
1

The FASTER vision for designing dynamically
reconfigurable systems

M. D. Santambrogio ∗, C. Pilato∗, D. Pnevmatikatos †, K. Papadimitriou†, D. Stroobandt‡, D. Sciuto∗

∗ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
† Foundation for Research and Technology - Hellas

‡ Computer Systems Lab, Ghent University

Abstract— Extending product functionality and lifetime re-
quires constant addition of new features to satisfy the grow-
ing customer needs and the evolving market and technology
trends. software component adaptivity is straightforward but not
enough: recent products include hardware accelerators for rea-
sons of performance and power efficiency that also need to adapt
to new requirements. Reconfigurable logic allows the definition
of new functions to be implemented in dynamically instantiated
hardware units, combining adaptivity with hardware speed and
efficiency. For the Intrusion Detection System example, new rules
can be hardcoded into the reconfigurable logic, achieving high
performance, while providing the necessary adaptivity to new
threats.

The FASTER (Facilitating Analysis and Synthesis Technologies
for Effective Reconfiguration) project aims at introducing a
complete methodology to allow designers to easily implement a
system specification on a platform combining a general purpose
processor with multiple accelerators running on an FPGA,
taking as input a high-level description and fully exploiting,
both at design- and run-time, the capabilities of partial dynamic
reconfiguration. The FASTER project will facilitate the use of
reconfigurable hardware by providing a complete methodology
that enables designers to easily implement and verify applications
on platforms with general-purpose processors and acceleration
modules implemented in the latest reconfigurable technology.

I. INTRODUCTION

In an ever-changing world there is an increasing demand
for computing systems that will be able to adapt to their
environment or to meet new application demands. Adaptation
by means of changing the software running on processors is
not always adequate. For example, many embedded applica-
tions require hardware acceleration and it is also necessary
for the hardware to be able to adapt to application changes.
Reconfigurable hardware can be a key enabler for these
systems. Hardware supported adaptation mechanisms provide
a cost effective way of coping with changing requirements.
This is in addition to providing the flexibility needed to allow
functionalities to be defined and easily added or substituted
after a system has been manufactured and is already deployed.
However, the ability to take relevant reconfiguration issues into
account from the initial system specification to the final system
design and the mechanisms required to support this additional
functionality at runtime are currently lacking.

The FASTER project (Facilitating Analysis and Synthesis
Technologies for Effective Reconfiguration) [1] aims at intro-

ducing a complete methodology allowing designers to easily
implement and verify a system specification on a platform that
includes one or more general purpose processor(s) combined
with multiple acceleration modules implemented on one or
multiple reconfigurable devices. Our goal is that for selected
application domains, the envisioned toolchain will be able to
reduce the design and verification time of complex reconfig-
urable systems by at least 20%, providing additional novel
verification features that are not available in existing tool
flows. In terms of performance, for the selected application
domains, the toolchain could be used to achieve the same
performance with up to 50% cost reduction compared to pro-
grammable SoC based approaches, or exceed the performance
by up to a factor of 2 for a fixed power consumption enve-
lope. The FASTER tool-chain is an integrated semi-automatic
framework that can assist the designer in the development
of reconfigurable heterogeneous MPSoC systems. It starts
from a C-based description of one or more applications to
be implemented and minimal information about the target
device/technology. Then, it allows a progressive refinement of
both the designed applications and the hardware architecture
by offering the possibility of integrating different algorithms
and tools to tackle the different aspects of the design. Also,
it allows specifying decisions in an interactive environment
by hiding most of the implementations details to the designer.
At its output it generates the necessary artifacts for the early
validation of the produced system, allowing the integration
with commercial tools for the subsequent steps (e.g. simulation
or synthesis).

In the remaining of this paper, Section II describes the
overall problem FASTER is aiming to solve and overviews
related works with similar goals. Section III discusses the
FASTER project objectives, while Section IV focuses on the
description of the offline analysis and the framework envi-
sioned and implemented in FASTER for desigining dynami-
cally reconfigurable systems. Finally, Section V wraps up the
authors conclusions and presents future research directions.

II. CONTEXT DEFINITION

Current and future computing systems increasingly require
to be flexible and extensible even after the system is oper-
ational, in order to cope with changing user requirements,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55868956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

High%level)analysis.)
Contains)rough/fast)
es6ma6on)of)
a)Power,)
b)Resources,)
c)Computa6on)6me

Iden6fica6on)of)
PR)cores)+)
Applica6on)
profiling

Op6miza6on)for)
micro%

reconfigura6on)
(TLUT,)TCON)

Baseline)
scheduling)+)
Floorplanning

Verification RTSMParam.)
change

List)of)HDL)func6ons
+

Parallelism)
annota6ons)
(openMP) C)descrip6on

XML)descrip6on
%)App
%)PlaRorm
%)HW/SW)par66oning

Library)w/)SW/
HW)modules

+

SW)
tools

Sta6c

Region%based

Reference)
design SW

(iden6fy)annota6ons)
needed)on)C/HDL)

FASTER front-end

FASTER runtime

GPP RR1

Reuse

System
Reconfigurable AreaStatic Area

RR2

App Designers

Full)bitstream)
+

Set)of)par6al)reconfigura6on)
bitstreams

Micro%reconfig.

FASTER back-end

Vendor-flow

Vendor-flow + 
relocation

UGent + 
Vendor-flow

Fig. 1. FASTER design flow broken down in distinct phases

improvements in system features, changing protocol and data-
coding standards, evolving demands for support of different
user applications, and newly emerging applications in commu-
nication, computing and consumer electronics. The FASTER
project [1] aims at exploiting the capabilities of dynamic
reconfiguration, both at design-time and run-time, by taking
as input a high-level description of the application. Previous
efforts and EU projects such as MORPHEUS [2], hArtes [3],
Reflect [4], S4, Acotes [5], and Andres [6] have dealt with
making a tool-chain and addressed similar issues as FASTER,
but they focused more on the system-level or architectural
aspects of reconfiguration. In fact, they did not explicitly
emphasize on the design and runtime aspects of dynamic
reconfiguration. This is exactly where FASTER intends to
contribute: to introduce partial and dynamic reconfiguration
from the initial design of the system all the way to its
runtime use. Therefore, we have to define the design concepts
capturing both parallelism and reconfigurability as essential
system properties and provide efficient and transparent-to-
the-user runtime support for partial and dynamic reconfig-
uration. Reconfigurability can increase both the design time
and runtime complexity, and thus an adequate framework for
verification and analysis becomes a necessity; the formulation
of such a framework constitutes one of the targets of the
project. FASTER is focused on exploiting reconfiguration
at the hardware description level, so the front-end of these
approaches can be used to translate languages such as C into
task graphs, and can then be processed with the FASTER
scheduling mechanism. Furthermore, we assume that appli-
cations are developed or ported by taking into account both
parallelism and the potential for dynamic reconfigurability.
The FASTER tool-chain will provide the capability to identify
the reconfigurability characteristics of an application, deter-
mine the best implementation options, and verify the resulting
implementation in order to take advantage of these features
from the beginning, rather than introducing reconfiguration
late in the mapping process, or merely by transforming the
code.

Within this context, FASTER project proposes a novel
approach for computing system design, focusing on dynami-
cally and partially reconfigurable FPGA-based architectures. It
binds classical computing system design and hardware recon-
figuration to focus the design attention on the entire platform
characterization. Figure 1 illustrates the overall FASTER tool
chain. FASTER embraces the development of new tools and
the identification and formalization of new models and design
methodologies to represent and implement efficient computing
systems. The tools will cope with the application requirements
as well as the development of area allocation and management
algorithms for efficient runtime support of dynamic reconfigu-
ration. FASTER project will extend the design options beyond
the region-based reconfiguration design [7] by incorporating
micro-reconfiguration [8] in the developed tool set. Micro-
reconfiguration can be fast and configuration generation can
take place at run-time, for instance triggered by the change
of some parameters [9]. The ability to handle both types of
reconfiguration opens up a new range of possibilities for run-
time reconfiguration, which can offer a versatile framework
for serving the design of applications targeting reconfigurable
hardware.

III. FASTER OBJECTIVES

The project enhances the following five aspects of the design
of computing systems:

The first objective is to include reconfigurability as an ex-
plicit design concept. Starting from the high-level description
of the system and its application, the proposed approach will
provide a set of different metrics and profiling information
along with communication and dependency graphs, oriented
to support system-level synthesis onto a hardware platform
supporting dynamic reconfiguration.

The second objective is to provide the methods and tools
for including run-time reconfiguration in every aspect of
the design methodology. The methods and tools designed in
FASTER will allow for the efficient and transparent use of
partial and dynamic reconfiguration at different time scales,



3

supporting also both explicit parallelism in the application
specification and platforms combining multiple software pro-
cessors with reconfigurable logic. This will lead to a scenario
that will enable efficient interfacing between the parallel
software and the reconfigurable hardware components.

The third objective of the project is to provide an effective
framework for analysis, synthesis, and verification to guarantee
that the final implementation corresponds to the application
requirements and system specifications. Our focus is on devel-
oping an integrated tool-chain that supports the verification of
both static and dynamic portions of the reconfigurable design.

Our fourth objective is to provide efficient and devel-
oper/user transparent runtime support for partial and dynamic
reconfiguration. Assuming a partially reconfigurable system -
either with a single or multiple FPGAs -, we will develop a
runtime system that can efficiently handle the online schedul-
ing and placement of reconfigurable system components,
using dynamically adaptive schemes to optimize the system
operation based on different functional and non-functional
requirements defined by the user.

Finally, the fifth objective is to provide seamless integra-
tion of parallelism and reconfigurability in the specification,
irrespective of whether it applies to software or hardware
components. The flow will interface the parallel software to the
hardware components, and to the runtime manager responsible
for partial and dynamic reconfiguration.

IV. FASTER DESIGN PLATFORM FOR DYNAMICALLY
RECONFIGURABLE SYSTEMS

The main goal is to analyze each application and define
its components, estimate its execution time on the target
platform, identify the right level of reconfigurability for it
(none, region-based or micro-reconfigurable), the power con-
straints, the floorplanning constraints (size and shape), the
placement requirements (type of resources and connectivity
among modules) on the target platform and the baseline sched-
ule for its execution. We consider both static and dynamic
reconfiguration and assume a partially reconfigurable system,
either in a single device or by using multiple FPGAs. FPGAs
add two new aspects to classical VLSI design: Resource
Heterogeneity, the silicon die of FPGAs generally provides
several kinds of resources (e.g., programmable logic cells,
memories, multipliers, DSPs and so on); and Reconfigurability,
the architecture, or the application implemented on the FPGA,
may change at runtime a subset of its modules in order to
modify its own behavior, without disrupting the operation of
the rest circuit. The ideal place in the design flow where these
issues are best tackled is the floorplanning phase. This is where
heterogeneity can be taken into account and this is where
reconfigurability introduces time as a new variable inside
the formulation. Once the level of reconfiguration is defined
for each application part, the static modules fit for region-
based reconfiguration and the micro-reconfigurable modules
both need to be implemented. Starting from the original high-
level specification, the FASTER tool-chain goes through four
different phases to obtain to the partitioned system (i.e., cores
which are ready to be scheduled for configuration and execu-
tion). Therefore, the output will be the baseline schedule and

the description of the application subdivided into components,
ready for synthesis using any commercially available tools for
the targeted technology.

A. High-level analysis

The purpose of high-level analysis is to provide an analytical
model of a reconfigurable design that relates its application
attributes to possible implementation parameters, from which
metrics such as area, performance and power consumption can
be estimated. Such parameters can be extracted from a high-
level descriptions such as C or, if the designer will provide
these descriptions, in VHDL. It is often advisable to construct
an analytical model prior to the detailed design, since the
model cand help to identify promising implementations and
can be used to guide the design process early on. During the
implementation phase, the assumptions and estimations can be
verified. Updated values for the implementation parameters
are used to verify the overall design goal and to check if
critical design constraints are met. The analytical model can
be automated by capturing the equations in a spreadsheet
format. One can then explore how application attributes and
implementation parameters influence performance, area and
power consumption. It is also possible to use the analysis to
identify bottlenecks in the architecture, whose elimination by
having, for instance, a faster reconfiguration time could lead
to significant performance improvement. The output of high-
level analysis is an estimate of how a design with a given
set of application attributes and implementation parameters
performs. However, it is not the goal of this task to produce
code or to analyze code automatically. Rather, the estimation
is intended to guide the identification of features of promising
designs.

B. Profiling of applications for identifying region-based,
micro-reconfigurable, and static cores

The input of this phase is the original specification, whose
analysis results in cores, i.e. groups of operations that compose
configurable modules, with optimal sizes. The identification of
the region-based reconfigurable cores is performed by analyz-
ing the Control Data Flow Graph of the input application,
and trying to identify isomorphic subgraphs in the graph.
The choice of finding isomorphic subgraphs is related to the
possibility of reusing these components without reconfigura-
tion, thus hiding/minimizing reconfiguration time. Within this
context, if distinct components, having the same implementa-
tion, are mapped onto the same reconfigurable core, we can
execute them on the same physically implemented module
with a single initial reconfiguration. Obviously, at the end
we have to identify a number of components, isomorphic or
not, that cover the entire graph in order to restructure the
entire application into a set of interconnected components.
Our first step is the core identification phase. The input of
this step is the original specification, whose analysis results
in cores, i.e. groups of operations that, reconfigured together
as configurable modules, have optimal sizes. The second part
of the task is the Partitioning phase. Using the previously
computed set of modules as its input, this phase produces a



4

set of feasible covers of the original graph of the specification,
following a given policy.

C. Optimization of applications for micro-reconfigurable core
implementation

Since every change of a parameter value in the parame-
terizable micro-reconfiguration results in a reconfiguration of
(part of) the implementation, the number of parameter changes
should be kept as low as possible. This requires a higher
parameter value locality in time. In this project, we investigate
the introduction of parameters in such a way that the overall
implementation can be optimized. In this respect, we will
also investigate multi-mode applications where the different
modes are similar (but not exactly the same) and investigate
how such applications can best be represented to benefit from
micro- reconfiguration. In parallel, we will investigate first
what features of an application will beneficially map to a
micro-reconfigurable configuration. Since such a configuration
depends on the number of parameters and the frequency
with which their values change, this will be the main focus
of our profiling step. We also look into which constructs
are better suited for mapping on a TLUT (Tunable LUT)
and which ones are better suited for mapping to a TCON
(Tunable Connection). For both concepts, an evaluation is
needed of the benefits and drawbacks and a trade-off has to
be made for several application features to see which concept
should be focused on. Finally, we profile applications under
consideration to recognize the features that benefit from a
micro-reconfigurable implementation. The main task here will
be to locate parameters in the application changing their value
infrequently enough to benefit from micro-reconfiguration.
Finally, the generated graph, called Task Dependency Graph
is provided as input to the following phase, i.e. the scheduling
phase which generates the complete schedule, taking also into
consideration both kinds of reconfigurable modules.

D. Compile-time baseline scheduling
Given the information computed in the previous tasks, an

integration between a heuristic reconfiguration-aware sched-
uler and a floorplacer algorithm will produce the baseline
schedule of the tasks on the target platform. This scheduler
is a reconfiguration-aware scheduler for dynamically partially
reconfigurable architectures that can also manage static re-
configuration and multi FPGAs. It schedules the modules
according to the actual hardware composition and availability:
given the actual spatial constraints defined by the floorplacer,
it schedules the applications trying to reach the minimum
scheduling time. The function to be optimized can be chosen
based on the user constraints. Output of this task is the list of
timings for each module, i.e. start time, and reconfiguration
time. However, a static schedule may not be possible for all
of the targeted applications. For example, when the execution
times of the modules are data-dependent the scheduler will
only provide guidelines to the runtime system and the HW
scheduler that will manage the system at runtime. A close
interaction with the runtime scheduler is therefore foreseen,
since the runtime scheduler will receive as input the results
produced during the generation phase.

V. CONCLUSIONS

The FASTER project implements a complete methodology
to allow designers to easily implement and verify a system
specification on a platform that includes one or more gen-
eral purpose processor(s) combined with multiple acceleration
modules implemented on one or multiple reconfigurable de-
vices. The FASTER tool-chain accepts input that can be in
HDL or C whose initial decomposition could be described
with existing formalisms (e.g. OpenMP) and derive the cor-
responding task graph. Using new graph-theoretic algorithms
we will partition the specification in space and time. Then we
will pursue a task-cluster definition of a system specification
by detecting recurrent structures in the specification itself.
These modules are candidates for reconfiguration, thus saving
device resources and reconfiguration time. FASTER supports
both region- and micro-reconfiguration, which is a technique
that reconfigures very small parts of the device. The ability to
handle both types of reconfiguration opens up a new range
of application possibilities for run-time reconfiguration, as
a much broader time frame for the reconfiguration itself is
available and the underlying concepts are different for both
types of reconfiguration.

FASTER will also develop techniques for verifying static
and dynamic aspects of a reconfigurable design at compile
time using symbolic simulation, a powerful verification ap-
proach for static designs, and extending it to support both
static and dynamic aspects of a reconfigurable design. We
will also explore techniques for verifying selected static and
dynamic aspects of a reconfigurable design at run time with a
small impact on speed, area and power consumption. Finally,
FASTER will provide a powerful runtime system that will be
able to run on multiple reconfigurable platforms and manage
the various aspects of parallelism and adaptivity with the least
overhead.

ACKNOWLEDGMENT

This work was supported by the European Commission in
the context of FP7 FASTER project (#287804).

REFERENCES

[1] http://www.fp7-faster.eu/, [Online; accessed May 2012].
[2] http://ce.et.tudelft.nl/DWB/, [Online; accessed May 2012].
[3] http://hartes.org/hArtes/, [Online; accessed March 2012].
[4] http://www.reflect-project.eu/, [Online; accessed March 2012].
[5] http://www.hitech-projects.com/euprojects/ACOTES/, [Online; accessed

March 2012].
[6] http://andres.offis.de/, [Online; accessed March 2012].
[7] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Enhanced

Architectures, Design Methodologies and CAD Tools for Dynamic Re-
configuration of Xilinx FPGAs (Invited Paper),” in Proceedings of the
IEEE Conference on Field Programmable Logic and Applications (FPL),
August 2006, pp. 1–6.

[8] K. Bruneel, “Efficient Circuit Specialization for Dynamic Reconfiguration
of FPGAs,” PhD thesis, Ghent University, 2011.

[9] K. Bruneel and D. Stroobandt, “Automatic generation of run-time pa-
rameterizable configurations,” in Proceedings of the IEEE Conference on
Field Programmable Logic and Applications (FPL), August 2008, pp.
361–366.


