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Abstract

The complexity and amount of medical information and
data keeps increasing, which makes it difficult to maintain
the same quality of care in the Intensive Care Unit, with-
out significant cost increases. In order to contain this com-
plexity, clinical guidelines are used to structure best prac-
tices and patient care, but they also support physicians and
nurses in the diagnostic and treatment process. Currently,
no standardized format exists to represent these guidelines.
Moreover, they are often handwritten. Translating guide-
lines into a computer interpretable format can overcome
problems in their workflow and improve clinician’s uptake.
To this end, we developed an automated generation and ex-
ecution engine. Based on the requirements, both functional
and non-functional, an architecture using the microkernel
pattern is presented. This allows us to easily add and mod-
ify functionality. This architecture was evaluated with the
guideline for the calculation of calorie need for burn pa-
tients, used on a daily basis in the Intensive Care Unit of
the University Hospital of Ghent.

1. Introduction

When taking medical decisions, physicians and nurses
are often assisted by clinical practice guidelines (CPGs).
These guidelines are descriptions of diagnostic processes
and treatments. They can be handwritten or represented in
an electronic format. CPGs can also be used when new
processes and procedures are taught to the medical staff.
The standardization of treatment, originated from the use
of CPGs, ensures that patient care improves and minimizes
healthcare expenditure. Therefore, the Institute of Medicine
(IOM) has recommended the creation and use of CPGs
since 1990. Despite this, no real standardization has oc-

curred, leading to a multitude of different formats [21].
Moreover, the emphasis in medical institutions is more

on the creation of guidelines, rather than on the use and
practical implementation in a hospital setting [14]. Nowa-
days, clinical guidelines are often represented as plain text,
which makes them difficult to handle. Additionally, it be-
comes more and more complex to teach such guidelines to
physicians [18]. This also makes it inconvenient to search
and execute the proper guideline. Guidelines increasingly
are represented in a formal way, using digital guideline for-
mats, also called computer-interpretable guidelines (CIGs).
Often, these CIGs can be executed automatically.

A major issue is the number of available CIG formats
that can be used to represent guidelines. Each format has its
strengths and weaknesses. Moreover, it is not easy to con-
vert one format into another, because, although these for-
mats are very similar, they use other concepts and structures
[16]. Another problem is that only little attention is paid to
the execution speed of those guideline formats. Addition-
ally, problems occur when clinical guidelines are translated
manually into working computer applications. A platform
for the dynamic composition of medical services can be
used [8] to address this problem, but the communication gap
between domain experts and software developers and lack
of domain-specific knowledge from both sides [6, 7] still
poses a problem. Other approaches exist that try to provide
a solution to the known difficulties with guidelines. Some
examine how existing CIG formats can be extended with
evidence information to enrich the guidelines [15], others
develop systems to transform text-based guidelines using a
semi-automatic way based on natural language processing
(NLP) [12].

Currently, medical decision support services are not dis-
tributed efficiently throughout the network. Some services
need to be executed simultaneously and others use large
amounts of data. Prior work on optimizations, such as dis-
tribution of services, is reported upon in [4], where the focus

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55869376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


<…> 
   <…/> 
   <…/> 
</…> 

flowchart internal UML
format

generation of 
services

optimizations deployment

woensdag 23 juni 2010

Figure 1. Overview of the functional require-
ments of the CPG execution engine

is on service execution and not on guidelines execution.
The Unified Modeling Language (UML) [19] is a stan-

dardized language, used to model different types of infor-
mation using different diagram types. It should be familiar
to most computer scientists. Although UML is a complex
language, straight-forward diagrams can be interpreted by
non-specialists. The UML activity diagram, which is used
to model flowcharts, is of particular interest, as most CPG
formats are flowchart-based. UML and more particularly
state diagrams are already being used to verify the guide-
lines, by means of model checking [17].

A guideline execution engine can overcome the prob-
lems described in the previous paragraphs. This engine is
able to translate a guideline, represented as a CIG format,
into an internal UML representation. After this transla-
tion, the guideline can be optimized, followed by the au-
tomatic execution. The proposed architecture has to cope
with a broad spectrum of similar standards and technolo-
gies. Moreover, it should be extensible and adaptable to
easily integrate new optimization algorithms or new guide-
line formats. Therefore, a strict separation has to be made
between fundamental, essential and additional functional-
ity. Providing clinical decision support will benefit both
patients and medical staff. It improves practitioner’s per-
formance [6], reduces medical errors [10] and minimizes
costs and the length of patient’s stay [1].

The remainder of the article is structured as follows. In
Section 2 the functional overview of the engine is presented.
Section 3 is devoted to the architectural details and imple-
mentation. A practical use case, the calculation of calorie
needs for burn patients is demonstrated in Section 4. The
evaluation of this use case will be discussed in Section 5.
Finally, in Section 6 the main conclusions of this research
are highlighted and possible directions for future research
are described.

2. Functional Overview

The system should allow the user to enter a guideline
into the system through a web interface or client applica-
tion. This guideline can be represented in a format, specifi-
cally developed for this application, or as a CIG. In the latter
case, the guideline is translated into an internal representa-
tion format used by the application. This format is based on
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Figure 2. Overview of the CPG execution en-
gine architecture

UML. When the translation is complete, the internal UML
guideline components are converted into several services.
This conversion translates decision steps and calculations
automatically. Other services, such as messaging and data
look up have to be predefined. In a next step, optimizations
can be performed and finally the guideline is executed. An
overview of these demands is illustrated in Figure 1.

In order to satisfy these functional requirements, the ar-
chitecture has to be modifiable. This enables the translation
of multiple CPGs formats (e.g. GLIF 3 [2] and Arden Syn-
tax [11]). Such an approach also makes it possible to eas-
ily add new services or optimization techniques afterwards,
without the need to stop the engine.

3. Architecture Details

In this section, the components of the architecture are de-
scribed together with their interactions and implementation
details.

3.1 Component Description

The high level architecture, as shown in Figure 2, is
based on the microkernel pattern [3]. This pattern is mainly
designed for systems in changing environments, which have
to be extremely adaptable and extensible. To achieve this, a
minimal, functional core is used, the kernel, which is split
off from the rest of the system. This kernel works together
with other components, which can easily be replaced or
modified. The major advantage of using a microkernel is
the increased reliability of the engine and its extensibility.
The architecture consists of 6 packages.

The Client package is responsible for offering a simple
user interface (UI). This can either be a standalone applica-
tion or a web client connecting to a web application, offered
by the Remote Adapter component. Diagrams can be fed to



Internal ServicesOptimizationsKernelFormat MappingRemote Adapter

Call services

Optimization

Execution

Processing
UML Activity Diagram

Translate to activity diagram
CIG diagram

CIG diagram

Visual Paradigm for UML Community Edition [not for commercial use] 

Figure 3. Overview of the interactions be-
tween the components of the CPG execution
engine for the guideline generation and de-
ployment

the kernel using the Remote Adapter. This can be done di-
rectly when diagrams are supplied in the internal UML for-
mat, or indirectly by offering them to the format mapping
component, which converts the offered format to the inter-
nal UML representation. The Remote Adapter emulates the
interface of existing CPG execution engines. This makes it
possible for other applications to interact with the system.

As previously mentioned, the existing system is also ca-
pable of translating CIG formats into the internal UML
guideline format. These conversions are handled by the
package Format Mapping. For every CIG format that can
be converted, a specific component is present in this pack-
age. By translating the diagram to an internal format, it is
possible to translate different CIG formats just by dynami-
cally adding new components to this package.

The Kernel package is the central component of the ar-
chitecture. This package implements central services, such
as handling communication and resources and only deals
with the interpretation of diagrams at the highest level. This
is done by using interfaces to other packages. The kernel is
responsible for opening, interpreting and dynamically exe-
cuting UML diagrams. The functionalities of the kernel are
kept as small as possible.

The Optimizations package receives the diagram, exe-
cutes the necessary optimizations and returns the result to
the Kernel package. An example is the optimized distri-
bution of the guideline. The Internal Services package ex-
tends the functionality provided by the kernel. This package
provides the services needed to execute certain components
within the activity diagram. Some examples are data lookup
services, services providing communication with users and
interaction with other components. More specific examples
are discussed in Section 3.3.

Table 1. Tagged values and stereotyping

Stereotype name Tagged value Meaning
ServiceCallAction Name The class name

of the service
Parameters Parameters that are

passed to the service
ServiceCallAction Name RangeCheckService

Parameters age | [18, 30[
ServiceCallAction Name JEvalService

Parameters #{male}

3.2 Component Interaction

The interactions between the various components and
packages are shown in Figure 3. This sequence diagram il-
lustrates what happens when a CIG diagram is entered into
the system:

1. The CIG diagram is entered in the system through the
remote adapter.

2. As the diagram has to be converted into the internal
UML format, the remote adapter passes the diagram to
the Format Mapping package.

3. The Format Mapping package translates and converts
the diagram to an UML activity diagram.

4. When the translation is complete, the internal repre-
sentation is passed on to the Kernel.

5. The Kernel is responsible for the processing of the dia-
gram. When this phase is completed, the diagram is
sent to the Optimization component.

6. After the optimization, the diagram can be executed.

7. In a final step, tasks such as performing calculations
and passing messages is entrusted to the internal ser-
vices package.

3.3 Implementation Details

Currently, some services are already present in the Inter-
nal Services package. As some guidelines consist of mul-
tiple flowcharts, these have to be called at the right time.
This can be done by using the CallSubDiagramService. The
JEvalService is used to translate decision nodes and calcu-
lation nodes automatically into a service. This is achieved
by using the JEval library1. Some results are printed to the

1http://jeval.sourceforge.net/
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Figure 4. Guideline for the calculation of calo-
rie need of burn patients

screen, using a simple PrintService. The RangeCheckSer-
vice checks whether the value of the first parameter lays
within the range of a second one. The DataService accesses
the database to look up specific data.

The UML-based format was developed based on Eclipse
MDT (Model Development Tools)2, a free UML implemen-
tation. This format heavily uses profiles, tagged values and
stereotypes. Tagged values supply additional information
to model elements and add semantic information to the dif-
ferent modeling constructs. Stereotypes are the names that
are added to the model element using «»-symbols. These
stereotypes are defined within the profiles, while the stereo-
type themself contain the tagged values. By adding pro-
files to a certain diagram, the stereotypes can be accessed
and used within the diagram. Adding a stereotype to a spe-
cific component enables the tagged values as additional at-
tributes within the component.

Table 1 shows an example of both tagged values and
stereotyping. The first entry introduces the general use of
these concepts. The stereotype ServiceCallAction is used to
call other services from the Internal Services package. It has
2 tagged values, Name and Parameters. The Name specifies
the class name of the service that will be called, while the
Parameters value determines the attributes that have to be
provided to the service, seperated by “|”. The second en-
try depicts how the RangeCheckService can be called, this
is easily done by adding the name and necessary parame-
ters to the ServiceCallAction stereotype. The name value
will refer to the RangeCheckService residing in the Internal
Services package. Two parameters are needed to activate
this services, the age variable and the permitted range (e.g.
[18,30[). The last entry shows the use of the JEvalService.

2http://www.eclipse.org/modeling/mdt/

Figure 5. Internal UML representation

Thus, the different UML nodes, through these stereo-
types, contain information referring to specific services.
These services are responsible for executing simple actions,
such as the execution of calculations. As these services are
referenced textually the existing system can easily be ex-
tended by adding new services.

4. Use Case: Calculation of Calorie Needs for
Burn Patients

In this section, the need for and usage of the calculation
of calorie needs for burn patients is discussed as well as the
implementation by means of the above presented architec-
ture.

4.1. Necessity

Ghent University Hospital is a tertiary care hospital in
Belgium which has a 56-bed Intensive Care Unit (ICU).
The 6-bed Burn Unit (BU) is a specialized part of the in-
tensive care unit, where annually 130 patients are admitted.
Patients who fulfill the specific requirements for admittance
to the BU (i.e. severely burned patients, patients with in-
halation injuries or patients requiring intensive wound treat-
ment) are treated in this centre. One typical difference with
other ICU patients is that burn patients have specific nutri-
tional needs. As both underfeeding and overfeeding place
an undesirable amount of stress on the body, it is important
to correctly estimate their daily caloric needs [20].

Many research methodologies and results are vague
about the optimal nutritional pattern for burn patients. How-
ever, there exists some estimations to calculate the daily
caloric need [9]. Several parameters are taken into consid-
eration: weight, length, sex and the total body surface area
(TBSA). TBSA indicates what percentage of the body of
the patient is burned.

Burn units in the United States and Australia experi-
mented with formulas to calculate the nutritional need: the
Harris Benedict equation [5], the Ireton-Jones formula [9]
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and the Modified Schofield formula [13]. These formulas
are also used in the Burn Unit of the ICU in Ghent.

4.2. Modified Schofield and Implementation

Within the scope of this paper, the Modified Schofield
calculation is used as an example (cfr. Figure 4). The Mod-
ified Schofield formula is divided into 2 parts. First, the
injury factor is calculated. This value is based on the TBSA
percentage. After the injury factor is determined, the calo-
rie need is calculated, based on the sex, weight and age of
the patient.

As a starting point, a flowchart of the Modified Schofield
calculation was used. As a first step, this flowchart was
turned into an UML activity diagram, as illustrated in Fig-
ure 4. This was a minor change and did not lead to any
loss in legibility. Then, the various stereotypes and tagged
values were added to the diagram.

Figure 5 illustrates the internal UML format for the Mod-
ified Schofield guideline and depicts the actions that are ex-
ecuted to determine the calorie need for a patient. In a first
stage, the DataService looks up the necessary data. Next,
the CallSubDiagramService calls the subdiagram to deter-
mine the injury factor of the patient. In this diagram, the
if conditions are translated using the JEvalService. Subse-
quently, the actual calorie need of the patient is calculated.
In a first step, the RangeCheckService is used to translate
the range of the age. Next, the sex of the patient is de-
termined, followed by the calculation of the calorie need,
both these actions use the JEvalService. The results of the
guideline are printed on the screen using the PrintService.
All these services are called by using the ServiceCallAction
stereotype.

5. Evaluation Results

The translation and execution of the Modified Schofield
formula was evaluated to get more insights in the perfor-
mance our application. Therefore, the average translation
and execution time of the guideline to calculate the calorie
need of 50 patients was tested. This test was repeated 20

Table 2. Execution times for 50 patients

Part Avg time (ms) Std (ms)
UML loading time 2158.00 61.59
Execution time

CallSubDiagramService 39.55 11.02
JEvalService 266.20 11.11
PrintService 6.55 2.93
RangeCheckService 4.85 1.87
DataService 7.90 2.85
Overhead 106.75 27.31

Total 2589.80 60.35

times. This evaluation was executed on a desktop on an In-
tel Core 2 Duo T9400 2.53 GHz, OS Kubuntu 10.04. The
Eclipse Modeling Edition was used to create the UML dia-
grams.

The results of analyzing the execution times are shown
in Figure 6. This chart is divided into 2 parts. On the one
hand there is the loading time of the UML library and the
UML diagram, on the other hand, the execution time of the
different services and the overhead caused by the microker-
nel pattern. An overview of the actual loading and execution
times are depicted in Table 2. As shown in both Figure 6 and
Table 2, the loading times for the UML library and diagram
are most time-consuming. As this only has to be executed
once, during the initialization of the application, this is not
a major issue. The execution times of the services take very
little time. Only the JEvalService consumes about 10% of
the total execution time.

We can conclude that, provided that the UML library is
initialized, execution of a guideline using our execution en-
gine is very efficient. There still remains a relatively large
overhead caused by the kernel. This is due to the dynamic
loading of services.

6. Conclusion and Future Work

This paper describes how UML can be used in conjunc-
tion with clinical practice guidelines to resolve known prob-
lems with the translation of guideline formats into working
computer applications. The Unified Modeling Language
was chosen as an internal format because of its comprehen-
sibility and interpretability. To this end, an execution engine
was developed, which is capable of executing UML-based
guidelines and mapping existing guideline formats on this
new format. By using UML as an intermediate format on
the one hand and by using the microkernel pattern on the
other, various CPG formats can be executed on one engine.
This reduces development and implementation cost as only



a new format mapping has to be added to the execution en-
gine. The application of the microkernel pattern makes the
engine easily extensible and adaptable. As a practical use
case, the Modified Schofield flowchart to calculate the calo-
rie need for burn patients was used. After an initial evalu-
ation, we can conclude that the execution of the guideline
is very efficient. The overhead is mainly caused by the dy-
namic loading of the services within the Internal Services
package. The framework, presented in this paper, acceler-
ates the translation and development of medical guidelines
to model patient care and reduces the communication gap
between domain experts and software developers.

Future research will focus on the further development of
additional services, such as, implementing the Format Map-
ping package and additional services. Next, we will inves-
tigate specific optimizations for a selected set of ICU use
cases, in order to improve the performance and reliability.
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