
Dutch Named Entity Recognition using Classifier Ensembles
Bart Desmet, Véronique Hoste

LT3, Language and Translation Technology Team, University College Ghent
Department of Applied Mathematics and Computer Science, Ghent University

Abstract

This paper explores the use of classifier ensembles for the task of named entity recog-
nition (NER) on a Dutch dataset. Classifiers from 3 classification frameworks, namely
memory-based learning (MBL), conditional random fields (CRF) and support vector ma-
chines (SVM), were trained on 8 different feature sets to create a pool of classifiers from
which an ensemble could be built. A genetic algorithm approach was used to find the opti-
mal ensemble combination, given various voting mechanisms for combining classifier out-
puts. The experiments yielded a classifier ensemble that outperformed the best individual
classifier by 0.67 percentage points (F-score), a small but statistically significant margin.
Experimental results also showed that ensembling classifiers from different frameworks
benefits generalization performance.

1 Introduction

Named Entity Recognition (NER) is the task of automatically identifying names
within text and classifying them into categories, such as persons, locations and
organizations. NER started as an information extraction subtask, but has since
evolved into a distinct task essential for information retrieval, question answer-
ing, and as a preprocessing step for coreference resolution and various other NLP
problems.

An extensive literature on the subject exists (Chinchor 1998, Tjong Kim Sang
and De Meulder 2003, Cucerzan 2007), with NER approaches roughly falling
into three categories: hand-crafted, machine learning and hybrid systems. Hand-
crafted approaches require manual rule creation, a time-consuming process which
hinders easy porting to new domains or languages. Supervised machine learning
solutions, on the other hand, rely on an annotated training corpus to infer pat-
terns associated with named entities, based on morphological, syntactic, lexical
and contextual features. Hybrid systems combine both approaches.

For machine learning systems, named entity recognition is usually slated as a
classification task. In a two-step approach, each token in a text first has to be classi-
fied as either belonging to a named entity chunk or not (named entity recognition),
and afterwards, the chunks labeled as named entities are classified according to
type (named entity classification). One-step NER combines both steps by classi-
fying each token either as one of the named entity types or as not-a-named-entity.

A variety of machine learning algorithms has been applied to the NER task.
Research is often aimed at finding the most informative features, and discarding
the uninformative ones (e.g. Isozaki and Kazawa (2002)), or finding the right
settings for a specific algorithm (e.g. De Meulder and Daelemans (2003)). Feature
selection and parameter optimization are aimed at improving a single classifier’s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55869331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


performance. However, finding the optimal features and parameters is a complex
problem.

An alternative research direction is that of combining several classifiers into
an ensemble, and combining their output using a voting procedure (e.g. Wang
et al. (2008)). The assumption is that combining a diverse set of classifiers im-
proves the generalization accuracy, provided that the ensemble’s members have
sufficient individual performance and the errors they make are, to some extent,
non-overlapping. Again, finding such an ensemble is a non-trivial problem.

The work in this paper closely follows the approach proposed in Ekbal and
Saha (2010). Ekbal and Saha describe a system that uses genetic algorithms to
find an optimal classifier ensemble. A genetic algorithm is a method to find or
approximate solutions to a search problem. The technique is inspired by evo-
lutionary biology, applying evolutionary concepts such as selection, inheritance,
mutation and crossover to a population of possible solutions, in order to find the
solution that is most fit to the problem (Whitley 1994).

The system by Ekbal and Saha (2010) selected an optimal classifier ensem-
ble from a set of 19 maximum entropy classifiers. They evaluated the ensemble
classifiers on Bengali, Hindi, Telugu and English datasets, and report F-score im-
provements over the best individual classifiers of 5.63, 1.95, 5.75 and 12.88, re-
spectively.

In this paper, we investigate if a similar system can successfully be applied
to construct the best classifier ensemble from a set of classifiers from three dif-
ferent classification frameworks, namely memory-based learning, conditional ran-
dom fields and support vector machines. We evaluate the performance of this
ensemble on a Dutch data set, and compare the results to individual classifier per-
formance.

The remainder of this paper will be structured as follows. In Section 2, we
present the features used for the classifiers. The three classification frameworks
are introduced in Section 3. The dataset, classifier pool, voting mechanisms and
genetic algorithm used for the ensemble selection experiments are discussed in
Section 4. The results of the experiments are presented and discussed in Section
5, and Section 6 concludes this paper.

2 Feature extraction

Machine learning systems are not directly trained on a corpus. The information
present in a corpus and its annotations needs to be translated into a collection of
instances, in order for a learning algorithm to infer classifications from them. Each
instance represents a subsection of the corpus that carries a meaningful classifica-
tion (as stored in the annotations).

In the case of named entity recognition, every token from the corpus is repre-
sented by an instance, which has a class indicating whether the token is a named
entity, and if so, which type. An instance represents the token by means of a fea-
ture vector, which is a list of characteristics of the token and its context that are
deemed relevant for the classification task.



We extracted a range of features, many of which are commonly used in the
field (Bogers 2004).

Basic information

• the original token

• the POS tag, which was obtained by preprocessing the data with the
Memory-Based Shallow Parser (Daelemans and van den Bosch 2005)

First word: A binary feature indicating if the word is in sentence-initial posi-
tion.

Orthographic information: Non-exclusive binary features capturing the or-
thographic characteristics of the token, such as capitalization, hyphenation and the
occurence of numbers and punctuation marks.

• firstCap: Is the first letter capitalized?

• allCaps: Is the entire word uppercased?

• internalCaps: Does the token contain uppercased letters, apart from the
first one?

• allLowercase: Is the entire token lowercased?

• containsDigit: Does the token contain at least one digit?

• containsDigitAndAlpha: Does the token contain at least one digit
and one alphanumeric character?

• onlyDigits: Is the entire token made up of digits?

• isHyphenated: Does the word contain at least one punctuation mark and
any other character?

• isPunctuation: Does the token only contain punctuation marks?

• containsPunctuation: Does the token contain at least one punctua-
tion mark?

Word shape: A symbolic feature that tests for the same orthographic charac-
teristics as the binary features described above, outputting one of the following
labels: allLowercase, allCaps, firstCap, capPeriod, onlyDigits, containsDigitAn-
dAlpha, allCapsAndPunct, firstCapAlphaAndPunct, alphaAndPunct, onlyPunct,
mixedCase or other.

Patterns: Binary features indicating whether the token matches a regular ex-
pression that tests for a specific word pattern.

• isInitial: Does the token resemble an initial? Initials are defined as
strings with up to five capitalized letters separated with periods.



• isURL: Is the token a URL? URLs are taken to be strings starting with http.

Word length: The number of characters in the token.

Affix information

• prefix3 and suffix3: The first and the last 3 characters of the token

• prefix4 and suffix4: The first and the last 4 characters of the token

Function word: A binary feature indicating whether the token occurs in a list
of Dutch function words.

Chunks: A symbolic feature with a base phrase chunk tag, obtained with the
Memory-Based Shallow Parser.

Class tag: The correct classification is taken from the annotations, and is
represented by one of 13 possible class tags, encoded in IOB2 notation (Tjong
Kim Sang 2002b): B-EVE, I-EVE, B-LOC, I-LOC, B-MISC, I-MISC, B-ORG, I-
ORG, B-PER, I-PER, B-PRO, I-PRO or O if the token is not part of a named entity.

3 Classification frameworks

A variety of machine learning algorithms have successfully been applied to the task
of named entity recognition. We hypothesized that ensembling different types of
classifiers would benefit the ensemble performance, assuming that each classifier
type makes different kinds of errors. We therefore experimented with 1 lazy and 2
greedy learners.

3.1 Memory-based learning

Memory-based learning algorithms are called lazy learners because they perform
no generalization on the instance base they are trained on (Daelemans and van den
Bosch 2005). All the instances are stored in memory, and new instances are clas-
sified by comparing them to the instance base, for example with a k-nearest neigh-
bour algorithm. When a k-value of 1 is used, the classifier labels an unseen in-
stance with its closest neighbour in the instance base. Various distance and feature
weighting metrics can be used to determine which neighbour is closest. For larger
values of k, some voting mechanism has to be applied to choose one class label
from the nearest neighbours set.

We experimented with TiMBL1, version 6.2.1 (Daelemans et al. 2009). The
instances provided to TiMBL were windowed, in order to provide the algorithm
with context information. Preliminary experiments showed that a left context of 3
tokens and a right context of 1 token yielded the best results.

1http://ilk.uvt.nl/timbl/



3.2 Conditional Random Fields

A Conditional Random Field (CRF) is a probabilistic classifier that is used to seg-
ment and label sequential data, which makes it especially apt for natural language
processing tasks like named entity recognition. CRFs take an input sequence X
with its associated features, and try to infer a hidden sequence Y, containing the
class labels. They are as such comparable to Hidden Markov Models (HMMs) and
Maximum Entropy Markov Models (MEMMs). However, CRFs, unlike HMMs,
do not assume that all features are independent, and they can take future obser-
vations into account using a forward-backward algorithm, unlike MEMMs, thus
avoiding two fundamental limitations of those models (Lafferty et al. 2001).

For our experiments, CRF++2 version 0.53 was used. CRF++ is a sequence
tagger, which requires a template file that specifies the combinations of features it
needs to consider.

3.3 Support Vector Machines

A Support Vector Machine (SVM) is a learning classifier capable of binary clas-
sification. It learns from the training instances by mapping them to a high-
dimensional feature space, and constructing a hyperplane along which they can
be separated into the two classes. New instances are classified by mapping them
to the feature space and assigning a label depending on its position with respect to
the hyperplane. SVMs are said to have a robust generalization ability (Vapnik and
Cortes 1995).

For multiclass classification problems, separate SVMs have to be built. With
the pairwise approach, one SVM is trained for every pair of classes. Another
method is one vs rest, where one SVM is built for each class to distinguish it from
all other classes.

The SVM implementation used in our experiments is YamCha3, version 0.33
(Kudo and Matsumoto 2003). Like TiMBL, SVM uses windowed instances to be
informed about its context.

4 Ensemble selection experiments

The aim of this paper was to determine whether genetic algorithms can be used
to find an optimal classifier combination that outperforms any individual classi-
fier and the combination of all classifiers in the pool. To that end, a data set was
selected and used to train a pool of classifiers, which could be combined in an en-
semble. Such an ensemble determines the class tag by means of weighted voting.
A genetic algorithm was used to find the optimal combination of classifiers.

2http://crfpp.sourceforge.net/
3http://chasen.org/ taku/software/yamcha/



4.1 Dataset

The dataset used for the experiments is derived from the the STEVIN4-funded
SoNaR corpus5. Before SoNaR, the data from the CoNLL-2002 shared task
(Tjong Kim Sang 2002a), containing 309,686 tokens from four editions of the
Belgian newspaper ”De Morgen” of 2000, constituted the only corpus annotated
with named entity information. The SoNaR project consortium aims to produce a
500-million-word reference corpus of written Dutch containing a wide spectrum
of genres and text types (Oostdijk et al. 2008). A 1-million-word subset will be
provided with a number of manually corrected annotation layers, including four se-
mantic ones: named entities, coreference relations, semantic roles and spatiotem-
poral expressions (Schuurman et al. 2009). The subset contains these various text
types, reflecting the global corpus design. The manually annotated subcorpus will
be used to train classifiers for the automatic annotation of the remaining 499 mil-
lion words.

For the named entity annotation of the corpus, new annotation guidelines were
developed, based on the guidelines from MUC-7 (Chinchor and Robinson 1997)
and ACE (LDC 2008). A number of adaptations were made, including the addition
of separate categories for products (e.g. iPad) and events (e.g. World War II), apart
from the usual categories for persons, organizations, locations and miscellaneous
named entities (Desmet and Hoste 2010).

Because annotation of the SoNaR corpus is ongoing, the ensemble selection
experiments were run on a subset of the corpus that had been entirely annotated
and double-checked. This subcorpus consisted of 99 documents of the same text
type, namely autocue scripts for news shows on Dutch public television.

The distribution of named entities in this dataset can be found in Table 1.

Label No. of chunks
EVE 256
LOC 6,624
MISC 787
ORG 2,461
PER 3,290
PRO 400
All NEs 13,818
O 188,461
Total 202,279

Table 1: Statistics of the dataset.

4http://taalunieversum.org/taal/technologie/stevin/
5http://lands.let.ru.nl/projects/SoNaR/



4.2 Classifier pool

In order to have a diverse pool of classifiers, 8 different feature sets were used to
derive instance bases from the data set. The composition of each set is presented
in Table 2.

Set 1 2 3 4 5 6 7 8
Basic X X X X X X X X
First word X X X X X X X X
Orthographic X X X X X X X
Word shape X X X X X X
Patterns X X X X
Word length X X X X
Affix 4 3 4 4 4 4
Function word X X X X
Chunks X X X X X X

Table 2: Composition of the 8 feature sets.

These feature sets were combined with 4 classification configurations, which
were found to perform well and reasonably fast with all the features:

• TiMBL with default settings: the IB1 (k-nearest neighbour) algorithm with a
k-value of 1, overlap as the distance metric and gain ratio feature weighting.

• TiMBL with the IB1 algorithm and a k-value of 7, overlap as the distance
metric, gain ratio feature weighting and normal majority voting. This second
set of TiMBL classifiers was added to have an equal amount of lazy and
greedy learners

• CRF++ with the standard feature template.

• YamCha, using a pairwise multi-class strategy.

Each combination of a configuration and a feature set was used to classify the
dataset, using threefold cross-validation. This resulted in 32 files with class tags
for every token, to be used for the ensemble voting procedure. Overall F-scores
on these files were calculated with the conlleval script that was used for the
CoNLL 2002 shared task (Tjong Kim Sang 2002a), and are reported in Table 3.

Table 3 shows that the CRF classifiers present in the pool perform best on
average. The TiMBL classifiers with a k-value of 7 get the lowest F-scores. The
best individual classifier is the CRF classifier trained with feature set 2.

4.3 Voting

When an ensemble of classifiers is used to determine the class of an instance, some
sort of voting mechanism is needed to combine the class tags each individual in the



Set 1 2 3 4 5 6 7 8
TiMBL k=1 74.29 74.28 72.13 75.06 75.31 76.59 68.50 74.35
TiMBL k=7 70.97 72.15 65.07 71.71 69.85 71.36 66.32 69.74
CRF++ 83.76 83.77 79.97 83.72 83.48 83.69 80.49 83.62
YamCha 82.54 82.69 81.43 82.04 83.04 83.23 80.68 82.67

Table 3: Overall F-scores for each individual classifier.

ensemble has assigned to that instance. In our experiments, four voting systems
were implemented and tested:

• Normal majority voting: every classifier casts a vote for a class tag, and the
tag with the highest score wins. In case of a tie, the most frequent class is
chosen. This is an unweighted voting system: all classifiers have an equal
amount of influence on the outcome of the vote.

• Globally weighted voting: the weight of a classifier’s vote is determined by
its overall F-score on the dataset. Classifiers that perform well globally thus
have a bigger influence in every vote.

• Class weighted voting: a classifier’s vote for one particular class is weighted
by its F-score on that particular class. The weight of a classifier thus depends
on its performance for the class it is voting for.

• Smoothed class weighted voting: the same principle as class weighted vot-
ing, but a classifier’s F-score per class is divided by the average F-score of
all classifiers for that class. This smoothes the difference in weight between
a vote cast for a class for which all classifiers perform well and one cast for
a class that is harder to predict.

4.4 Genetic Algorithm

The genetic algorithm approach used for the experiments is inspired by the one
described in Ekbal and Saha (2010). It was implemented in Python using the
Pyevolve framework6.

Genetic algorithms operate on a genome, which is a representation of the
search space in which an optimal solution needs to be found. The genome for the
problem of selecting an optimal ensemble from a set of n classifiers can be a binary
string of length n, in which every bit represents a classifier. In our experiments,
n = 32, so the chromosome 01010101010101010101010101010101 represents an
ensemble in which every second classifier is used.

The search space defined by the genome is explored as follows:

1. An initial population P(0) is created, containing —P— randomly sampled
chromosomes. A population size —P— of 50 was used in our experiments.

6http://pyevolve.sourceforge.net/



2. For each chromosome, a fitness score is calculated. This is done by having
the classifier ensemble, as encoded by the chromosome, vote on the class
tag of every instance in the dataset, and then calculating the overall F-score
over all the class tags using conlleval. The closer this F-score is to 100,
the fitter the chromosome is.

3. Rank Selection is used to pick the chromosomes that will populate an inter-
mediate population.

4. When selection is complete, recombination on the intermediate population
can be performed to create the next generation P(1). This was done using
Single Point Crossover with a probability of 0.90.

5. Each chromosome had a probability of 0.02 to be mutated using Flip Muta-
tion.

6. Steps 2 to 5 are repeated until a predefined number of generations has been
evaluated. We stopped the evolution after 40 generations. The individual
with the highest fitness score in P(40) is considered the optimal classifier
ensemble found by the GA.

The selection and mutation types and probabilities are Pyevolve’s default pa-
rameters. We used the same population size and number of generations as used in
the experiments described in Ekbal and Saha (2010).

5 Results and discussion

The genetic algorithm was run on the dataset with the 4 voting mechanisms de-
scribed in Section 4.3. Table 4 presents the best-performing classifier ensembles
per voting mechanism. The precision, recall and F-scores of these ensembles, the
ensembling of all classifiers and the best individual classifier are presented in Table
5.

Voting mechanism Genome
Normal majority 00010100 00000000 11001001 01000100
Globally weighted 00000100 00000000 01010001 01001100
Class weighted 00010100 00000000 11011000 01001100
Smoothed class weighted 00010100 00000000 01011101 11000100

Table 4: Best-performing classifier ensembles per voting mechanism. The first 8 bits rep-
resent the TiMBL k=1 classifiers, ordered per feature set, followed by 8 TiMBL k=7, 8
CRF++ en 8 YamCha classifiers.

A first observation that can be made about the results presented in Table 5
is that the type of voting mechanism, used for combining the class tags of each
individual classifier in an ensemble, does not appear to have much influence on the



Precision Recall F-score
Ensemble selected by GA

Normal majority 85.12 83.77 84.44
Globally weighted 85.24 83.61 84.41
Class weighted 84.99 83.36 84.17
Smoothed class weighted 85.32 83.47 84.38

Ensembling of all classifiers
Normal majority 82.49 82.09 82.29
Globally weighted 82.87 82.21 82.54
Class weighted 82.44 81.63 82.03
Smoothed class weighted 82.59 82.00 82.29
Best individual classifier 84.83 82.73 83.77

Table 5: Overall precision, recall and F-scores.

performance of the best classifier ensemble found by the genetic algorithm. The
differences in F-scores between the voting mechanisms used with all the classifiers
are somewhat more outspoken, with globally weighted voting and class weighted
voting yielding the best and worst results, respectively.

It can also be observed in Table 4 that the best-performing classifier ensembles,
regardless of the voting mechamism used, consist of classifiers from all three clas-
sification frameworks, although none of the TiMBL classifiers with k=7 is used.
Especially interesting is the occurrence of the TiMBL classifiers with k=1 trained
on feature sets 4 and 6, present in one but all and all classifier ensembles, re-
spectively. These classifiers achieve an individual F-score of 75.06 and 76.59,
respectively, well below the F-scores of the selected CRF and SVM classifiers.
This observation may corroborate that combining different types of learning algo-
rithms in a classifier ensemble can lead to better generalization performance of an
ensemble, because different kinds of errors are made.

All best-performing classifier ensembles outperform the ensembles consisting
of all classifiers by a significant margin. The difference in F-score between the
best-performing classifier ensemble (normal majority voting, 84.44) and the best-
performing individual classifier (CRF++ trained on feature set 2, 83.77) is 0.67
percentage points. This difference was found to be statistically significant.

For the calculation of statistical significance of the F-score, we applied the
bootstrap resampling test (Noreen (1989), Yeh (2000)) to the output of the clas-
sifier, which has also been used earlier in the framework of the CoNLL shared
task on NER (Tjong Kim Sang and De Meulder 2003). This is done by randomly
drawing feature vectors with replacement (bootstrap samples) from the classifier
outputs. We repeated this step 1000 times. On the basis of these 1000 bootstrap re-
sults, we calculated the average F-score, the standard error and the upper and lower
bound of the center 90% distribution. Since we do not know if the performance
of our system is distributed according to a normal distribution, the significance



boundaries are determined in such a way that for 5% of the samples the F-score
was equal or below the lower significance boundary and that for 5% of the sam-
ples the F-score was equal or above the upper significance boundary. A score X is
considered to be significantly different from a score Y if score Y is not within the
center 90% of the distribution of X.

The results confirm that genetic algorithms can be successfully applied to the
task of finding a classifier ensemble that outperforms the best individual classifier.
However, the performance gains measured in our experiments are not as large as
the ones reported in Ekbal and Saha (2010). One possible explanation for this is
that the base classifiers used in their experiments were not as strong as the ones
used in our experimental setup, leaving a bigger margin for improvement.

This raises doubts about whether ensemble classification can lead to better clas-
sification performance than a highly optimized individual classifier. In a brief
experiment, the feature set of the best-performing CRF classifier was adapted to
include the features of the second-best classifier it did not already have, namely
prefixes and suffixes of length 3. This classifier achieved an F-score of 84.91
on the dataset, thus outperforming both the best individual classifier and the best
ensemble classifier by 0.47 and 1.14 percentage points, respectively. These pre-
liminary findings indicate that even larger performance gains might be achieved if
structural feature selection and parameter optimization would be applied.

6 Conclusions and future work

This article has focused on the use of 3 different classification frameworks to con-
struct a classifier ensemble for Dutch named entity recognition. The selection of
the classifiers from a pool of 32 was done using a genetic algorithm. The re-
sults confirm that genetic algorithms can successfully be applied to the task of
finding a classifier ensemble that outperforms the best individual classifier. The
experiments also showed that combining different classification frameworks in an
ensemble seems to benefit generalization performance.

The performance gain of the ensemble system over the best individual classi-
fier is statistically significant. However, it is not very large and comes at a high
computational cost. In future work, we therefore intend to compare the use of
genetic algorithms for ensemble selection to using them for the task of selecting
features and optimizing parameters for one single classifier.

References

Bogers, T. (2004), Dutch named entity recognition: Optimizing features, algo-
rithms, and output, Master’s thesis, Universiteit van Tilburg.

Chinchor, N. (1998), Overview of MUC-7, Proceedings of the 7th Message Un-
derstanding Conference.

Chinchor, N. and P. Robinson (1997), MUC-7 named entity task definition, Pro-
ceedings of the 7th Conference on Message Understanding.



Cucerzan, S. (2007), Large-scale named entity disambiguation based on Wikipedia
data, Proceedings of EMNLP-CoNLL, pp. 708–716.

Daelemans, W. and A. van den Bosch (2005), Memory-based Language Process-
ing, Cambridge University Press.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch (2009), TiMBL:
Tilburg Memory Based Learner, version 6.2, reference guide, Technical
Report 09-01, ILK Research Group.

De Meulder, F. and W. Daelemans (2003), Memory-based named entity recogni-
tion using unannotated data, Proceedings of the 7th Conference on Natural
Language Learning.

Desmet, B. and V. Hoste (2010), Towards a balanced named entity corpus for
Dutch, Proceedings of the International Conference on Language Re-
sources and Evaluation (LREC).

Ekbal, A. and S. Saha (2010), Maximum entropy classifier ensembling using ge-
netic algorithm for NER in Bengali, Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC).

Isozaki, H. and H. Kazawa (2002), Efficient support vector classifiers for named
entity recognition, Proceedings of the 19th International Conference on
Computational Linguistics (COLING-2002), Taipei, Taiwan.

Kudo, T. and Y. Matsumoto (2003), Fast methods for kernel-based text analysis,
Proceedings of the 41st Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2003), pp. 24–31.

Lafferty, J., A. McCallum, and F. Pereira (2001), Conditional random fields:
Probabilistic models for segmenting and labeling sequence data, Machine
Learning International Workshop.

LDC (2008), ACE (Automatic Content Extraction) English Annotation Guidelines
for Entities Version 6.6, Linguistic Data Consortium, Philadelphia, USA.
http://projects.ldc.upenn.edu/ace/.

Noreen, E.W. (1989), Computer Intensive Methods for Testing Hypothesis: An
Introduction, John Wiley & Sons, New York.

Oostdijk, N., M. Reynaert, P. Monachesi, G. Van Noord, R. Ordelman, I. Schuur-
man, and V. Vandeghinste (2008), From D-Coi to SoNaR: A reference cor-
pus for Dutch, Proceedings of the Sixth International Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.

Schuurman, I., V. Hoste, and P. Monachesi (2009), Cultivating trees: Adding sev-
eral semantic layers to the Lassy treebank in SoNaR, Proceedings of the 7th
International Workshop on Treebanks and Linguistic Theories, Groningen,
The Netherlands.

Tjong Kim Sang, E.F. (2002a), Introduction to the CoNLL-2002 shared task:
Language-independent named entity recognition, Proceedings of the 6th
Conference on Natural Language Learning, Taipei, Taiwan, pp. 155–158.

Tjong Kim Sang, E.F. (2002b), Memory-based shallow parsing, Journal of Ma-
chine Learning Research 2, pp. 559–594.

Tjong Kim Sang, E.F. and F. De Meulder (2003), Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition, Proceedings



of the 7th Conference on Natural Language Learning, Edmonton, Canada,
pp. 142–147.

Vapnik, V. and C. Cortes (1995), Support vector networks, Machine Learning
20, pp. 273–297.

Wang, H., T. Zhao, H. Tan, and S. Zhang (2008), Biomedical named entity recog-
nition based on classifiers ensemble, International Journal of Computer
Science and Applications 5 (2), pp. 1–11.

Whitley, D. (1994), A genetic algorithm tutorial, Statistics and Computing
4, pp. 65–85.

Yeh, A. (2000), More accurate tests for the statistical significance of result differ-
ences, Proceedings of the 18th International Conference on Computational
Linguistics (COLING-2000), Saarbrucken, Germany, pp. 947–953.


