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Abstract — This paper describes the design, implementation 

and validation of a low-cost synchronous and phase coherent IF-
front-end as part of a 8x8 IQ-MIMO wireless transmit system for 
wireless applications in the 2.4-2.5 GHz ISM band. The precision 
IF-front-end is designed to be used as a first up-conversion block 
from baseband to IF (intermediate frequency). The second up-
conversion from IF to RF is accomplished by an RF-front end 
(beyond the scope of this paper). It also serves as a wireless 
testbed for smart antenna and MIMO transmission. The 
proposed 8-channel IF-front-end features the important property 
that it is possible to perfectly synchronize the eight carrier signals 
in time, phase and frequency. Moreover, each of the eight carrier 
signals can operate at a different but fixed frequency and 
different but constant phase, allowing to fix any frequency 
difference (32 bit resolution) and phase difference (16 bit 
resolution) between the 8 channels. Extreme care was also taken 
among the synchronization between the different channels in the 
RF-paths of the whole system.     

Index Terms — MIMO systems, RF-design, transmitters, 
wireless communication 

I.  INTRODUCTION 

HE functional block diagram of the proposed              
IF-front-end of the MIMO transmitter is shown in      
Fig. I.1. The IF-stage performs an up-conversion of 

eight sampled IQ-signals (16-bit resolution) to an IF-
frequency. The data samples of the eight baseband I and Q 
signals are first interpolated by an interpolation filter, then 
complex modulated in QAM (quadrature amplitude 
modulation) to an intermediate frequency (IF) and sent to two 
digital-to-analog converters as two complex QAM signals. 
Finally, the analog outputs of the DACs are sent to calibration 
circuits allowing low pass filtering (LPF) and precision gain 
calibration of the IQ-channels (GC). Each IQ-channel can be 
fixed at any IF-frequency (32 bit resolution) and any phase (16 
bit resolution) controlled by a numerical oscillator (NCO). The 
synchronous central clocks for the eight IQ-channels are 
delivered to the output DACs by the clock generation board, a 
carefully designed PLL-system  around the Texas Instrument’s 
CDCM7005 clock synchronizer chip [1], [2].  
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Fig. I.1.  Functional block diagram of transmitter  

 
The IF-block is controlled by means of a graphical user 

interface (GUI), allowing the user to set all the system 
parameters in a user-friendly way (see Fig. I.2). An intelligent 
interface board receives the data from the GUI and sends them 
to the hardware boards. Data from the boards is read by the 
interface and written to the GUI for further manipulation. The 
microcontroller board is build around the PIC18LF4550 
microcontroller from Microchip [3].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. I.2.  Graphical user interface 
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II.  DESCRIPTION OF THE IF-FRONT-END 

A.  Block diagram   

The IF-part of the MIMO-system is built around eight 
DAC5686 integrated circuits from Texas Instruments [4].         
Fig. II.1 shows the simplified block diagram of one DAC5686. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. II.1.  Block diagram of DAC5686 

 
The DAC5686 contains two 16-bit high-speed digital-to-

analog converters (DACA and DACB) with integrated 2x, 4x, 
8x and 16x interpolation filters, a numerically controlled 
oscillator (NCO), an on-board clock divider, and on-chip 
voltage reference. The two CMOS DACs at the output of each 
DAC5686 have a differential output that consists of segmented 
arrays of NMOS current sinks, capable of sinking a full-scale 
output current IFS up to 20 mA. Differential current switches 
direct the current of each current source through either one of 
the complementary output nodes (IOA1,IOA2 for DACA and 
IOB1,IOB2 for DACB). So, the complementary output 
currents enable differential operation, and thus cancelling out 
common mode noise sources (digital feed-through, on-chip 
and PCB noise), dc offsets and even order distortion 
components. The full-scale output current IFS for both DACs is 
set using external bias resistors in combination with the on-
chip bandgap voltage reference source (+1.2 V) and can be 
adjusted from 2mA to 20mA.  

The 16-bit samples DI(15:0) and DQ(15:0) of the eight 
baseband I and Q signals are sent at a data rate fDATA through 
two independent I and Q data paths consisting of four 
cascaded half-band interpolation filters (FIR1, FIR2, FIR3, 
FIR4). This interpolating filtering increases the DAC update 
rate, thereby enabling relaxed analog post-filtering. The 
interpolation factor L can be selected as 2x, 4x, 8x, or 16x. 
After interpolation a complex mixing operation is performed 
followed by an optional inverse sinc filter (FIR5) reducing 
sinx/x roll off. Finally the complex mixing signals are fed to 
the digital-to-analog converters converting the digital mixing 
signals to analog signals at a DAC rate fdac (generated by the 
clock generation board). Depending on the selected 
interpolation factor L the DAC-clocks are internally divided to 
the appropriate clock signals for the interpolation filters. There 

is a fixed relationship between the input data rate fDATA at 
which the input samples are read and the DAC rate fdac at 
which the samples are written out : 

L
dacf

DATAf =  (1) 

If the IF-front-end is preceded by an AD-converter block and 
the data clock (fDATA) is used as the sample clock, then to 
avoid aliasing the input bandwidth is restricted to : 

L2
dacf

2
DATAf

BW ==  (2) 

The DAC5686's mixing frequencies and phases are flexibly 
chosen with the programmable NCO. The NCO produces two 
quadrature carrier signals cos(ωcnT+θc) and sin(ωcnT+θc) 
where T=1/fdac. The frequency ωc and phase θc of the carrier 
signals are given by 
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B.  Output configuration    

For practical applications the DAC outputs are loaded with 
a resistive load RL as can be seen in Fig. II.2.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. II.2.  Output configuration for one IQ-channel 

 
The DAC5686 can accept and process input data in full 

binary or two’s complement format. Let I(n), Q(n) be the 
decimal representations of the baseband I- and Q-samples after 
interpolation and A(n), B(n) the decimal representations of the 
input samples of the DACs after complex mixing (0 < A(n), 
B(n), I(n), Q(n) < 216-1 for full binary format and   -215< A(n), 
B(n), I(n), Q(n) < 215-1 for two’s complement format). The 
complementary output currents can be expressed as 
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 (4) 
where m=1 for full binary mode and m=1/2 for two’s 
complement mode. 
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C.  Modes of operation    

For each IQ-channel the IF-front-end provides three modes 
of operation selectable by the user via the GUI : dual-channel 
mode, single-sideband mode and quadrature modulation mode. 

In dual-channel mode there is no complex mixing (NCOs 
off), so this mode can be used as a test mode for the 
interpolation filtering and the DA-conversion. 

Single-sideband mode provides an alternative interface to 
analog quadrature RF-modulators allowing, after RF up-
mixing,  an upper (USB) or lower (LSB) single-sideband RF-
signal (which will be the case in our whole MIMO-
transmitter). In single-sideband mode the DAC5686 performs 
two complex QAM modulations, forming a Hilbert pair 
according  to 
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 (5) 
where C=215, I’(n)=I(n)-215, Q’(n)=Q(n)-215 for full binary 
format and C=0, I’(n)=I(n), Q’(n)=Q(n) for two’s complement 
format. The sign of the quadrature term in A(n) and the sign of 
B(n) can be selected by the user via the GUI. By substituting 
(5) in (4) for full binary (m=1) and two’s compliment format 
(m=1/2) and taking into account that for example VA1=AVDD-
RLIOA1, the output signals VA1,VA2,VB1 and VB2 in Fig. II.2 
can be calculated. They are given by :  
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 (6) 
where the DC-component VDC and the gain factor α are given 
by : 
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In quadrature modulation mode, DACA is switched off 
and DACB presents one of the two complex QAM 
modulations according to : 
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or   
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By substituting (8),(9) in (4) we obtain similar expressions as 
in single-sideband mode for the outputs VB1 and VB2 in Fig. 
II.2.  

D.  Lowpass filtering and precision gain calibration  

One of the complementary outputs of each DAC is sent to a 
lowpass filtering and gain calibration circuit as illustrated in 
Fig. II.3 for one channel. The calibration circuits are built 
around fully differential TI-THS4503 amplifiers [5]. Fig. II.4 
shows some simulations of the circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. II.3.  Lowpass filtering and gain calibration circuit 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. II.4.  Time domain and frequency domain analysis 
 

The sources VA1 and VB1 represent the output signals of the 
DACs if they are not loaded with the calibration circuit (open-
terminal Thevenin voltages). They were calculated in section 
II.C ((6). RL (50Ω) represents the Thevenin impedance as seen 
from the calibration circuits into the DACs. The DAC output 
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signals are AC-coupled, canceling out the DC-components. 
The amplifier circuit has a 3-dB bandwidth of approximately 
70 MHz and a gain G (controlled with the potentiometers P1) 
between 0 and 1 for input signals with 50Ω source impedance 
(between 0 and 2 for input signals with zero source 
impedance). Fig. II.4 shows a time domain analysis for a 50Ω-
1V/1MHz input signal (potentiometers set to 
αA=50%,αB=25%) and a frequency domain analysis between 
1kHz and 200MHz for a 50Ω-1V input signal (potentiometers 
set to αA=αB=100%)  

III.  CALIBRATION AND APPLICATIONS 

In Fig. III.1 a photograph of the realized IF-block 
illustrates our realization. The different parts are recognized : 
the power block, microcontroller circuit, clock generation 
board, DAC boards and gain calibration circuit.  

 
 
  

 
 
 
 
 
 
 
 
 
 

 
 

Fig. III.1.  Photograph of the realized IF-block 

 
Fig. III.2 gives a simple block model for the IF-front-end. 

Since the output samples of the DACs are converted into 
analog signals (by the lowpass and the gain calibration 
circuits) and the DC-components are cancelled out (by the 
input capacitors of the calibration circuits), we can obtain 
general expressions for the two output signals of each IQ-
channel i (i=0,1,…,7) as a function of the discrete input 
samples (Ii(n),Qi(n)), the parameter settings (via the GUI) and 
the gain calibration.  

 
 
 
 
 
 
 
 
 
 

 
Fig. III.2.  Simplified model of IF-front-end 

 
Using (6),(7) the output signals of any IQ-channel in 

single-sideband mode are obtained by replacing the discrete 

samples Ii’(n),Qi’(n) of each IQ-channel i with their analog 
counterparts Ii’(t),Qi’(t) (similar expressions can be obtained 
for QAM mode). If the system accepts and processes data in 
two’s complement format the two outputs of any IQ-channel 
are given by  
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ωc,i and θi are the carrier frequency and phase of channel i. Ai 
and Bi are the gains and can be written as the product of a 
coarse gain αA,i (αB,i) and a precision gain GA,i (GB,i) : 
 

162/)i,FSAILR(i,B;162/)i,FSAILR(i,A

i,Bi,BGiB;i,Ai,AGiA

=α=α

α=α=
 (10) 

 
where IFSA,i and IFSB,i are the full scale currents of DACA and 
DACB for channel i. The sign of the sine term in VoA,i and the 
sign of VoB,i are chosen by setting the reverse spectrum bit 
(Rev. Spectr.) and the Upper/Lower SSB-bit in the GUI. If the 
processing of the discrete samples is done in full binary format 
we have the same expression except that Ii(t) and Qi(t) in (9) 
are replaced with (Ii(t)-2

15) and (Qi(t)-2
15) respectively. The 

frequency (32-bit resolution) and phase (16-bit resolution) of 
any channel i are given by : 
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For calibration purposes, a coarse gain (αAi , αB,i) for each 
channel can be set by setting the full scale currents IFS between 
0 and 20mA via the GUI. The step size equals 20mA/16. A 
fine gain calibration for each channel can be obtained with the 
precision gain calibration circuits (0<GA,i , GB,i<1). 

If the input samples of any channel are held constant then 
the system can be used as a precision multi-channel vari-phase 
generator with programmable amplitude, frequency and phase 
settings. When used as the IF-part of a complete MIMO-
transmitter with RF-front-end, holding the input samples at a 
constant level allows the user to do a precision calibration of 
the complete MIMO-system as described above, thereby 
compensating for amplitude and phase mismatches in the RF-
paths of the whole transmitter.  

Many other applications are possible such as beam 
forming, transmit diversity, spatial multiplexing and 
synchronous multi-carrier generation. Transmit diversity and 
spatial multiplexing require synchronous carrier signals with 
same carrier frequency ωc whereas beamforming requires, in 
addition, a fixed phase difference ∆θ between adjacent 
channels, i.e.  

)i(0i;ici,c θ∆+θ=θ∀ω=ω  

where θ0 is the phase of the reference channel (channel 0). 
Multi-carrier generation on the other hand requires 
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synchronous carrier signals with the same phase but with a 
fixed frequency difference between them : 

0i;ici0,ci,c θ=θ∀ω∆+ω=ω  

where ωc,0 is the frequency of the reference channel (channel 
0) and ∆ωc the frequency difference between adjacent 
channels. Our system was specifically designed to perform  
beam forming, transmit diversity, spatial multiplexing, as well 
as multi-carrier generation. For each application, the  
parameters are set in a user-friendly way via the GUI.  

In the near future the proposed IF-block will be extended 
with an improved RF-board containing 8 RF QAM modulators 
as a second up-conversion from IF to RF as shown in Fig. 
III.3. The IF-block will then be used as the central 
programmable and calibration part of a complete RF MIMO 
transmitter for wireless applications in the 2.4-2.5 GHz ISM 
band. In single sideband mode our IF-block can for each IQ-
channel generate two output signals that form a Hilbert pair. 
Using these two signals as the input signals of the RF QAM 
modulators results in an upper or lower single sideband signal 
in the RF domain without mirror components, thus without the 
need for supplementary rejection filters (as is the case in most 
double up-conversion systems).  

 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig. III.3 RF-MIMO-transmitter  

IV.  MEASUREMENTS 

Some oscilloscope images of measurements on the IF 
front-end are shown in Fig. IV.1. The figure illustrates some 
steps in the phase matching calibration of two different IQ-
channels: before (a), during (b) and after phase matching (c)  

 
 
 
 
 
 
 
 
 
 

Fig. IV.1.  Phase matching calibration  
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