exists and depends analytically on q.

We now prove Theorem 1.

Proof. Remark that the Markov chain decomposable for
q = 0. Indeed, there exist p̂∗∗, p̃∗∗ such that

P0x(s′, u′) =
X
s,u

x(s, u)p̂uu′ p̃ss′ .

Every state (s, u), u > 0 is transient. The Markov chain
restricted to the smaller state space (0, s), however, is irre-
ducible and aperiodic. The subchain with transition proba-
bilities p̃ss′ describes the evolution of the number of active
sessions. Denote its stationary distribution by σ(s), and let
σ∗(s) =

P∞
k=s σ(k). Further, the transient subchain p̂uu′

describes the buffer content evolution if q = 0: p̂uu′ = 1 if
u′ = (u− 1)+ and zero otherwise.

Picking the right sets M1 and M2 is the most difficult part of
the proof. ChooseM1 = {σ}. This means that we only prove
convergence if the initial distribution equals σ, but as we can
establish the existence of a unique stationary distribution by
means of a Loynes’ argument (under the condition that λq <
1 − p), the set is big enough for our purposes. Further, we
choose M2 = {x : ∀u, s : |x(u, s)| ≤ ασ(s)σ∗(u),

P
x(., .) =

1}. Note that conditions (ii) and (iii) of Theorem 2 are
trivially fulfilled for this choice of M1 and M2, as is the fact
that M1 is a set of uniform convergence. Hence we must
only verify that M2 is a set of uniform convergence for the
operator P0. This consists of two steps:

• We show that PM2 ⊂ M2. Indeed, let x ∈ M2 then
we have for y = P0x:

|y(j)| =

˛̨̨̨
˛X
i

pijx(i)

˛̨̨̨
˛ ≤X

i1,i2

x(i1, i2)p̃i1j1 p̂i2j2 ,

≤ ασ(i1)σ∗((i2 − 1)+)

≤ ασ(i1)σ∗(i2)

(39)

• For y(s, u) = π(s)1(u = 0), we show that ||Pn0 x −
y|| < φ(n), where

P
n φ(n) =: φ < ∞. Indeed, pick

φ(n) = α
P∞
i=n θq0(i), and we see that

||Pnx− y||

= sup
j1,j2

|
X
i1,i2

x(i1, i2)p̃ni1j1 p̂
n
i2j2 − π(j1)1(j2 = 0)|

≤ sup
j2

|
X
i2

p̂ni2j2x2(i2)− 1(j2 = 0)|

= |
∞X
i=n

x2(i)|

≤ φ(n) (40)

As
P∞
i=0 iσ

∗(i) <∞, we have φ <∞, as required.

This concludes the proof.

Note that from the analyticity of the stationary distribution,
the analyticity of P (x, z) in a neighbourhood of x = z = q =
0 is evident.

6. CONCLUSIONS
In this paper, we investigate a discrete-time queueing system
with session-based arrivals with small packet arrival rate q
within the sessions. As this system defies analytical solution,
we evaluate Taylor-series expansions of the joint probability
generating function of the system state at slot boundaries.
We explicitly prove the analyticity and polynomial form of
the steady-state generating function, so that our derivations
are mathematically justified.

Numerical examples show that for not too heavy load (ρ <
0.2), even relatively low order series expansions have good
accordance with simulation results. When combined with
heavy-traffic or solutions for the case q = 1, we get good
correspondence in an extended interval and reasonable cor-
respondence over the entire load interval.
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Padé approximants, Part I: Basic Theory, Encyclopedia
of mathematics and its applications, Vol. 13., 1981.


