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ABSTRACT

Airborne LiDAR and hyperspectral data were acquired over
a broadleaved forest area in Belgium. Shadow fractions
were calculated, based on Sun angles and a digital surface
model derived from the LiDAR data. Pixels in the hyper-
spectral image were classified based on the shadow fractions
to study the effect of shadow on canopy reflectance and
how the effect propagated to typical remote sensing applica-
tions in forestry. As a first application, the photosynthetical
reflectance index (PRI) was studied, which expresses the rel-
ative down-regulation of photosynthesis. A strong correlation
(R2 = 0.93) was found between the shadow fraction and the
PRI. The second application was a tree species classification
problem. A measure for classification uncertainty (CU) was
introduced, based on the Shannon entropy. It was shown
that the majority of pixels with a low shadow fraction were
classified with a lower uncertainty.

Index Terms— Mutual tree canopy shading, hyperspec-
tral forest applications, LiDAR data

1. INTRODUCTION

Mutual shading of tree crowns influence the radiometric prop-
erties of forest canopy. Some authors have tried to compensa-
tion for shadow effects using spectral mixture analysis [1, 2]
and empirical functions [3]. Others have used shadow infor-
mation to derive structural parameters of forest [4, 5, 6]. The
objective of this work was to study the effect of tree canopy
shadows on the canopy reflectance and, more in particular,
how the effect propagates to remote sensing forest applica-
tions.

A simple hill shade algorithm was implemented to calcu-
late the shadow fractions per pixel in the airborne hyperspec-
tral image. As input, a digital (canopy) surface model (DSM)
was used that was derived from LiDAR data. In case no such
data are available, shadow fractions can be estimated from the
radiance values in the image itself. In [5] tree canopy shad-
ows were detected with a threshold DN value in a IKONOS

panchromatic image and canopy fractions were derived for a
multispectral image at a coarser spatial resolution.

In this study, both airborne hyperspectral imagery and
high density airborne LiDAR data were available. The
shadow effect was studied in different ways. First, the ef-
fect on the hyperspectral reflectance of tree canopies was
quantified. Then we studied how the effect was propagated
to typical forestry applications based on remote sensing. Two
applications were selected: a quantitative application using
the photochemical reflectance index (PRI [7]) and a classifi-
cation problem on tree species.

2. STUDY AREA AND MATERIAL

Experiments were performed in Wijnendale, a forest area in
Belgium. LiDAR data was obtained from a TopoSys sensor
Harrier 56 at full waveform. The study area was acquired
in four different flight lines. The resulting point density was
13.81 m−2 with a point spacing of 0.27 m (using all returns).
A DTM and DSM were derived at a spatial grid of 0.5 m ×
0.5 m. The DSM was obtained by selecting the maximum of
all pulse returns in each grid, followed by a morphological
closing filter (circular kernel of size 3 × 3 pixels). For the
DTM, non-ground features (e.g., trees) were removed from
the LiDAR point cloud using a progressive morphological fil-
ter, as proposed in [8].

Hyperspectral data was acquired with the Airborne Prism
Experiment (APEX), the newly developed imaging spectrom-
eter by a Swiss-Belgian consortium on behalf of the Euro-
pean Space Agency (ESA). This sensor covers a wide spectral
range, including the short wave infrared (372 − 2498 nm) in
300 spectral bands. The spatial resolution was 1.5 m.

Radiance values were atmospherically corrected to top
of canopy reflectance, based on the radiative transfer model
MODTRAN4 [9]. Geometric correction was based on direct
georeferencing [10].
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3. METHODS

3.1. Calculation of digital elevation models

Modern airborne sensors provide point densities of 4 LiDAR
points m−2 and more and can produce accurate DSMs at a
spatial resolution (RL) that is typically equal or finer than
that of most airborne hyperspectral imagery: RL <= RH .
In this case study, the spatial resolution of the APEX hyper-
spectral image was 1.5 m. The DSM was created using a grid
of 0.5 m. The spatial detail (resolution) of the shadow mask,
derived from the DSM, was therefore finer than the hyper-
spectral image (RH = 3×RL).

A canopy height model (CHM) was also produced by sub-
tracting a DSM from a DTM. To create a DTM non-ground
features (e.g., trees) had to be removed from the LiDAR point
cloud first. We used a progressive morphological filter for this
purpose. As proposed in [8], the window size of the filter was
gradually increased, using elevation difference thresholds to
remove non-ground measurements. Due to the unique combi-
nation of the thresholds and window size in each step, ground
data could be preserved in this process. Some holes (non-
filled grid cells) still remained in the filtered output. These
pixels were interpolated in the final DTM raster grid using
an inverse distance weighting to the filled grid cells. A four
direction conic search was performed to find the respective
filled grid cells for each hole.

3.2. Calculation of sunlit and shadow tree crowns

The mutual shading of forest canopies was expressed as a
shadow fraction with a hillshade algorithm in each hyperspec-
tral image pixel. We assumed clear sky conditions, which
was the case at the time when hyperspectral image was ac-
quired. Both the Sun zenith angle (sza) and Sun azimuth an-
gle (saa), needed for the hillshade algorithm, were known.
As suggested in [11], the shadow fraction is hereby likely to
be overestimated due to the translucent character of canopies.
However, for this study crown transparency was not taken
into account. Although the assumption of opaque canopies is
unrealistic, this simplified model served the objective in this
study.

A schematic overview of the shadow detection method is
shown in Fig. 1. A tree at pixel p has a height h and casts
shadows along the line defined by the angle saa′ = saa + π,
where saa is the Sun azimuth angle in pixel p. The length
of the shadow cast on the ground (d) without the obstruction
of another above ground target, is proportional to the cotan-
gent of the Sun’s elevation angle in point p′ (sza′). Due to
the short distance of d (typically less than 100 m relative to
the Sun, we can approximate sza′ ≈ sza. The elevation at
point (potentially another tree) p′ is represented by h′. A bi-
nary shadow mask was obtained from the DSM image, with
pixels classified as either sunlit or shaded, following algo-
rithm 3.2.

Fig. 1. Schematic representation of shadow cast from tree

repeat {process DSM image}
Current pixel is p with height h
Sun zenith angle in p is sza
Sun azimuth angle in p is saa
repeat {mark shadow pixels cast by current pixel}

p′ ← next pixel on ray
−→
pp′ defined by saa + π

d′ ← Euclidean distance between p and p′

if h′ < h− d′
tan(sza) then

mark p′ as shaded
else

mark p′ as sunlit
end if

until d′ > h tan(sza)
until all pixels in DSM processed

The CHM was used to create a binary tree canopy mask.
We applied a simple height threshold equal to the lowest tree
of interest (20 m). A binary tree canopy shadow mask SHMT

was then obtained by masking non-trees in the binary shadow
mask. To obtain the shadow fraction map (SHFT ), SHMT

was degraded to the spatial resolution of the hyperspectral
image by calculating the proportion of shaded pixels that fell
within the degraded pixel. With nine pixels in SHMT for each
hyperspectral pixel (RH = 3× RL), there were ten potential
shadow fractions (0, 1/9, 2/9, ..., 9/9).

3.3. Impact of shadow effects on forest studies

The impact of shadow effects on forest studies was studied at
different levels. First, the impact on the canopy reflectance
was quantified in general, based on the shadow fraction in the
hyperspectral pixels. Then we quantified the propagation of
the effect on typical forestry applications.

An important parameter used for quantitative studies in
forestry is the photochemical reflectance index (PRI), a nor-
malized difference spectral index that is based on two narrow
(3 − 10 nm) wavelengths in the green spectrum. It expresses



the relative down-regulation of photosynthesis induced pri-
marily by high light intensities [7]:

PRI =
R531 − R570

R531 + R570
(1)

In contrast to some other vegetation indices that try to reduce
illumination conditions, this index has a strong correlation to
shadow fraction [12]. The PRI values are expected to increase
with increasing shadow fractions.

The second case study was the classification of tree
species in a broadleaved forest study area. The effect of
canopy shadow fraction was assessed on the classification
accuracy. However, traditional measures of classification ac-
curacy such as overall accuracy and Kappa coefficient could
not easily be adopted here, due to an insufficient test sample
covering both sunlit and shaded pixels. Therefore, a differ-
ent approach was followed. The classifier, a support vector
machine, was trained to predict (continuous) probability esti-
mates rather than (discrete) classes. The level of uncertainty
was expressed (in bits) by the (Shannon) entropy (H):

H = −
C∑
i=1

P (ωi)log2(P (ωi)) (2)

with P (ωi) the posterior probability for class ωi (i =
1, . . . , C) obtained from the classifier output. The classi-
fication uncertainty (CU) was then rescaled as a percentage
(0− 100%) as:

CU = − 100

log2(C)

C∑
i=1

P (ωi)log2(P (ωi)) (3)

A spatially explicit measure of uncertainty was then ob-
tained by calculating CU for each hyperspectral pixel. Using
the shadow fraction cover map as an overlay, the classification
uncertainty was studied in function of shadow fraction cover.

4. RESULTS

4.1. Digital surface model and shadow mask

A DSM was obtained from LiDAR data with a spatial res-
olution of 0.5 m as explained in section 3.1. The result is
shown in Fig. 2(a). A binary shadow mask was then calcu-
lated following algorithm 3.2. The shadow fraction image,
calculated at the spatial resolution of the hyperspectral image
(1.5 m× 1.5 m), is shown in Fig. 2(b).

4.2. Shadow effect on canopy reflectance

The effect of shadow on the canopy reflectance was studied
by extracting a random sample Str for each of the ten classes
corresponding to the fraction of shadow cover. The respective
mean reflectances are shown in Fig. 3. The canopy reflectance

(a) Digital surface model (b) Shadow fractions (dark pixels
are more shaded

Fig. 2. DSM and shadow fraction
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Fig. 3. Canopy reflectance spectra for different fractions of
shadow.

of pixels that were fully shaded decreased up to 60% with re-
spect to sunlit pixels. It was also shown that the reflectance
strictly decreased for the different shadow fractions. The de-
crease was nearly linear with shadow fractions, but was wave-
length dependent.

4.3. Shadow effect on photochemical reflectance index

The PRI was calculated for all tree canopy pixels. The re-
spective means for each of the ten classes corresponding to
the fraction of shadow cover are shown in Fig. 4. It was
shown that PRI increases with increasing shadow fraction
cover, which confirms conclusions in [12]. A strong correla-
tion (R2 = 0.93) was found between the shadow fraction and
the PRI index.

4.4. Shadow effect on classification accuracy

The effect of shadow on classification accuracy was studied
for the Wijnendale forest area. The three main tree species
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Fig. 4. PRI for different fractions of shadow

(a) APEX true color quicklook of
the Wijnendale forest

(b) Classification uncertainty of tree
species mapping in Wijnendale for-
est. Bright pixels correspond to a
high uncertainty.

Fig. 5. Classification of tree species

in that area were Beech (Fagus Sylvatica), Poplar (Populus x
euramericana nigra) and Pedunculate Oak (Quercus robur).
The classifier (support vector machine) output contained pos-
terior probability estimates for each class, which were used
to calculate the classification uncertainty according to equa-
tion 3 (UC). Posterior probabilities that were similar for the
three classes (P (ω1) ≈ P (ω2) ≈ P (ω3) resulted in a high
uncertainty. Distinct values, with P (ωi) � P (ωj), i 6= j re-
sulted in a low uncertainty (≈ 0%). The uncertainty for each
pixel was calculated and is shown in Fig. 5(b).

The effect of shadow on the classification uncertainty
(CU) is shown in Fig. 6. Some important observations can be
made. Little pixels have a 100% uncertainty, corresponding
to the case where the classifier output is identical for all three
classes. This is only the case for extremely difficult classifi-
cation problems (or poorly trained classifiers). The CU has
a bi-modal shape showing maxima at 63% and 15%. The
maximum at 63% corresponds to the typical case where the
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Fig. 6. Classification uncertainty in function of shadow frac-
tion cover

posterior probability is high for two classes and low for one
class. The ideal case when the posterior probability is 100%
for only a single class corresponds to a CU of 0% (100%
certain). The frequency of pixels for this ideal case is low but
higher than 100% uncertainty. The second maximum corre-
sponds to the more likely case where the posterior probability
is high for a single class.

5. CONCLUSION

Mutual shading of tree crowns were found to have a large
impact on remote sensing forest applications. The canopy re-
flectance of pixels that were fully shaded decreased up to 60%
with respect to sunlit pixels. The decrease was nearly linear
with shadow fractions, but was wavelength dependent.

The propagation of shadow effects to typical remote sens-
ing applications in forestry was also studied. As a first appli-
cation, the photosynthetical reflectance index (PRI) was stud-
ied, which expresses the relative down-regulation of photo-
synthesis. A strong correlation (R2 = 0.93) was found be-
tween the shadow fraction and the PRI. As a second appli-
cation, a tree species classification problem was selected. It
was shown that the majority of pixels with a larger shadow
fraction were classified with a higher uncertainty.
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