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Abstract: This contribution deals with estimation and compensation of phase
noise in single-carrier digital communications. We present an iterative feedforward
decision-directed phase noise estimation algorithm, that is based on approximating
the phase noise process by an expansion of DCT basis functions containing only
a few terms. An extension to the estimation algorithm is proposed, improving the
performance in terms of the mean-square error. We demonstrate that the result-
ing (linearized) mean-square estimation error consists of two contributions: a con-
tribution from the additive noise, that equals the Cramer-Rao lower bound, and a
noise-independent contribution that results from the phase noise modeling error. The
phase estimate that yields the lowest possible mean-square error is obtained, assuming
knowledge of the phase noise statistics at the receiver.

Keywords: phase noise estimation, decision-directed, MMSE, basis expansion
model, DCT

1. Introduction
Digital communication systems make use of carrier oscillators for up-conversion (at
the transmitter) and down-conversion (at the receiver). Phase noise refers to random
perturbations in the carrier phase, caused by imperfections in both transmitter and re-
ceiver oscillators. Compensation of this phase noise is critical since these disturbances
can considerably degrade the error performance of the communication system. The
phase noise process typically has a low-pass spectrum [1]. A description of the char-
acteristics of oscillator phase noise is given in [2]. Several methods for phase noise
estimation exist.

• Phase noise can be estimated by means of a feedback algorithm that operates
according to the principle of the PLL. As feedback algorithms give rise to rather
long acquisition periods, they are not well suited to systems with burst transmis-
sion [3].

• Phase noise is approximated as piecewise constant over the observation interval.
In each subinterval over which the phase is assumed to be constant, a conventional
feedforward algorithm is used to estimate the local time-average of the phase [3,4].
For strong phase noise, the subintervals have to be small, in which case the phase
noise estimate is sensitive to the channel noise.

• Recently, a factor graph approach for the estimation of Markov-type phase noise
has been presented in [5], but the algorithm appears rather cumbersome and
assumes detailed knowledge at the receiver about the phase noise statistics.
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Here, we apply the basis expansion model (BEM) to the problem of phase noise esti-
mation. The considered basis functions are those from the discrete cosine transform
(DCT). Basically, from the received signal a few coefficients of the basis expansion
are estimated, from which an estimate of the phase noise is computed. In [6] and [7]
this technique has been used to obtain a phase noise estimate from pilot symbols only.
In [8], the estimate from [7] is iteratively improved by making use of soft decisions of
the unknown data symbols. In this contribution, the phase noise estimation algorithm
from [8] is modified to obtain an improved phase estimate for low signal-to-noise ratio.
We analyze the mean-square error (MSE) of the estimation algorithm for both hard
and soft decisions and devise an expression for the linearized minimum mean-square
error of the phase.

2. System description
We consider the transmission of a block of K symbols over an AWGN channel that is
affected by phase noise. The resulting received signal can be represented as:

r(k) = a(k)ejθ(k) + w(k); k = 0, ..., K − 1 (1)

where the index k refers to the k-th symbol interval of length T , the additive noise
{w(k)} is a sequence of i.i.d. zero-mean circular symmetric complex-valued Gaussian
random variables with E[|w(k)|2] = N0, and θ(k) is the sum of a static phase offset θ0

and a zero-mean phase noise process with KxK correlation matrix Rθ. The symbol
sequence {a(k)} contains KP known pilot symbols at positions k ∈ IP = { ki, i =
0, ..., KP − 1}, with constant magnitude: |a(ki)|2 = Es. The remaining K −KP data
symbols are unknown to the receiver; they belong to a constellation A, with E[|a(k)|2] =
Es for k /∈ IP . In order to obtain a decision-directed (DD) estimate of the phase θ(k),
an initial estimate θ̂0(k) is calculated using the BEM-based algorithm from [7], that
exploits only the pilot symbols. In order to reduce the probability of phase wrapping,
we first rotate the observation r(k) over the estimated average angle θ̂avg, which is
obtained using the hard/soft decisions ã(k) resulting from the initial phase estimate
θ̂0(k) and is given by

θ̂avg = arg

(
K−1∑
k=0

r(k)ã∗(k)

)
(2)

As the phase fluctuation φ(k) = θ(k) − θ̂avg is essentially a lowpass process, it can be
well approximated by the weighed sum of a limited number N (<< K) of suitable basis
functions:

φ(k) ≈
N−1∑
n=0

xnψn(k), k = 0, ..., K − 1 (3)

Next, the ML-estimate {x̂n, n = 0, ..., N − 1} of the expansion coefficients {xn, n =
0, ..., N − 1} is calculated. Finally, we obtain the phase estimate θ̂(k) = θ̂avg +∑N−1

n=0 x̂nψn(k), k = 0, ..., K − 1
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3. Phase noise estimation algorithm
In this contribution we make use of the orthonormal discrete cosine transform (DCT)
basis functions, that are defined as

ψn(k) =


√

1
K

n = 0√
2
K
cos

(
πn
K

(
k + 1

2

))
n > 0

for k = 0, ..., K−1. Hence, xn is the n-th DCT-coefficient of φ(k). From the observation
(1) we will produce an estimate {x̂n, n = 0, ..., N−1} of theN DCT-coefficients {xn, n =
0, ..., N−1}, using the phase model (3) with equality. The corresponding phase estimate
θ̂(k) is obtained by computing the inverse DCT of {x̂n} and adding the constant phase
θ̂avg. The decision-directed estimate θ̂(k) is presented in [8] and is given by

θ̂(k) = θ̂avg +
K−1∑
k′=0

(ΨKΨK
T )k,k′r′(k′)

with

r′(k) = arg(r(k)ã∗(k)e−jθ̂avg) (4)
≈ θ(k)− θ̂avg + n(k) (5)

and (ΨK)k,n = ψn(k), for k = 0, ..., K−1;n = 0, ..., N−1, and where n(k) is real-valued
white gaussian noise, n(k) ∼ N(0, N0/2). The approximation in (5) is based on the
linearization of the argument function, assuming the phase noise fluctuations are small
and a sufficiently large Es/N0. This linear model, however, is no longer valid for low
Es/N0, where the channel noise variance becomes too large. Therefore, we propose the
following modification to our phase noise estimation algorithm. Assume we transmit
a block of symbols with length K = BM symbols, where B and M are integers and
M ≥ N . In order to reduce the non-linear effect, we now produce an estimate of
the coefficients {xn, n = 0, ..., N − 1} by averaging the observations over B successive
samples in order to reduce the channel noise variance. The estimation is now based on
r′B(m) for m = 0, ...,M − 1 :

r′B(m) = arg

(
B−1∑
b=0

r(b+mB)e−jθ̂avg ã∗(b+mB)

)
(6)

≈ 1
B

B−1∑
b=0

φ(b+mB) + u(m)

≈
N−1∑
n=0

xnψ
avg
n (m) + u(m)

where the basis functions ψavg
n (m) are given by

ψavg
n (m) =

1

B

B−1∑
b=0

ψn(b+mB)

and u(m) is real-valued white gaussian noise with variance E[u2(m)] = N0/(2B). Per-
forming ML-estimation of xn yields the following phase estimate:

θ̂B(k) = θ̂avg +
M−1∑
m=0

(
ΨK(Ψavg

TΨavg)
−1Ψavg

)
k,m

r′B(m)
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where (Ψavg)m,n = Ψavg
n (m) for m = 0, ...,M − 1; n = 0, ..., N − 1. It is clear that the

channel noise variance is reduced by a factor B, which, if B is chosen sufficiently large,
allows the use of the linearized model (5). Averaging the observations over a group of B
symbols however, also reduces the phase noise estimation accuracy, since the fluctuation
of the phase noise over this group of symbols is approximated by a constant phase. The
larger the number of symbols B in a group, the lower the estimation accuracy becomes.

4. Performance analysis
The performance of the phase noise estimation algorithm is assessed by considering the
means-square error (MSE) of the phase, which is defined as

MSE =
1

K
E

[
K−1∑
k=0

(θ(k)− θ̂(k))2

]
(7)

We assume the linearized observation model (5) is valid and calculate the MSE. As-
suming that after convergence the hard/soft decisions can be approximated by the true
symbol values, the corresponding MSE is given by

MSE =
N

K

N0

2Es

+MSE∞ (8)

with

MSE∞ =
1

K
trace

(
(ΨKΨK

T − IK)Rθ(ΨKΨK
T − IK)T

)
where IK is the K × K identity matrix [8]. The Cramer-Rao lower bound (CRB) on
the MSE (7), based on the observation (1), the phase noise model (3) with equality and
assuming all symbols are known, is given by

MSE ≥ N

K

N0

2Es

(9)

The first term in (8) denotes the contribution from the additive noise and is equal to
the CRB (9), whereas the second term constitutes a MSE floor, caused by the phase
noise modeling error. We note that the CRB is proportional to N . The influence of
the number of estimated coefficients N on the MSE floor can be better understood by
taking into account that the phase θ(k) can be written as follows:

θ(k) =
N−1∑
n=0

xnψn(k) + θe(k) (10)

where θe(k) = θ(k) − ∑N−1
n=0 xnψn(k) is the phase noise modeling error. Substituting

(10) into (7) leads to the following expression for the MSE floor:

MSE∞ =
1
K
trace

(
(ΨKΨK

T − IK)Rθe(ΨKΨK
T − IK)T

)
where Rθe is the correlation matrix of the phase noise modeling error. This expression
shows that the MSE floor decreases when N increases, since Rθe approaches zero when
N increases. For a detailed analysis of the MSE (8), we refer to [8].
When the phase noise statistics are known at the receiver, we can calculate the minimum
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mean-square error (MMSE) estimate of the phase. Assuming the linearized observation
model (5), the MMSE phase estimate is given by

θ̂MMSE(k) =
K−1∑
k′=0

(M)k,k′r′(k′), k = 0, ..., K − 1

where the K ×K matrix M is chosen such that the MSE is minimized. Assuming the
phase noise process can be approximated by a Gaussian process with K×K covariance
matrix Rθ, the MSE is minimized for M = Rθ(Rθ + σ2IK)−1, where σ2 = N0/2. The
MMSE is given by

MMSE =
1

K
trace

(
Rθ −Rθ(Rθ + σ2IK)−1Rθ

)
(11)

and the corresponding MMSE estimate is

θ̂MMSE(k) =
K−1∑
k′=0

(
Rθ(Rθ + σ2IK)−1

)
k,k′

r′(k′) (12)

We now apply the BEM to represent the phase noise process and produce the MMSE
estimate of N BEM coefficients. The resulting phase estimate is found to be

θ̂MMSE,BEM(k) =
K−1∑
k′=0

(
ΨKΨT

KRθ(Rθ + σ2IK)−1
)

k,k′
r′(k′)

=
N−1∑
n=0

Ψn(k)
K−1∑
k′=0

Ψn(k′)θ̂MMSE(k′) (13)

Comparing equations (12) and (13), we observe that using the BEM and performing
MMSE estimation of the basis expansion coefficients leads to a phase estimate that is
worse than the MMSE phase estimate. From (13) it is clear that the phase estimate
θ̂MMSE,BEM(k) is the same as the phase obtained when selecting only the N lower-

order expansion coefficients of θ̂MMSE(k). Hence, the K − N higher-order coefficients
are neglected, which will inevitably lead to a worse performance. This is confirmed by
the corresponding MSE:

MSEMMSE,BEM =
1

K
trace (Rθ)−

1

K
trace

(
ΨK

TRθ(Rθ + σ2IK)−1RθΨK

)
5. Numerical results
In this section we assess the performance of the proposed technique in terms of the MSE
of the phase estimate by means of computer simulations. We assume transmission of
uncoded QPSK symbols over an AWGN channel in the presence of Wiener phase noise
θ(k), which is described by the following equation:

θ(k + 1) = θ(k) + ∆(k), k = 0, ..., K − 2

where the initial phase noise value θ(0) is uniformly distributed in [−π, π] and ∆(k)
is a sequence of i.i.d. zero-mean Gaussian random variables with variance σ2

∆. In
the following, we assume the transmission of a block of K = 100 symbols containing
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Figure 1: MSE as function of Es

N0
for K = 100 and N = 9

KP = 10 pilot symbols and “strong” Wiener phase noise with σ∆ = 3◦. An initial pilot-
based phase estimate is obtained using the phase noise estimation algorithm from [7],
where N0 = 3 DCT-coefficients are estimated. Next, the decision-directed estimate is
obtained for N = 9 DCT-coefficients. Figure 1 shows the following MSE curves as a
function of Es/N0:

• MSEbound,1 corresponds to the analytically computed MSE (8). As expected, the
simulated MSE curve obtained when using soft decisions is closer to MSEbound,1

than the corresponding MSE curve when using hard decisions. Both curves, how-
ever, deviate significantly from MSEbound,1 at low Es/N0. This can be attributed
to the fact that the linearized model (5) is no longer valid here and to the fact
that the hard/soft decisions become unreliable here, so that the phase estimation
error ((θ̂(k)− θ(k))mod 2π)− π becomes uniformly distributed in [−π, π]. Hence
the MSE approaches π2/3 rad2 for very low Es/N0.

• In order to study the impact of the assumption of non-linearity on the MSE, we
use the correct data symbols a(k) instead of the hard/soft decisions ã(k) in (4)
and simulate the MSE. The resulting MSE is represented by MSEbound,2. The
difference at low Es/N0 between MSEbound,1 and MSEbound,2 in figure 1 is caused
by the assumption of the linearized model which is no longer valid for low Es/N0.

• Figure 1 also shows the MSE curve obtained via simulations, when B = 2 consec-
utive samples are grouped according to (6). MSEbound,3 shows the corresponding
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MSE assuming perfect hard/soft decisions (ã(k) = a(k)). We observe an im-
provement in the MSE as compared to MSEbound,2 for low Es/N0. Simulations
for B = 5 and B = 10 have shown that the MSE increases, especially at high
Es/N0. This is in accordance with the fact that increasing the number of suc-
cessive samples B per group reduces the non-linear effect, but also reduces the
estimation accuracy.

• For high Es/N0, all curves lead to a MSE floor, except for the MMSE (11) where
the estimate does not make use of the BEM. This MSE floor is caused by the phase
noise modeling error due to neglecting K −N higher-order DCT-coefficients.

6. Conclusions
In this contribution we have considered a feedforward iterative decision-directed phase
noise estimation algorithm for single-carrier transmission. Linearization of the observa-
tion model has indicated that the MSE of the resulting estimate consists of an additive
noise contribution (that increases with N) and a MSE floor caused by the phase noise
modeling error (that decreases with N). The noise contribution coincides with the
Cramer-Rao lower bound. We have proposed a modification to the phase noise estima-
tion algorithm that is able to reduce the degradation in the MSE caused by assuming the
linear observation model. Here, the number B of successive symbols that are grouped
should be chosen such that the estimation accuracy remains acceptable. An analytical
expression has been obtained for both the MMSE of the phase, and the MMSE of the
phase when the BEM is used. The MMSE of the phase has been shown to have a floor
when the BEM is used, while it is confirmed that the MMSE is the lowest bound on
the MSE.
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