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Abstract

This paper presents a new regularization strategy, denoted as Value Picking or VP regularization, which is
designed for optimization problems with a large number of optimization variables for which the solution consists of a
limited number of different values. When applied to the electromagnetic inverse scattering problem, this regularization
favors complex permittivity profiles comprising only a limited number of unknown permittivity values, without a priori
knowledge on their spatial distribution. The proposed VP regularizing function only uses an upper estimate on the
number of such values. A key ingredient to the VP regularizing function is the choice function, which in general
is a real valued function of P variables, but is introduced in this paper only in two dimensions. In this paper, the
VP regularizing function is added to the least squares data fit and a Gauss-Newton optimization strategy with line
search is applied to minimize the resulting cost function. A 3D reconstruction from simulated noisy data illustrates
the effectiveness of the VP regularization scheme.

1. Introduction

It is well known that the exact inverse electromagnetic scattering problem – i.e. the quantitative reconstruction
of the complex permittivity of a scatterer from measurements of the scattered field for a number of known incident
fields – is ill-posed. The main problem in this respect is instability: in the presence of noise on the data, the recon-
structions tend to be very different from the actual permittivity profile. The non-linear inverse scattering problem is
usually solved by iteratively minimizing a cost function. Most popular is the least squares data fit cost function

FLS(ε) =
‖escat(ε) − e

meas‖2

‖emeas‖2
(1)

where e
meas and e

scat are vectors that contain respectively the scattered field measurements and the simulated scattered
field from a discretized permittivity profile, which is represented by the N -dimensional vector ε. Even when this cost
function has a unique global minimum under ideal circumstances, noise on the data introduces ambiguity, i.e. more
than one permittivity vector ε corresponds to a data fit on the noiselevel. To select one acceptable permittivity profile
from all these candidates, a regularization term is added to the least squares cost function, which tries to enforce
some constraints on the reconstructed profile that are based on a priori knowledge concerning the actual permittivity
profile. This approach seems to be more justified than applying regularization only to some linear subproblems in the
minimization of FLS as is often seen in literature. Several authors have used a smoothing constraint [1,2] to eliminate
the large voxel-to-voxel fluctuations that characterize most of the unwanted permittivity profiles on or beneath the
noise level, but when reconstructing piecewise constant permittivity profiles, this kind of regularization is not optimal.
Edge preserving regularization strategies have been developed [3], but in this paper we propose a new strategy, the
Value Picking or VP regularization, that can be used when the permittivity profile consists of a limited number of
different permittivities, or is close to such a profile. It does not use knowledge of where these permittivities are
located (or whether they are clustered in piecewise constant areas, as is assumed in edge preserving regularization),
but only requires an upper estimate of the number of different values. Moreover, lower and upper bounds on their real
and imaginary parts can be easily imposed. The method can be incorporated in voxel-based inversion strategies as a
common additive regularization term. In the rest of this paper, the choice function will be introduced in section 2,
after which the VP regularizing function is constructed in section 3. The optimization strategy is outlined in section
4 and in section 5 a 3D reconstruction from simulated noisy data is presented to demonstrate the effectiveness of the
proposed regularization.
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2. The Choice Function

The P -dimensional choice function fP (u1, . . . , uP ) is a fully symmetric positive function of P non-negative
variables (u1, . . . , uP ). Its most important properties are that fP = 0 if and only if at least one of its arguments is zero
and that if k of its arguments are much larger than the remaining P − k arguments, the P -dimensional choice function
reduces to the (P − k)-dimensional choice function evaluated in the smaller arguments. Although it is possible to
construct a choice function in any dimension, in this paper we only consider the choice functions in one and two
dimensions

f1(u1) = u1, f2(u1, u2) =
u1u2

u1 + u2

, (2)

for which the above mentioned properties can be directly verified. Moreover, introducing the functions B21(u1, u2)
and B22(u1, u2), defined by

B21(u1, u2) =
u2

2

(u1 + u2)2
, B22(u1, u2) =

u2
1

(u1 + u2)2
, (3)

it can be proven that
∂f2

∂u1

(u1, u2) = B21(u1, u2),
∂f2

∂u2

(u1, u2) = B22(u1, u2), (4)

f2(u1, u2) = B21(u1, u2)u1 + B22(u1, u2)u2, (5)

f2(u1, u2) ≤ B21(u1,0, u2,0)u1 + B22(u1,0, u2,0)u2, ∀(u1, u2) ∈ R
2
+, (6)

where u1,0 and u2,0 are two arbitrary non-negative numbers.

3. The Value Picking Regularizing Function

To reconstruct a permittivity profile that consists of at the most P different complex permittivity values, we
propose to minimize the following cost function:

F (ε, c) = FLS(ε) + γFV P (ε, c), (7)

where γ is a positive regularization parameter and the VP function FV P is given by

FV P (ε, c) =
1

N

N
∑

n=1

fP (|ǫn − c1|
2, . . . , |ǫn − cP |

2), (8)

where the complex variables cp are called the VP values. Furthermore cP = ǫb (ǫb is the background permittivity) and
is collected together with the other P − 1 unknown VP values in the vector c. If we restrict ourselves again to P = 2,
(8) can be rewritten using (5) as

FV P (ε, c) =
1

N

N
∑

n=1

[

b1,n(ε, c)|ǫn − c1|
2 + b2,n(ε, c)|ǫn − c2|

2
]

, (9)

which can be seen as a weighted sum of the penalty functions |ǫn − cp|
2 where the weights are calculated with the

weight functions defined in (3):

bp,n(ε, c) = B2p(|ǫn − c1|
2, |ǫn − c2|

2), for p = 1 or p = 2. (10)

This regularization function, when minimized, tries to enforce equality of every optimization variable ǫn with a VP
value close to ǫn, and disregards the VP values that are clearly farther away from ǫn. Indeed, from (10) and (3) it can
be seen that if in the course of the minimization |ǫn − c1|

2 ≫ |ǫn − c2|
2, for a certain index n, then

b1,n(ε, c)|ǫn − c1|
2 → 0 and

b2,n(ε, c)|ǫn − c2|
2 → |ǫn − c2|

2, (11)



such that only the difference between ǫn and c2 is penalized. On the other hand, as long as |ǫn − c1|
2 ≈ |ǫn − c2|

2,
we have

b1,n(ε, c)|ǫn − c1|
2 + b2,n(ε, c)|ǫn − c2|

2 ≈
1

4
|ǫn − c1|

2 +
1

4
|ǫn − c2|

2, (12)

which means that no choice between c1 and c2 is made. Furthermore, both terms in (12) have smaller weight than in
the case where a choice for c1 or c2 is made. As a result, the VP regularization does not force a decision too soon if
the data fit does not provide enough driving force for it.

4. Minimization of the Cost Function

The cost function (7) is minimized by alternately updating the permittivity profile and the VP values. To update
the permittivity vector in iteration k, starting from (εk, ck), the modified cost function

FQ(ε, c) = FLS(ε) + γQV P (ε, c), (13)

is considered, with

QV P (ε, c) =
1

N

N
∑

n=1

[

w1,n|ǫn − c1|
2 + w2,n|ǫn − c2|

2
]

, (14)

where the weights w1,n = b1,n(εk, ck) and w2,n = b2,n(εk, ck) are calculated in (εk, ck) and then kept fixed. Based
on this modified cost function, which touches with the actual cost function F in (εk, ck) (because of (4) and (5))
and which lies above F in any other point (because of (6)), the following Gauss-Newton update direction [1] for the
permittivity vector ε is calculated:

sk =
(

J
H
k Jk + γ‖emeas‖2

Σk

)

−1 [

J
H
k

(

e
scat(εk) − e

meas
)

+ γ‖emeas‖2
Ω

∗

k

]

. (15)

In (15), Jk is the jacobian matrix which contains the derivatives of the scattered field components with respect to the
optimization variables, calculated for εk, and the elements of the matrix Σk and the vector Ωk respectively are given
by

[Ωk]n =
1

N
[w1,n(ǫk,n − ck,1)

∗ + w2,n(ǫk,n − ck,2)
∗] , (16)

[Σk]nm = δnm

1

N
[w1,n + w2,n] . (17)

The update direction (15) is used as a search direction along which a line search algorithm locates the next permittivity
vector εk+1 for fixed ck. Note that (15) always is a descent direction with respect to the actual cost function F and
that the line search is performed on F and not on FQ.

To update the VP value c1 (c2 is kept fixed and equal to ǫb) starting from the current iterate (εk+1, ck), the
function (14) with weights w1,n = b1,n(εk+1, ck) and w2,n = b2,n(εk+1, ck) is minimized for c1, keeping w1,n, w2,n

and εk+1 fixed. The weights w1,n and w2,n are updated next and (14) is minimized again. This cycle is repeated until
c1 remains stable. Since (14) is a quadratic function in c1, its minimization is very simple and upper and lower bounds
on the real and imaginary part of c1 can easily be incorporated in this quadratic optimization problem.

5. Numerical Example

To demonstrate the effect of the VP regularization, we consider 2 homogeneous cubes, one with side λb (= the
background wavelength) and one with side 0.3λb. Both cubes have relative permittivity 2 and the background medium
is free space (ǫb = ǫ0, the permittivity of vacuum). The center of the large cube is (0.3λb, 0.3λb, 0.3λb) and the small
cube is centered on (−0.45λb, −0.45λb, −0.45λb). These scatterers are illuminated subsequently from 72 positions
on a sphere with radius 2λb by elementary dipole sources with θ- and φ- polarizations. For every such illumination, the
scattered field is collected in every dipole position along the θ- and φ- directions. The data are simulated numerically
and 30 dB gaussian noise is added afterwards. The cell size of the permittivity grid is 0.1λb and the investigation
domain is a cube with side 2λb. Figure 1 shows the real part of the permittivity in two horizontal slices through the
investigation domain for the exact profile, for the reconstruction with VP regularization and for the reconstruction
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Figure 1: Plots of the real part of the permittivity profile in two horizontal slices (z = 0.25λb (top row) and z =
−0.45λb (bottom row)) through the investigation domain. The columns, from left to right, correspond to the exact
permittivity profile, the reconstruction with VP regularization and the reconstruction with a multiplicative smoothing
regularization.

with a multiplicative smoothing regularization as described in [1]. Both reconstructions correspond to a data fit on the
noise level but clearly differ in reconstruction quality. The result of the VP regularization is very close to a piecewise
homogeneous profile with only 2 different permittivities and compared to the exact profile only shows some small
artifacts with the dimensions of one voxel. The optimization ended with c1 = 2.0054 − 0.0003j. The result of the
smoothing regularization is more heterogeneous, although it provides a good reconstruction of the object shape.

6. Conclusion

For permittivity profiles that consist of a limited number of different permittivity values, the newly proposed
VP regularization strategy is able to provide better reconstructions than a smoothing regularization in case of noisy
data, because it incorporates more correct a priori knowledge on the scatterers.
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