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Abstract: Tensile strength of concrete made with polyethylene terephthalate (PET) waste 

as replacement for fine aggregate was modelled using artificial neural network. A 

multilayer feedforward neural network (MLFFNN) and radial basis function (RBF) 

methodology were compared to see which was more accurate. The MLFFNN modelling 

results showed a predictive accuracy of 95.364% and a root mean square error value of 

4.4409 × 10-16 while RBF neural network modeling results showed a higher predictive 

accuracy (99.509%) with a lower root mean square error value (1.6653 × 10-16). It is 

concluded that ANN models accurately predicted the tensile strength of PET concrete. 
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1. INTRODUCTION 

 

About 25 billion tons of concrete are produced annually around the world [1]. In 2018 there were around 4.1 and 

48.3 billion tons of aggregate and cement use, respectively [2]. Overconsumption of raw materials may lead to 

the release of greenhouse gases, which may accelerate global warming. Therefore, researchers have concentrated 

on producing sustainable materials for concrete manufacturing from wastes to decrease the impact of concrete 

construction on the environment. 

 

200 billion pounds of fresh plastic material are foamed annually throughout the world, and more than 100 

million tons of plastics are produced each year. Additionally, more than one million plastic bottles and five 

trillion plastic bags are bought every minute, respectively [3]. After use, people threw plastics in open spaces and 

water because they were unaware of the harmful consequences of plastics. As a result, in terms of environmental 

pollution, plastic trash came in third after food waste and paper waste. Plastic wastes have a complex behavior 

since they are durable and require a long time to breakdown [4]. 

 

New techniques for disposing of plastic garbage are required [5]. The best way to save money, lessen pollution, 

and improve the unexpected qualities of concrete is to use this rubbish as aggregate material [6]. Numerous 

studies have revealed that the characteristics of concrete were dramatically impacted by the usage of plastic 

trash. The engineering characteristics of PET fiber reinforced concrete [7, 8], the impact of crushed plastics 

waste on the structural qualities of sandcrete blocks [9], and the utilization of discarded plastic wastes for the 

manufacturing of interlocking paving stones [10] are all revealed in studies. Nadimalla et al. [11] (2019) 
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concluded that using PET bottles instead of sand in concrete will increase the physical behavior and performance 

of recycled concrete compared to normal concrete. 

 

Furthermore, the use of artificial intelligence including Artificial Neural Network (ANN) has been reported to 

provide a faster, cost effective and more reliable alternative to rigorous laboratory testing when used to model 

the properties of concrete [12-16]. Artificial Neural Network (ANN) is a soft computing technology that uses 

densely interconnected processing units (neurons) to solve particular problems [17] by replicating the mental 

processes of pattern recognition and/or reasoning. Self-organizing Mapping (SOM), Radial Basis Function 

(RBF), Multilayer Perceptron (MLP), and Neuro-Fuzzy are the most often utilized ANN models. This study 

investigated the multilayer feedforward neural network (MLFFNN) and radial basis function (RBF) approaches 

for modeling the tensile strength of concrete built using PET waste as a fine aggregate replacement (up to 50%). 

 

 

2. EXPERIMENTAL SETUP 

 

2.1. Materials 

Dangote brand of Portland limestone cement of grade 32.5 class with specific gravity 3.1 was used. Coarse 

aggregate of 20 mm size classified as well graded gravel was used while fine aggregate classified as poorly 

graded sand was used. The PET waste was obtained from domestic PET plastic wastes, the paper around the 

bottle and the bottle covers were removed before it was then grinded into fine aggregate with the maximum size 

of 2.36 mm using an industrial grinding machine. As a chemical admixture, MasterRheobuild 858 super-

plasticizer was used to increase the workability of the concrete with as little water as feasible. The 

Superplasticizer was added to the mix at a rate of not more than 1% of the total cement weight. The specifics of 

the coarse, fine and PET aggregates used were 2.71, 2.65 and 1.34 respectively. 

 

2.2. PET concrete procedure 

Concrete mix ratio of 1:1.5:3 (cement: sand: granite respectively) was adopted. The percentage of replacement of 

fine aggregates by PET waste aggregates were 2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 

26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44%, 46%, 48%, and 50%. Concrete without PET waste 

serves as the control. All of the concrete samples were made using a 100 x 200 mm cylindrical mold that 

matched the requirements of BS EN 12390-1:2000 [18]. The moulds were lubricated before being filled with 

PET waste concrete to make demolding easier. All samples were covered with a plastic sheet after casting and 

finishing to prevent moisture loss due to evaporation. After 24 hours of casting, the samples were demolded and 

moved to a curing tank, where they cured for 28 days before being tested for split tensile strength in accordance 

with British standard. 

 

2.3. ANN modeling procedure 

A two-layer neural network (hidden and output) was used to predict compressive strength using an ANN. The 

numerical data (ANSYS) was fed into the ANN after the input data from the laboratory tests were rectified. 

Based on the mistake results, the number of neurons in the buried layer was calculated. In order, for the output 

layer to be one neuron, one output neuron is necessary. The method used historical data in conjunction with 

current data to forecast compressive strength. MLFFNN and RBF techniques were used to operate the neural 

network. Following that, the precision of the results from both approaches were compared, and the most precise 

technique was recommended. The optimum architecture of a back propagation neural network for this study was 

found by experimenting with different numbers of neurons for different hidden layers.  

 

To minimize overtraining and to measure the confidence in the network's performance, the input data was 

gathered from the experimental data, with 70% of the data utilized for training, 15% for testing, and 15% for 

validation. The Sigmoid function was chosen as the activation function in this study. To avoid overtraining, the 

algorithm learning was supervised (i.e. working toward a specific outcome).  

 

The neural network was trained to match the collection of input data that had been weighted into the networks 

through repeated weight modifications. Backward propagation of error was used to optimize the weights 

between the neurons throughout the learning process. Root Mean Square Error was used to calculate the 

performance of the ANN. 
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3. RESULTS AND DISCUSSION 

 

3.1. Split tensile strength 

The split tensile strength of the created PET concrete is displayed in Table 1. With the exception of PET 

replacement amounts of 2 percent, 4 percent, 6 percent, 8 percent, 10 percent, 12 percent, 14 percent, and 16 

percent, which increased the tensile strength of the concrete in comparison to the control mix, the tensile strength 

of concrete decreases as the amount of PET replacement increases. The higher ductility and sharp edges of the 

PET waste particles in contrast to the sand particles in the concrete may be the cause of the increase in tensile 

strength from 2 to 16 percent PET aggregate replacement [7, 19]. The samples with 18 to 50% replacement of 

PET show a reduction in split tensile strength. Large quantities of PET particles that gathered in one area, 

clumped together, and were not distributed evenly are to blame for this behavior. Additionally, the interaction 

zone between the cement paste and the PET aggregates during bonding is limited by the higher PET replacement 

[11, 19]. 

 

Table 1. Split tensile strength of PET concrete. 

S/N Fine Aggregate Replacement (%) Tensile Strength (N/mm2) 

1 0 2.77 

2 2 2.91 

3 4 2.97 

4 6 3.02 

5 8 3.27 

6 10 3.09 

7 12 3.13 

8 14 2.94 

9 15 2.86 

10 16 2.79 

11 18 2.66 

12 20 2.55 

13 22 2.48 

14 24 2.38 

15 26 2.61 

16 28 2.31 

17 30 2.24 

18 32 2.10 

19 34 1.96 

20 36 1.47 

21 38 1.22 

22 39 1.38 

23 40 1.07 

24 42 0.90 

25 44 0.74 

26 45 0.68 

27 46 0.56 

28 48 0.47 

29 50 0.41 

30 55 0.30 

31 60 0.22 

 

3.2. Split tensile strength modelling using multilayer feed-forward 

 

3.2.1. ANN architecture  

The multilayer feed-forward (MLFF) ANN design for predicting tensile strength is depicted in Figure 1. As 

indicated in Figure 2, the input variable was one (1), there were eighteen (18) hidden neurons used, one (1) 

served as the output layer, and the model traversed six (6) epochs. The performance of the neural network 

depends on the epoch and the quantity of hidden neurons. Up until the best performance was realized and the 
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results were recorded, several settings of these two values were explored. In order, to avoid bias in the modeling 

of the outcome, these values for were chosen at random throughout the entire procedure. 

 

 
Fig. 1. MLFFNN split tensile test architecture. 

 
Fig. 2. Epoch for MLFFNN in modelling split tensile strength. 

 

3.2.2. Error histograms 

The error histograms for the tensile strength modeling are displayed in Figure 3. The error histogram displayed 

how close to or far from zero the error was. The discrepancy between the 28-day projections anticipated tensile 

strength and the actual tensile strength is. The outcome will be more accurate the closer the histograms are to 

zero. According to the figure, a significant portion of the disparities between the predicted and actual values, 

particularly for most of the training datasets, lies within the yellow zero line. Little differs between the expected 

and actual numbers are evident from this. 

 

 
Fig. 3. MLFFNN tensile error histograms for modelling tensile strength. 
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3.2.3. ANN regression residual plots 

Figure 4 displays the residuals for the regression line of fit for the dataset's training, validation, and testing 

parameters as well as all other parameters. Additionally, it displays the regression's level of accuracy using the 

provided R score. For all phases (training, testing, validation, etc.), the values above the regression line of fit 

indicated the values that were properly predicted, whereas the values below the line of fit represented the values 

that were incorrectly forecasted. Each value's deviation from the line of fit serves as a gauge for its accuracy or 

imprecision. 

 

In the training phase, the line of fit completely encircled all values, providing a high degree of accuracy of 100 

percent. A significant majority of the values for the validation phase fell within the line of fit with a high degree 

of accuracy of 94.316 percent. The regression model line's accuracy was judged to be 95.364 percent for all 

values combined, whereas the test has an accuracy level of 87.967 percent. This demonstrated the created ANN 

model's great capability in estimating the tensile strength of PET concrete given the input variable. The 

prediction model's RMSE value is displayed in Figure 5. The RMSE score of 4.4409 x 10-16 indicated a very low 

error value that was practically nonexistent. The ability of the MLF ANN model to accurately predict the tensile 

strength of the PET concrete serves as another example of its capabilities. 

 

 
Fig. 4. MLFFNN regression residual plots for modelling tensile strength. 

 

 
Fig. 5. MLFFNN RMSE for modelling tensile strength. 
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3.3. Split tensile strength modelling using radial basis function 

 

3.3.1. ANN architecture 

Figure 6 shows the radial basis function (RBF) ANN architecture for tensile strength predictions. As indicated in 

Figure 7, the input variable was one (1), there were twenty hidden neurons employed, one served as the output 

layer, and the model proceeded through one hundred and sixty one epochs. The performance of the neural 

network depends on the epoch and the quantity of hidden neurons. Up until the best performance was realized 

and the results were recorded, several settings of these two values were explored. To avoid bias in the modeling 

of the outcome, these values were chosen at random throughout the entire procedure. 

 

 
Fig. 6. RBF architecture for modelling split tensile strength. 

 

 
Fig. 7. Epoch for modelling the split tensile strength using RBF. 

 

3.3.2. Error histograms 

The error histograms for the tensile strength result are displayed in Figure 8. The error histogram displayed how 

close to or far from zero the error was. The discrepancy between the 28-day projections' anticipated tensile 

strength and the actual tensile strength is. The outcome will be more accurate the closer the histograms are to 

zero. According to the figure, a significant portion of the disparities between the predicted and actual values, 

particularly for most of the training datasets, lies within the yellow zero line. Little differs between the expected 

and actual numbers are evident from this. 
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Fig. 8. RBF error histogram with 20 Bins for modelling split tensile strength. 

 

3.3.3. ANN regression residual plots 

Figure 9 present the residuals for the regression line of fit for the dataset's training, validation, and testing 

parameters as well as all other parameters. Additionally, it displays the regression's level of accuracy using the 

provided R score. For all phases (training, testing, validation, etc.), the values above the regression line of fit 

indicated the values that were properly predicted, whereas the values below the line of fit represented the values 

that were incorrectly forecasted. Each value's deviation from the line of fit serves as a gauge for its accuracy or 

imprecision. 

 

 
Fig. 9. RBF residual regression plot for modelling split tensile strength.  

 

The line of fit covered all values for the training phase, and accuracy was extremely high at 99.923 percent. The 

regression model line's correctness was judged to be 99.509 percent for all values combined, whereas the test has 

a degree of accuracy of 98.638 percent. This demonstrated the constructed ANN model's great capability in 

estimating the tensile strength values of PET concrete given the input variable. The prediction model's RMSE 

value is displayed in Figure 10. The RMSE score of 1.6653 x 10-16 indicated a very low error value that was 
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practically nonexistent. Additionally, this serves as an illustration of the RBF ANN model's capacity to 

accurately predict the tensile strength of PET concrete. 

 

 
Fig. 10. RBF RMSE for modelling split tensile strength. 

 

3.4. Validation of the model  

 

In comparing the accuracy of the multi-layer feed-forward (MLFFNN) and the radial basis function (RBF) 

techniques of the ANN in predicting the compressive strength of PET concrete, it was discovered that the RBF 

was more accurate judging from the values obtained from their error histograms, regression residual plot, and 

root mean square error values. Hence, in validating the model by predicting for various percentage replacement 

of fine aggregate with PET, the RBF technique was used. The superior in accuracy of the RBF agrees with past 

studies from other researchers. RBF analyzes the multiple subspaces of the input set as separate relationships and 

gives local solution, whereas MLFFNN presents a generic approach to addressing non-linear relationships 

between the input parameter(s) and output parameter(s). 

 

Tables 2 illustrates the results of the laboratory tests and the predicted results from the ANN for split tensile 

strength using the more precise radial basis function approach. The projected values from the ANN are without a 

doubt accurate and dependable for forecasting the compressive strength of PET concrete, since the ANN 

modeling findings are comparable to laboratory test results. Despite the fact that the RBF approach produced the 

most desirable results, the MLFFNN's performance was also acceptable. 

 

Table 2. The experimental values and predicted values of split tensile strength for validation. 

S/N Replacement (%) Lab Result (N/mm2) ANN Result (N/mm2) 

1 15 2.86 2.84 

2 39 1.38 1.39 

3 45 0.68 0.66 

4 55 0.30 0.32 

5 60 0.22 0.21 

 

 

4. CONCLUSIONS 

 

This study simulated the split tensile strength of concrete constructed utilizing PET waste as a replacement for 

fine aggregate using radial basis function (RBF) and ANN with multilayer feedforward neural network 

(MLFFNN) techniques (up to 50 percent). The design with eighteen (18) hidden neurons and six (6) epochs for 

28 days of tensile strength predictions was the best MLP ANN architecture with the highest effective predictive 

performance. During the training phase, the model's accuracy was 100%. The accuracy of the regression model 

line was estimated to be 95.364 percent for all the values combined, with the validation phase having a high 

degree of accuracy of 94.316 percent and the test phase having a degree of accuracy of 87.967 percent. The 28-

day tensile strength forecasts' Root Mean Square Error (RMSE) value was 4.4409 x 10-16, which is a very small 

and nearly negligible error number. This serves as an example of the MLP ANN model's capability to accurately 

forecast the tensile strength of PET concrete. 
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The design with twenty (20) hidden neurons and one hundred sixty one (161) epochs for 28 days of tensile 

strength predictions was the best RBF ANN architecture with the highest effective predictive performance. The 

model's degree of accuracy during the training phase was 99.923 percent, which during the test phase was 98.638 

percent, and that when all the results were combined, the accuracy of the regression model line was estimated to 

be 99.509 percent. The 28-day tensile strength forecasts' Root Mean Square Error (RMSE) value was 1.6653 x 

10-16, which is a very small and nearly negligible error number. 
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