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Abstract. Probability of relevance (PR) models are generally assumed
to implement the Probability Ranking Principle (PRP) of IR, and re-
cent publications claim that PR models and language models are sim-
ilar. However, a careful analysis reveals two gaps in the chain of rea-
soning behind this statement. First, the PRP considers the relevance of
particular documents, whereas PR models consider the relevance of any
query-document pair. Second, unlike PR models, language models con-
sider draws of terms and documents. We bridge the first gap by showing
how the probability measure of PR models can be used to define the
probabilistic model of the PRP. Furthermore, we argue that given the
differences between PR models and language models, the second gap can-
not be bridged at the probabilistic model level. We instead define a new
PR model based on logistic regression, which has a similar score func-
tion to the one of the query likelihood model. The performance of both
models is strongly correlated, hence providing a bridge for the second
gap at the functional and ranking level. Understanding language mod-
els in relation with logistic regression models opens ample new research
directions which we propose as future work.

1 Introduction

The Probability Ranking Principle (PRP) of IR [10] is one of the widest ac-
knowledged ranking principles in IR, and the fact that probability of relevance
(PR) models [13] implement the PRP is commonly accepted without arguing [1].
Furthermore, to explain the empirically strong performance of language models,
recent publications reason that language models are similar to PR models and
therefore also implement the PRP [5, 14]. We identify two gaps in this chain
of reasoning: (Gap1) The PRP considers the relevance of particular documents,
which cannot be directly related to the relevance of query-document pairs con-
sidered by the PR models, and (Gap2) the relevance of query-document pairs
cannot be directly related to the term and document draws considered by lan-
guage models. In this paper, we investigate the above mentioned gaps and ex-
amine how they can be bridged. Figure 1 shows an overview of the content of
this paper.

The PRP shows that ranking a document d by the probability of its relevance,
for example, maximizes the expected precision of a ranking. On the other hand,
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Fig. 1: Graphical overview over this paper’s contents. Gap1’s bridge translates models.
Gap2’s bridge relates score functions and rankings. The notation 〈X; Y ;Z〉 denotes a
probabilistic model where X are samples, Y are events, and Z is a probability measure.
The detailed definition of the symbols used in this figure will be given in further
sections.

PR models rank by the probability of any query-document pair (q, d) being rel-
evant given the pair has certain features F , see Sect. 3.2. Therefore, Gap1 is the
difference among the considered relevance events and among their probabilities.
We argue that Gap1 has so far gone unnoticed because the probabilistic model
considered by the PRP has not been defined on a mathematical basis yet. To
bridge Gap1, we define the PRP’s probabilistic model, and show how PR models
can be related to this definition.

Language models consider variations of drawing terms and documents as
samples. First, the query likelihood model [9] considers drawing query terms,
second, Hiemstra’s model [3] additionally considers drawing documents, and fi-
nally, the risk-minimization model [20] as well as the relevance language model [6]
consider drawing a single term. The difference between the drawing of query-
document pairs in PR models and the drawing of terms and documents in lan-
guage models forms Gap2, whose existence is controversially discussed in liter-
ature [16, 11, 7, 18]. Similar to [11], we argue that this controversy originates
from the fact that the concept of sample spaces in language models has received
little attention so far. Therefore, we first define the sample spaces of the above
language models on a mathematical basis. Given these definitions, we claim that
PR models and the above language models are too dissimilar for Gap2 to be
bridged at the probabilistic model level.

If Gap2 cannot be bridged at the probabilistic model level, it is interesting
to investigate to what extent language models are related to PR model in terms
of score functions and rankings. Roelleke and Wang [14] are the first to find a
relation on an analytical level between the score functions of the Binary Indepen-
dence Model (BIM) [12] and Hiemstra’s Language model. However, this relation
only holds for documents with the same term occurrences (apparent from Theo-
rem 2 in [14]). To overcome this limitation, we define a new PR model based on
logistic regression, the score function of which is similar to the score functions of



the query likelihood model in terms of structure, weights, and ranking results.
Although we are not able to bridge Gap2 at the probabilistic model level, we
can therefore bridge Gap2 at the functional and ranking level.

This paper is structured as follows: Section 2 introduces the notation and ba-
sic definitions. Section 3 describes Gap1 and the probabilistic model we propose
for the PRP to bridge it. Section 4 discusses Gap2, and why we cannot bridge it
at the probabilistic model level. Section 5 defines a new PR model which ranks
similarly to language model score functions and bridges Gap2 at the functional
and ranking level. Finally, Section 6 concludes the paper.

2 Notation and Definitions

In this section, we introduce basic notations and central concepts from informa-
tion retrieval and probability theory.

We denote queries and documents by lower case q’s and d’s, respectively. The
considered set of queries is denoted by Q and the considered set of documents
(the collection) by D. Lower case t’s are used for terms, and T indicates the
considered set of terms (the vocabulary). The query terms of a query are modeled
as the vector qt = (qt1, ..., qtql) where ql is the query length. Furthermore, the
random variable R, relevance, is defined as

R(q, d) =

{
1 if document d is relevant to query q,

0 otherwise.
(1)

Note that a query on its own should not be confounded with its properties. For
example, the reader may think of a query as an object in an object-oriented
programming language, the symbol q as a reference, and the query terms qt as
some of the object’s properties. The same holds for documents.

Following Manning and Schuetze [8, chap. 2], we define the basic concepts
of probability theory as follows: a sample is a possible outcome of a process.
The corresponding sample space is the set of all possible samples. An event is
a subset of the sample space. An event space is a set of events. A probability

measure is a function which maps events to probabilities. We use a subscript
to the probability measure P to indicate the process on which the measure is
defined, for example PX : E → [0 : 1] is a probability measure defined on the
event space E for process X . A random variable is a function mapping samples
to the function’s range. Note that a value of a random variable defines an event:
the subset of samples in the sample space for which the random variable yields
this value.

3 Gap1 - Between the PRP and PR models

In this section, we bridge Gap1, the difference between the PRP and PR models.
First, we describe the PRP and the unified framework of PR models. After that,
we show a way to relate the two probabilistic models.



3.1 The PRP

In the following we sketch the PRP and propose a definition for the underlying
sample space and events, which has not yet, on a mathematical basis, been
proposed in literature. Note that the proposed sample space is not necessarily
the one Robertson [10] had in mind, however we consider it likely that this is
indeed the case.

For a given query, the PRP considers the expected precision (together with
the expected recall and reading costs) for a reader who stops reading at any
rank n. This expected precision can be defined as follows:

E[Precn
d
] =

1

n

n∑

j=1

PΦ(Rdj
=1)

Here, d is a ranking of documents which is read until rank n. The PRP then
shows that a ranking of documents

(d1, ..., d|D|) for which PΦ (Rd1
) ≥ ... ≥ PΦ

(
Rd|D|

)
, (2)

maximizes the expected precision for any rank n:

(d1, ..., d|D|) = argmax
d

E[Precn
d
] (3)

Here, d varies over all possible rankings of the documents in the collection D and
each document d can either be labeled relevant Rd = 1, or irrelevant Rd = 0.
Therefore, we propose that the PRP’s sample space Φ consists of all possible rel-
evance labeling combinations of the documents in the collection, for the current
query:

Φ = {0, 1} × ...× {0, 1}
︸ ︷︷ ︸

|D| times

Here, each component corresponds to a document in the collection. For a partic-
ular sample (a specific relevance labeling of all documents) φ ∈ Φ, we denote the
relevance label of document d as φd, and we define a (trivial) relevance random
variable for each document d ∈ D as the relevance of that document within the
sample, shortly, Rd(φ ∈ Φ) = φd. The event Rd=1 is the set of all samples φ with
Rd(φ)=1. The sample space Φ requires a Bayesian perspective on probabilities,
because in a Frequentist’s perspective a document can never be relevant or irrel-
evant to the same query, according to our assumptions in Sect. 2. As a result, the
probability measure PΦ(Rd=1) expresses the degree of belief that document d is
relevant. A retrieval model has to define these probabilities for each document
d ∈ D in order to implement the PRP.

3.2 PR Models

Robertson et al. [13] propose a unified framework of PR models which rank by
the probability that any query-document pair from the sample space Ω = Q×D



is relevant3. The unified framework of PR models comprises four (meta-) models
(Model 1−4), which consider variations to partition the sample space Ω by
abstract query features and document features (or random variables)4.

QF = (QF1, ..., QFm) (4)

QF (q) = (QF1(q), ..., QFm(q)) (5)

F = (F1, ..., Fn) (6)

F (d) = (F1(d), ..., Fn(d)) (7)

Here, QFi is a query feature (a function of q ∈ Q),QF is a vector ofm considered
query features, and QF (q) are the query features of query q. Furthermore, Fi

is a document feature (a function of d ∈ D), F is the vector of n document
features, and F (d) are the document features of document d. For example, a
query feature could be “query q contains term t”, defined as Wt : Q → {0, 1}.
The sets of considered features QF and F are usually selected by considering the
query terms qt or terms from query expansion [2]. For later use, we introduce
two trivial features: let Q(q) = q be the query of a query document pair, and let
D(d) = d be the document of the query-document pair.

Because of space limitations, we focus our discussion to the BIM, an instance
of Model 2. The BIM considers ql indexing document features, Ii : D → {0, 1},
indicating whether or not a document is indexed with query term qti. Documents
are then ranked by the probability that any query-document pair is relevant,
which we display for instructive reasons from a Frequentist’s perspective, similar
to [13]:

PΩ(R |Q(q)=q∗,F=F (d∗)) =

|{(q, d) ∈ Ω | R(q, d)=1, Q(q)=q∗,F (d)=F (d∗)}|

|{(q, d) ∈ Ω | Q(q)=q∗,F (d)=F (d∗)}|
(8)

Here, q∗ is the current query, and d∗ is the current document. Now, Gap1 ex-
ists between the probabilistic model of the PRP, which considers relevance of
particular documents to particular queries, and PR models which consider the
relevance of any query-document pairs.

3.3 A Bridge for Gap1

In this section, we bridge Gap1 by showing how PR models can be used in the
definition of the probability measure used by the PRP. Considering Model 2, if we
assume that the only knowledge we have about documents are their features F ,

3 Note that Robertson [11] refers to Ω as an event space. However, Ω is a set of pairs
whereas an event space is a set of sets according to our definitions in Sect. 2. We
assume Ω to be a sample space.

4 In PR model literature, document features are also referred to as document repre-
sentations, and descriptors, and they are often denoted by D. We denote features
by F to avoid confusion with a document d.



we can decide to treat documents with the same features as indistinguishable.
Under this assumption, it is reasonable to define the degree of belief PΦ(Rd)
that document d is relevant, as the probability that a document of any random
query-document pair is relevant, given that the query is the current query and
the document has the same features F (d) as the current document d:

PΦ(Rd) = PΩ(R|Q=q∗,F=F (d)) (9)

Because of this equality of the two probability measures, PR models which rank
by the probability PΩ(R|Q=q∗,F=F (d)) produce the same ranking as the PRP,
see Equation 2. Therefore, Equation 9 bridges Gap1 between the PRP and PR
models derived from Model 2. Note that Fuhr [2] discusses the influence of the
chosen features F on the probability PΩ(R|Q=q∗,F=F (d)). However, although
the choice of F influences the strength of the bridge (the more selective the
features, the more realistic the assumption in Equation 9), this did not lead to
the discovery of or answer to Gap1.

Furthermore, for example, Model 1 of the unified framework of PR models
ranks a document d by the probability PΩ(R|QF=QF (q∗), D=d), where QF

are query features. Therefore, for each document d, Model 1 considers different
queries with the same features. It is however less intuitive, why this probability
would express our degree of belief PΦ(Rd) that document d would be relevant to
the current query. We postpone the investigation of this issue to future work.

4 Gap2 - Between PR Models and Language Models

In this section, we analyze Gap2, the difference between PR models and language
models. First, we define the corresponding probabilistic model for four popular
language models and then point out the differences to PR models described in
Sect. 3.2.

4.1 Language Models

Language models have in common that they consider draws of terms, for which
we define the (partial) sample space and the considered random variables:

Tn =

n times
︷ ︸︸ ︷

T × ...× T (10)

Ti(t ∈ Tn) = the ith term in t (11)

T (t ∈ Tn) = t (12)

Here, Tn is the (partial) sample space of drawing n terms (the set of all possible
term combinations resulting from n term draws), the random variable Ti states
the ith term, and T does the same for sequences of term draws. Furthermore, in
a uni-gram model, to which we limit the discussion, the random variable Ti rep-
resents the results of the ith independent trial from a multinomial distribution,



and we have Pd(T=qt) =
∏ql

i=1
Pd(Ti=qti) =

∏ql

i=1
θd,qti . Here, Pd(T=t) is the

probability of drawing the term t, and θd,qti is the distribution parameter of the
term qti in language model of document d. To show that the language model
parameters θd are estimations, they are sometimes included in the notation of
Bayesian probabilities, Pd(T=t) = Pd(T=t|θd). Here, we focus on the proba-
bilistic model used for ranking and consider the language model parameters as
fixed.

For a given query, the query likelihood model [9] considers for each document
in the collection the drawing of ql random terms5. Documents are ranked by the
probability that the query terms are drawn, Pd(T=qt).

Hiemstra’s model [3] considers documents, which the user has in mind for a
query, and terms which the user drew from the language model of this document:

H = D × Tql

D′((d, t) ∈ H) = the document d which the user had in mind

Here, H is the sample space of Hiemstra’s model, D′ is the random variable
stating which document the user had in mind, and t are the drawn terms, see
Equation 11. Hiemstra’s model ranks a document by the probability that the
user had document d in mind given the observed query terms, PH(D′=d|T=qt).

The risk-minimization model [20] considers the process of drawing a single
term (sample space T1) from a query language model and from the language
model of each document. Documents are ranked by the Kullback-Leibner diver-
gence between the distribution of the query language model and the document’s
language model.

KL(Pq||Pd) =
∑

t∈T

Pq(T=t) log

(
Pq(T=t)

Pd(T=t)

)

Here, Pq is the probability measure of the query language model. Note that
it is rarely mentioned in literature that the risk-minimization framework only
considers a single term draw. However, this must be the case because if the
Kullback-Leibner divergence were considered for, say, ql term draws, the above
summation would run over |T |ql possible outcomes of the draws.

The relevance language model [6] considers for each document the process of
drawing a single term from this document. The distribution is compared with a
relevance model of the current query which considers the sample space of first
drawing a relevant document and subsequently a term from this document. The
sample space and the random variable for the drawn document of the relevance
model are defined as follows:

RM = {(d, t) ∈ D × T1|R(q∗, d)=1}

D′′((d, t) ∈ RM) = d was drawn

5 Following common usage, we interpret the query likelihood model as multinomial
trials; it leads to the same ranking as the multi-Bernoulli interpretation considered
in [9].



Here, RM is the sample space of the relevance model (a document-term pair),
q∗ is the current query, D′ states the drawn relevant document. The relevance
language model ranks by the negative cross entropy between drawing a term
from the relevance model and from the document language model −CE(Pr ||Pd)
of drawing terms. Here, the probability of drawing a term from the relevance
model is determined by marginalization over D′′.

4.2 Differences between PR Models and Language Models

Based on the definitions of PR models in Sect. 3.2 and the presented language
models in the previous Sect. 4.1, we investigate whether we can bridge Gap2
at the probabilistic model level. To compare PR models and the presented lan-
guage models, they are usually presented as different derivations of the probabil-
ity P (R|Q,D) [5, 7, 15]. However, the definition of each of these symbols differs
among PR models and language models. In PR models, Q are query features,
denoted in this paper as QF , which are functions of the considered query. There-
fore, given a query, its feature values are not random. On the other hand in the
presented language models, the random variable Q, which is in our notation T ql,
represents the outcome of randomly drawing ql terms and this does not depend
on a query.

Furthermore, in PR models, D stands for document features, denoted in this
paper as F , which are functions of the considered document. Therefore, given
a particular document the feature value is not random. On the other hand, in
Hiemstra’s model, D stands for the document the user had in mind and which
is modeled as the outcome of a random process.

Also, the notion of relevance differs between its use in PR models, where it
is a function of query-document pairs, and its use in the four presented language
models. First, the query likelihood model and the risk-minimization model do
not use the notion of relevance. Second, Hiemstra’s model assumes only a single
relevant document [16]. Finally, the notion of relevance in the relevance lan-
guage model can be seen to be the same as in PR models. However, in the
relevance language model, single, particular documents are drawn from the rel-
evance model while PR models consider drawing any relevant query-document
pair with certain features PΩ(F |R).

Therefore, we propose that the reasoning for the similarity between PR mod-
els and the presented language models is mainly guided by similar notation, and
that PR models and the presented language models are too different to bridge
Gap2 at the probabilistic model level.

5 Bridging Gap2 at the Functional and Ranking Level

In this section, we propose a new PR model which ranks similarly as the score
function of the query likelihood model. Instead of considering probabilities of
drawing a term, Pd(T = t), we consider language scores as document features



(functions of a document), a particular feature F in Equation 6:

LSi(d) = log

(
θd,qti

αd θD,qti

)

(13)

Here, LSi(d) is the language score of document d for query term qti, θd,qti is the
language model parameter for query term qti in document d, see Sect. 4.1, αd

ensures that LSi(d) is zero if query term qti is not in the document [19], and
θD,qti is the constant collection prior. We denote the vector of language score
feature functions for the current query as LS = (LS1, ..., LSql) and, evaluated
for a document d, as LS(d) = (LS1(d), ..., LSql(d)). Based on these features, we
define a PR model in which the probability of any query-document pair being
relevant is represented by a discriminative logistic regression model [4]:

PΩ(R |Q=q∗,LS=LS(d∗)) =
1

1 + exp(−w0 −
∑ql

i=1
wi LSi(d∗))

∝

ql
∑

i=1

wi LSi(d
∗)

(14)
Here, q∗ is the current query, LS(d∗) are the language scores of the current
document d∗, w0 is the intercept of the logistic regression model representing
the relevance prior, and wi is the language score weight of query term qti. From
the calculated probability PΩ(R |Q=q∗,LS=LS(d∗)) we see that the PR model
implements Model 2 of the unified framework of PR models, for which we have
shown that it bridges Gap1. The middle term of Equation 14 is the definition of
the logistic regression model, and the rightmost term is a rank equivalent score
function see [17] for a derivation.

Now, we compare the logistic regression model in Equation 14 with the score
function of the query likelihood model, which is defined as follows [19]:

Pd(T=qt) ∝

ql
∑

i=1

log

(
Pd(T=qti)

αd θD,qti

)

+ |T | αd + const

Here, αd has the same function as in Equation 13. From expanding the rightmost
term of Equation 14 by the definition of language scores in Equation 13 and
using the relationship Pd(T=qti) = θd,qti , we see that the logistic regression
model score function has a similar structure to the score function of the query
likelihood model, except for the missing expression |T | αd and the non-uniform
language score weights wi.

In order to quantify their similarity in practice, we compare the performance
of the score functions of the logistic regression models and the query likelihood
model using 550 queries from the ROBUST 04+05, TREC 09, TERABYTE
04-06 data sets. If we assume uniform language score weights wi in the logistic
regression model, the model practically performs identically to the query like-
lihood model in terms of mean average precision (MAP). Therefore, the term
|T | αd has no significant influence on the ranking. Furthermore, we consider the
hypothetical case of using the language score weights wi which we trained on all
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Fig. 2: (a) Weight distribution over the query terms of 550 queries of the proposed
logistic regression model (LRM) trained on all relevance data. (b) Performance com-
parison to the query likelihood model (LM).

relevance data for each query separately. Figure 2 (a) shows that the trained lan-
guage score weights wi are Gaussian distributed with an expected weight around
one. Therefore, for a random query term we can expect the logistic regression
weight wi of the corresponding language score to be one. This expected weight
also coincides with the uniform weight of the query likelihood model. Figure 2 (b)
compares the performance of the hypothetical logistic regression model against
the performance of the query likelihood model in terms of average precision.
The models have a high performance correlation (Pearson correlation coefficient
0.92). We suggest that the uniform weights of the query likelihood score function
can also be seen as a first approximation of the ideal language score weights wi

from Equation 8. As a result, the newly proposed logistic regression PR model
bridges the Gap2 to the query likelihood model at a functional and ranking level.

Additionally, the score functions of the risk-minimization framework and the
relevance model can be seen as methods to improve upon the uniform weights of
the query likelihood model for an expanded set of query terms [18]. Hence, these
weights potentially could also be approximations to the weights wi of newly
selected features. We postpone these investigations to future work.

Note that the similarity of the score functions of the described logistic re-
gression model and the query likelihood model does not imply that ranking by
the query likelihood model could not be justified otherwise.

6 Conclusions

In this paper, we bridged two gaps in the chain of reasoning used for two popular
probabilistic IR models, PR models and language models. (Gap1) The PRP



considers the relevance of particular documents which cannot directly be related
to the relevance of query-document pairs considered by the PR models, and
(Gap2) the relevance of query-document pairs cannot directly be related to the
term draws considered by language models.

In order to bridge Gap1, we defined a probabilistic model underlying the PRP,
which considers all possible combinations of relevance labels of the documents in
the collection. Probabilistic models which implement the PRP need to define the
degree of belief that document d is relevant PΦ(Rd). Furthermore, the (meta)
Model 2 of the unified framework of PR models [13] considers the probability of
relevance of any query-document pair with the query being the current query q∗

and the document having the same features F (d) as the current document d∗,
PΩ(R|Q=q,F=F (d∗). We argued that, under the assumption that we can only
distinguish documents by the features F , we can take PΩ(R|Q=q,F=F (d∗))
as the degree of belief of relevance PΦ(Rd). With this assumption, Gap1 was
bridged. Similar assumptions of the other models of the unified framework re-
quire further investigations, which we will discuss in future work.

Furthermore, from the definition of the probabilistic model of PR models and
language models, we found that the two models are different and we observed
that previous comparisons were mainly based on similar notation with different
meaning. Therefore, Gap2 could not be bridged at the probabilistic model level.
Additionally, we proposed a new PR model derived from Model 2 of the unified
framework of PR models, based on logistic regression. For 550 queries in six
collections, we showed that the score functions of the logistic regression model
and the query likelihood model were similar, and the performance of the two
score functions was strongly correlated. Comparing the weights of both score
functions showed that the uniform weights of the query likelihood model score
function can be seen as the expected logistic regression weights for a random
query. Therefore, we bridged Gap2 at the functional and ranking level, leading
to an alternative explanation for the strong performance of language models.

Understanding and further exploring the apparent connection between lan-
guage models and logistic regression models (or possibly other discriminative
models) opens ample new research directions which we propose for future work.
The proposed logistic regression model could for instance be used for score nor-
malization, and existing research on feature selection for logistic regression mod-
els could be used for query expansion.
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