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ABSTRACT

We propose a new method for the detection of activated vox-

els in event-related BOLD fMRI data. We model the statis-

tics of the wavelet histograms derived from each voxel time

series independently through a generalized Gaussian distri-

bution (GGD). We perform k-means clustering of the GGDs

characterizing the voxel data in a synthetic data set, using the

symmetrized Kullback-Leibler divergence (KLD) as a simi-

larity measure. We compare our technique with GLM mod-

eling and with another clustering method for activation de-

tection that directly uses the wavelet coefficients as features.

Our method is shown to be considerably more stable against

realistic hemodynamic variability.

Index Terms— fMRI, k-means clustering, generalized

Gaussian distribution, Kullback-Leibler divergence

1. INTRODUCTION

In neuroscience, functional magnetic resonance imaging

(fMRI) has become one of the most widely used techniques

for the mapping of brain activity that is related to some cog-

nitive task. However, various sources of noise are present

in the measured BOLD signal and the signal-to-noise ratio

(SNR) in activated areas is typically low. This renders the

detection of activated voxels a challenging task and many

data analysis techniques, both hypothesis- and data-driven,

have been proposed in the past to accomplish this.

The BOLD response is often modeled through the convo-

lution of a neural activation signal with a hemodynamic re-

sponse function (HRF). The general linear model (GLM) is a

well-known tool in statistics that is frequently used for fMRI

activation detection [1]. The GLM basically compares the

acquired BOLD time series to a predefined set of basis func-

tions. In many cases it can be useful to incorporate some a

priori knowledge about the expected hemodynamic response

into the basis functions, hence constructing a so-called in-

formed basis. However, it has been shown that there can be

a considerable variability in the HRF from one brain region

to another, or even in the same region on a trial-by-trial ba-

sis [2]. In such a case it may be better to use a more generic

set of basis functions and in this respect the wavelet basis is

particularly well suited. Indeed, it has been demonstrated that

wavelets provide a natural framework for the analysis of neu-

robiological signals, which often exhibit fractal properties and

nonstationary behavior of interest at multiple scales (see [3],

which discusses other application of wavelets in fMRI data

analysis as well). This provides our motivation for character-

izing fMRI data through features in the wavelet domain.

Although many fMRI data analysis schemes, such as the

GLM, operate on a voxelwise basis, there are two main disad-

vantages attached to this mode of operation. First, conducting

statistical tests in a mass-univariate way poses a nontrivial

multiple comparisons problem. Second, a voxelwise method

does not take into account any spatial correlation structure

within the brain and is unable to detect activation patterns.

In this paper, we use a data-driven clustering approach of

event-related fMRI time series, which does not suffer from

the above drawbacks. Cluster analysis of fMRI data has

been considered before, but the employed features are often

directly linked to the raw time series or they depend on a

specific HRF model (see [4] and references therein). Hence,

such features are in general less robust against HRF variabil-

ity, as we will show in the present work. For instance, in [5]

clustering was performed on a subset of the detail coefficients

resulting from a discrete wavelet transform of the voxel time

series (which we will refer to as the method ‘COEF’). The

clustering method that we propose, which we here call the

method ‘STAT’, is conceptually simple and is also based

on wavelet features. However, instead of clustering directly

on the wavelet coefficients, we use the statistics of wavelet

detail coefficients as an indicator for activation. We model

the wavelet statistics via a generalized Gaussian distribution

(GGD) and we evaluate GGD similarity through the sym-

metrized Kullback-Leibler divergence (KLD). The KLD is

subsequently applied in a k-means clustering algorithm. In

a comparison of our technique with both COEF and classic

GLM modeling, we show that the use of wavelet statistics

leads to an enhanced stability of the method against hemody-

namic variability. We work with an artificial data set, which

has the advantage that the activation pattern is known a pri-

ori, facilitating comparison of different activation detection

strategies.

This contribution is organized as follows. In Section 2 we
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present the design of our experiments: the generation of the

artificial data set, the statistics of the wavelet coefficients and

GGD similarity measurement via the KLD in a k-means clus-

tering scheme. In Section 3 we discuss the results of the clus-

tering experiments for activation detection using STAT and

we compare with the GLM and COEF. Section 4 provides a

conclusion and an outlook towards future work.

2. DESIGN OF CLUSTERING EXPERIMENTS

2.1. Synthetic data set

We demonstrate activation detection on an artificial data set

consisting of a volume of 14 × 14 × 14 voxels, every voxel

containing a time series of 336 samples. A repetition time

(TR) of 2 s was chosen. Activation was introduced in half of

the number of time series (voxels), consisting of 24 regularly

timed block stimuli of 4 s duration each. The BOLD response

corresponding to this activation was obtained by convolving

with the HRF. In a first experiment a fixed canonical HRF

throughout the simulated volume was assumed. The canoni-

cal HRF h(t) provides a physiologically reasonable model for

a typical hemodynamic response [2]. It is defined as follows:

h(t) =

(

t

d1

)a1

exp

(

d1 − t

b1

)

−c

(

t

d2

)a2

exp

(

d2 − t

b2

)

.

Here, d1 = a1b1 is the time associated to the maximum of

the initial peak and d2 = a2b2 is the time to the minimum

of the undershoot. We started from typical values for the

parameters: a1 = 6, a2 = 12, b ≡ b1 = b2 = 0.9 and

c = 0.35. The corresponding function h(t) is drawn in Fig-

ure 1. A second experiment was designed in order to study

the robustness of the activation detection scheme against spa-

tial hemodynamic variability. To this end a fluctuation was

introduced in the HRF dispersion (parameter b) and ampli-

tude of the undershoot (c). In addition, a variable response

latency was imposed by delaying the HRF by a time lag D.

The values of b, c and D were chosen at random from voxel

to voxel, by sampling from the following truncated Gaussian

distributions:

b : N (0.9, 1.0) ∧ 0.5 ≤ b ≤ 2.0,

c : N (0.35, 1.0) ∧ 0.0 ≤ c ≤ 1.0,

D : N (0.0, 1.5) ∧ 0.0 ≤ D ≤ 2.0,

where N (µ, σ) signifies the normal distribution with mean µ
and standard deviation σ. This represents a realistic hemody-

namic variability supported by empirical data [2]. Apart from

the canonical HRF, some more example HRFs are drawn in

Figure 1. No trial-to-trial HRF variability was assumed.

Several models of varying complexity for the noise in

fMRI data are commonly used. In the present experiments
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Fig. 1. Canonical HRF and examples of other HRFs for some

extreme values of the parameters in the HRF model that were

varied from voxel to voxel.

we simply assumed additive Gaussian noise leading to a rel-

atively low SNR. The (functional) SNR in fMRI is usually

mentioned as the ratio of the standard deviation σs of the pure

signal (activation), to the standard deviation σn of the noise.

Typical values are σs/σn . 1, while we assumed an SNR

of 0.6 (approximately −4 dB). The non-activated time series

contained only noise with the same standard deviation. An

example of a simulated time series, showing both the pure

and the noisy signal, is given in Figure 2.

2.2. Wavelet statistics

Applied to our synthetic data set, the purpose of an activa-

tion detection scheme based on clustering is to discriminate

between the activated half of the simulated volume and the

non-activated part. The selection of features used for our

clustering method STAT was conducted as follows. First, the

redundant discrete wavelet transform (RDWT) was applied

independently to each time series, using Daubechies’ 4-tap

wavelets. An example of the RDWT of an artificial activated

time series (BOLD response + noise) is presented in Fig-

ure 2, showing the first four levels. The effect of the original

BOLD response can easily be discerned at the higher wave-

let detail scales. The RDWT results in a number of wave-

let detail coefficients sufficient to adequately characterize the

wavelet statistics. Wavelet detail histograms, which have zero

mean, often exhibit a distinctly non-Gaussian shape. For in-

stance, in [6] wavelet coefficients for gray-level images were

modeled in an image retrieval context using a univariate zero-

mean generalized Gaussian distribution, also known by the

name of exponential power distribution. The GGD in general

provided a better fit than the Gaussian density. The univari-

ate zero-mean GGD is defined through the following density

function:

p(x|α, β) =
β

2αΓ(1/β)
exp

[

−

(

|x|

α

)β
]

,
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Fig. 2. The BOLD response (top frame) as a result of a syn-

thetic regular series of block stimuli (4 s each), employing

the canonical HRF. The second frame shows the same signal

with added Gaussian noise (−4 dB). In the following frames

the wavelet detail coefficients are plotted corresponding to the

first four levels of the RDWT of the noisy signal using the

Daubechies 4-tap wavelets.

where Γ(.) represents the Gamma function. α models the

width of the density function (related to the standard devia-

tion), while β is connected to its kurtosis. Clearly, the Gaus-

sian distribution is obtained by setting β = 2.

Example histograms of the redundant wavelet detail coef-

ficients at the fourth scale obtained from both a non-activated

and an activated times series (same data as in Figure 2), are

displayed in Figure 3. The respective GGD fits as well as the

best-fit Gaussian distributions are also shown and it can be

seen that the GGD captures the wavelet statistics much bet-

ter than the Gaussian. Accordingly, we described the wavelet

detail coefficients corresponding to the time series in our ar-

tificial volume at the first four levels independently through a

set of univariate GGDs. The choice of wavelet scales largely

depends on the nature of the signal, but in our application

we found that including the first scale as well as larger scales

than the fourth had little impact on clustering performance,

so we ignored them in our detection scheme. This measure

is, in addition, beneficial for the COEF method since it sub-

stantially limits the number of features. The features that we

used to characterize each voxel time series are thus given by

the parameters α and β of the univariate GGDs modeling the

wavelet statistics. Since we routinely employed three wavelet

scales (scales two to four) we obtained six features per voxel,

representing a dramatic reduction of dimensionality.

2.3. Clustering

The next step in our STAT method involved the clustering of

voxels on the basis of their corresponding GGD features. An

overview and comparison of several clustering algorithms in

the context of fMRI cluster analysis was given in [4]. The su-
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Fig. 3. Histograms for the redundant wavelet detail coeffi-

cients at level four corresponding to a time series containing

only noise (non-activated) and a time series in an activated

voxel. The GGD fits are displayed as well (full lines) together

with the best-fit Gaussian density functions (dashed lines).

perior clustering performance of the k-means and neural gas

algorithms was demonstrated, compared to other well-known

techniques. For this reason in the present study we applied

the k-means algorithm, which in addition is simple to imple-

ment. The k-means algorithm assumes the number of clusters

k is known and represents the clusters by their centroid. The

aim is to minimize the within-cluster sum-of-squares. In our

case k = 2 since we simply distinguish between activated

and non-activated voxels. The initialization phase of the al-

gorithm consists of assigning random cluster centroids. The

algorithm next proceeds iteratively by cycling through two

steps: first, assign each point to the cluster with the nearest

centroid. Then, for every obtained cluster recalculate the cen-

troid. The clustering efficiency depends partly on the choice

of similarity measure, for which we took the symmetrized

Kullback-Leibler divergence. A closed-form expression ex-

ists for the KLD between univariate zero-mean GGDs [6],

rendering our implementation of the k-means algorithm suf-

ficiently fast. In addition, the wavelet scales were assumed to

be independent, so that the total KLD between voxels could

simply be obtained by summing the KLDs between corre-

sponding scales [6]. The cluster centroids were defined by

the Karcher mean of the cluster points, again using the sym-

metrized KLD as a similarity measure.

3. RESULTS AND DISCUSSION

As mentioned in the introduction, we compared our technique

to the method COEF, for which we used as features the wave-

let detail coefficients in scales two to four obtained with the

DWT (including subsampling). In COEF the Euclidean dis-

tance between wavelet coefficients is applied in a k-means

clustering algorithm. In both the case of COEF and STAT, we

performed the k-means cluster analysis several times in or-

der to study the effect of random initialization of cluster cen-

troids, which turned out to be negligible. A typical set of clus-

ters in GGD parameter space is shown in Figure 4, together
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Fig. 4. GGD parameters, displayed independently for the first

four scales of the RDWT, corresponding to the voxel time

series in the synthetic volume (each point represents a voxel).

Cluster centroids obtained via a k-means clustering algorithm

are also indicated.

with the cluster centroids found by the k-means algorithm. A

clear non-Gaussian behavior can be observed of the wavelet

statistics in many voxels. It should be noted that the cluster

shapes do not necessarily reflect the true similarity structure

of the voxels, since the plot is in Euclidean space while the

applied similarity measure is non-Euclidean (KLD).

The results from the two experiments (fixed and variable

HRF) are summarized in Table 1 in terms of false positive

rates (FPR) and true positive rates (TPR). For comparison

with the performance of the GLM, using the canonical HRF

as a model, the TPR for a given FPR was determined from the

distributions of the test statistic for the non-activated and ac-

tivated voxels. Since for both STAT and COEF the FPR turns

out to lie below 1%, we chose to mention the TPR obtained

by the GLM corresponding to an FPR of 0.1% and 1%.

All three methods perform very similarly in case of a fixed

canonical HRF throughout the simulated volume. However,

when HRF variability is introduced, the FPRs remain stable

but our STAT method exhibits a substantially higher TPR than

both the GLM and the COEF method. Hence, STAT turns out

to be much more robust against HRF variability compared to

the GLM and COEF.

4. CONCLUSION

We have proposed a new data-driven method for activation

detection in event-related BOLD fMRI. The technique is

based on k-means clustering of the parameters of a general-

ized Gaussian distribution, fit to wavelet detail coefficients

obtained from the fMRI time series via the redundant discrete

wavelet transform. We have compared our method to classic

GLM modeling and to a clustering-based scheme that uses

raw wavelet coefficients as features. Our method turns out to

GLM COEF STAT

Canonical HRF
FPR (%) 0.1 / 1.0 0.1 0.3

TPR (%) 100 100 100

Variable HRF
FPR (%) 0.1 / 1.0 0.0 0.0

TPR (%) 83.3 / 88.1 54.7 92.5

Table 1. False positive rates (FPR) and true positive rates

(TPR) in the case of a fixed and variable HRF in an experi-

ment on an artificial fMRI volume using the methods GLM,

COEF and STAT.

be considerably more stable against hemodynamic variability,

which is ubiquitous in real fMRI data. A similar robustness

against uncertainty in stimulus timing is to be expected (use-

ful for e.g. resting-state experiments). This will be the subject

of further study, as well as the use of other clustering algo-

rithms (e.g. Gaussian mixture modeling) and GGD similarity

measures (e.g. the geodesic distance).
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