
How Java Increases Flexibility &
Run-Time Efficiency of MPSoC Systems

Peter Bertels & Dirk Stroobandt
Ghent University
ELIS Department

Sint-Pietersnieuwstraat 41
9000 Gent, Belgium

peter.bertels@ugent.be

Abstract—Embedded software has to meet multiple require-
ments: power efficiency, soft real-time performance, . . . but
also flexibility and adaptability to ever changing functional
requirements. Heterogeneous MPSoC systems offer an interesting
platform to meet these requirements. We propose to run a
Java Virtual Machine (JVM) on the embedded, general-purpose
processor to add the necessary flexibility and adaptability to
the system. The techniques proposed in this paper allow the
JVM to dynamically partition the application and map the
partitions at run-time to the suitable system components and also
to reconfigure the system when needed. In doing this, the JVM
continuously monitors the communication cost, often a limiting
factor in MPSoC design. In previous work [3], [8] we have shown
that the JVM can dynamically switch between executing threads
on the general-purpose processor or on specific hardware blocks
and that it can reduce the communication overhead in the system
by up to 86%. In this paper we extend our approach to a
reconfigurable platform in which the JVM also decides on the
scheduling and mapping of functionality.

Index Terms—MPSoC, run-time techniques, Java, partitioning,
mapping, scheduling

I. Introduction

Embedded software has to meet multiple and often stringent
requirements: power efficiency, soft real-time performance,
etc. On the other hand it needs to be flexible and adaptive
to ever changing functional requirements in a world with very
short time-to-market.

Because these stringent requirements cannot be met with
general-purpose processors only, heterogeneous MPSoC plat-
forms are the name of the game in modern embedded systems.
To address the need for flexibility, the trend at the moment is
away from very specific and dedicated platforms towards more
generic solutions for a broader class of applications, e.g. in the
wireless or in the multimedia domain.

We propose to run a Java Virtual Machine (JVM) on
the embedded, general-purpose processor which is the main
component of most of these platforms. This JVM acts as an
abstraction layer for the underlying hardware. The techniques
proposed in this paper allow the JVM to dynamically partition
the application and map the partitions at run-time to the
suitable system components. Both internal communication
overhead and performance requirements (deadlines), are taken
into account.

general-purpose 

processor
memory

DSP 1 HW block 1DSP 2 HW block 2 FPGAHW block 3

memory memory memory memory memory memory

Fig. 1. The MPSoC platform considered in this paper, consists of a
general-purpose host processor and several coprocessors, ranging from general
Digital Signal Processors to application-specific hardware accelerators and
reconfigurable logic.

Previously we have shown [3] how the JVM can dy-
namically minimise communication overhead by optimising
memory allocation based on profiling information. In this
paper, these techniques are extended for run-time partitioning
and mapping of the Java application to a distributed platform.

We build on the JVM developed in [8] and extend it to make
it fully aware of the underlying platform. We show how the
JVM can autonomously reach close to optimal performance
for a given application. Our approach enables efficient use of
resources without need for specific compilation for a given
platform. This way optimal flexibility is guaranteed at each
functional update of the software.

This paper is organised as follows: Section II gives an
overview of the envisioned MPSoC platform and how the JVM
fits in this platform. In Section III we present profiling-based
communication-aware mapping and scheduling techniques that
will solve the communication bottleneck in the system. Finally,
Section V concludes this paper.

II. Virtualised Approach toMPSoCs

A. MPSoC with central general-purpose processor

In this work, we use the classical concept of coprocessing.
The MPSoC platform consists of a general-purpose processor
and one or several application-specific hardware accelerators
or DSP coprocessors or FPGA with reconfigurable hardware
accelerators (Figure 1). In this paper we will use the term
accelerator for all these coprocessing blocks. The accelerators
execute a small but computationally intensive part of the

-437-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55868404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Java application, while the general-purpose processor executes
the remainder of the application, that is in general the more
control-dominated parts).

On this MPSoC platform, the main processor and these ac-
celerators all have their own local memory which is connected
to them with a high-bandwidth communication channel. The
interconnect network which connects all these accelerators
with the main processor is significantly slower and forms
the main bottleneck that we will solve with the techniques
presented in Section III.

Although our solution drastically reduces the communica-
tion overhead, our approach is still limited to applications
with specific computational kernels with a high computation
to communication ratio. Several authors have reported signif-
icant speedups for such computational kernels with specific
hardware accelerators on FPGAs or ASICs [13].

B. JVM as hardware abstraction layer

We want to hide the complexity of managing the control
flow and the communication between all these accelerators
and the main processor from the programmer. Moreover the
JVM can dynamically move functionality from the main
processor to one of the reconfigurable FPGAs (Section III).
This is all possible when we consider the JVM to be an
abstraction for the underlying hardware. Faes has proposed
a system where the JVM intercepts method calls for which a
hardware equivalent is available and delegates execution to the
appropriate accelerator [10]. This adapted JVM also enables
the accelerators to access objects on the Java heap memory
which is distributed between all physical memory blocks in
the MPSoC.

In this concept, all accelerators form an integral part of
the JVM while being invisible to the Java application itself.
Therefore, we need to properly define an equivalence between
the functionality of each component and software concepts in
the Java language. In our approach, all accelerators encapsulate
the functional behaviour of the bytecode in the corresponding
Java method. This equivalence between the hardware acceler-
ator and Java methods is described in detail in [5], [8].

The JVM intercepts all method calls for Java methods
which are acceleratable. The execution of the current thread
is delegated to the accelerator unless the accelerator is not
available —it may be in use by another thread— in which
case the Java version of this method continues execution on
the main processor.

The communication between the general-purpose processor
(GP) and one of the accelerators is based on remote calls as
shown in Figure 2. The first remote call, represented by a solid
line, is initiated by the thread executed on the GP and starts the
hardware accelerator (HW). The GP suspends execution of the
current thread while the HW is busy. Meanwhile, the GP can
continue executing other threads. When functionality called by
the accelerator method has no hardware equivalent or is simply
impossible to implement in hardware, the accelerator can rely
on the host processor to execute this specific functionality via a
callback mechanism. This is typically used for file input/output

remote call

thread 0 thread 1 on GP thread 1 on HW block

general-purpose processor (CP) specific hardware block (HW)

threads 0 and 1 share the 

general-purpose processor

remote call

return

return

thread 0 has sole 

access to the GP

Fig. 2. Threads executed on the general-purpose processor (GP) can start one
of the accelerators which can perform a callback to the GP when necessary,
e.g. for file input/output or for throwing exceptions.

or for throwing exceptions. Such a callback is depicted in
Figure 2 as a dotted line.

C. Shared-memory model

This MPSoC platform uses a shared-memory model, which
allows the main processor and all accelerators to access all
objects. The Java heap is distributed between the main memory
of the GP and each accelerator’s local memory. The garbage
collector is extended to account for objects and references
in all memories, including those held by accelerators [9].
Whether new objects are placed in main memory or in one
of memories local to an accelerator, should depend on the
access patterns. This is exactly the focus of our algorithm
for communication-aware data placement which is described
in [3]. Although object-oriented languages like Java strongly
emphasize the connection between the object’s data and its
functionality (methods), in our approach the decisions on data
and method placement are treated separately. Indeed, a single
object class may have some methods implemented on the
accelerator while others are executed by the host processor.

Besides the close to optimal allocation of objects to main
memory or to one the local memories, which we solved in [3],
this paper focuses on the relocation of functionality between
the general-purpose processor and one of the accelerators
(Section III).

III. Communication-awareMapping and Scheduling

A. Just-in-Time Compilation

The general idea of our communication-aware mapping and
scheduling is an extension of the traditional Just-in-Time (JIT)
compilation in the JVM. JIT compilation was first used in
a very efficiënt implementation of Smalltalk [7], but is now
commonly adopted by most virtual machines, e.g. the Sun’s
Java Hotspot compiler and several others [1] even in the
embedded world [15], [12].

With conventional software JIT, the JVM starts interpreting
the Java bytecodes and while interpreting, the JVM profiles the
occurrences of all basic blocks in the code. Basic blocks which
are frequently executed will then be intercepted an compiled to

-438-



12,16

1,11,

17,25

2,4,10 18,24

13,15

22201486

3 5,7,9 19,21,23

Fig. 3. The callgraph of a sample application with dotted lines indicating
where this graph is cut to form separate partitions which can be mapped to
accelerators of the MPSoC platform.

machine code. In most implementations this is a staged process
with several steps of compilation, ranging from a very simple
and basic compilation step which is very fast but results in
relatively slow code, to an aggressive compilation step which
takes more time to compile but returns excellent and very
efficient machine code.

In this paper we want to extend this idea with an extra
compilation stage which involves hardware compilation where
a part of the functionality of the application is moved to
an on-the-fly generated, hardware block, instantiated on an
FPGA. Hot code fragments will be considered for this extra
compilation stage. Section III-B discusses how we will select
the suitable fragments in a communication-aware manner.

B. Optimal boundaries for partitioning

The MPSoC platform depicted in 1 is very well suited for
splitting of computationally intensive kernels from the main
processor. However, it is important to choose kernels with a
high computation to communication ratio to reduce the extra
communication overhead.

Our solution builds on the call graph of the application,
in which all dynamically executed methods of the application
are represented as nodes. The edges of the graph represent the
method calls. By selecting sub trees of the call graph, as shown
by dotted lines in Figure 3, we try to minimise communication.
That is, each method A will be partitioned of the main tree
together with all methods that are called by A. For example:
if method 13 is a candidate for hardware acceleration, method
14 will also be implemented on the hardware accelerator. This
approach is shown to be very successful in extracting suitable
code fragments for off-loading [14].

C. Run-Time Partitioning and Re-Partitioning

For optimal communication-awareness, the Java program
needs to be on-the-fly partitioned along the partition bound-
aries described in Section III-B. This can easily be done by
adapting the JVM to count not only the execution frequency
of each Java method, but to also count this for sub trees of

the callgraph: that is, to accumulate the results for methods
which are called, with the results of the calling method. This
relatively small adaptation of the profiling phase in the JIT
compiler suffices for the JVM to support run-time partitioning.

Another important question is: how can we dynamically
move parts of the functionality of a running application to
an accelerator? How does this hardware compilation work?
The JVM supports three different situations: (i) the hardware
configuration is loaded from a library [5], (ii) a generic
hardware model is loaded from a library and specialised for
a given set of parameters [6] or the hardware is generated
on-the-fly [2][11].

D. Dynamic data allocation

This dynamic code partitioning was combined with the
strategies for data allocation that we proposed in previous
work [3]. This section gives a brief summary of the considered
approaches.

Baseline—This algorithm allocates all objects in main
memory close to the general-purpose processor. All memory
accesses performed by any of the accelerators will be remote
accesses which go over the relatively slow bus.

Optimal placement—Based on the joint usage pattern for all
objects and measured during a complete run of an application,
the optimal memory can be determined. We consider this as
an optimal implementation within the given constraints and
use it to compare all the other strategies.

Local allocation—Many objects are allocated on the stack
or have a very short lifetime. They are therefore often used
almost exclusively by the method which created them. This ob-
servation leads to the local allocation strategy which allocates
all objects in memory closest to the component that creates
them.

Self-learning allocation—In this strategy, the JVM decides
at runtime where to allocate objects based on the usage
patterns of previous objects. This is particularly useful in the
dynamic environment of our Java based MPSoC platform,
which decides at runtime whether to execute functionality
on the general-purpose processor or on specific accelerators.
The JVM continuously counts all memory accesses from both
the main processor and the accelerators to each object in all
memories. This can for instance be done through (sampled)
instrumentation or hardware assisted profiling. Each object (or
object group) has its own set of counters, one for the processor
and one for each of the accelerators. At each point in time,
comparing the counters will tell the JVM which component
has accessed these objects the most up to now. New objects
will be allocated in the memory closest to the component with
the highest number of accesses.

IV. Experimental Results

For the evaluation of our approach, we use the DaCapo
benchmark suite [4]. In an initial profiling run, we have
determined for each benchmark the ten hottest methods, i.e.
those accounting for the largest execution time. These methods
and the methods called by these methods (the sub tree)

-439-



are considered, in our simulation, to be selected by the JIT
compiler for hardware acceleration.

The MPSoC platform in this simulation consisted of two
processing elements: a general-purpose processor running the
JVM and one reconfigurable hardware accelerator which was
pre configured for to be functionally equivalent with the hottest
methods of the benchmark.

We have compared the remote access ratio for all bench-
marks and for the four strategies described in Section . The
remote access ratio is the relative number of memory trans-
actions (read or write) that involve the global communication
network, which is relatively slow. Therefore, the lower the
remote access ratio, the better performance we get. From
Figure 4 we learn that in this setup the self-learning strategy
performs best for all benchmarks except for two benchmarks
(bloat and xalan) that benefit more from the local allocation
strategy.

benchmark

xalan

bloat

pmd

lusearch

luindex

jython

hsqldb

fop
jython

hsqldb

fop

chart

antlr

fop

chart

antlr

0% 20% 40% 60% 80% 100%

xalan

bloat

pmd

lusearch

luindex

jython

baseline self learning local allocation optimum

Fig. 4. Evaluation of several algorithms for dynamic memory allocation
on an MPSoC platform with two heterogeneous cores and randomly mapped
functionality.

V. Conclusions
We proposed an approach for adding extra flexibility to

the design of embedded software on an MPSoC with the
key concept of extending JIT compilation of the JVM to the
dynamic off-loading of functionality from a general-purpose
processor to a dedicated accelerator (DSP, FPGA, hardware
block). We have also shown that this must be done carefully
with respect to the communication overhead. And we conclude
that, for a simple simulation, the extra overhead due to the
distribution of the application over several processing elements
on the MPSoC can be reduced drastically by means of the
optimal memory allocation.

VI. Acknowledgments
Peter Bertels was supported by a PhD grant of the Institute

for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen). This research is also
related to the FlexWare project (IWT grant 060068) and the
OptiMMA project (IWT grant 060831).

References
[1] John Aycock. A brief history of just-in-time. ACM Comput. Surv.,

35(2):97–113, 2003.
[2] Antonio Carlos S. Beck and Luigi Carro. Dynamic reconfiguration with

binary translation: breaking the ILP barrier with software compatibility.
In Proceedings of the 42nd annual Design Automation Conference
(DAC), pages 732–737, New York, NY, USA, 2005. ACM.

[3] Peter Bertels, Wim Heirman, Erik D’Hollander, and Dirk Stroobandt.
Efficient memory management for hardware accelerated java virtual
machines. ACM Transactions on Design Automation of Electronic
Systems, 14(4):18, August 2009.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169–190, New York, NY, USA,
October 2006. ACM Press.

[5] Andrew Borg, Rui Gao, and Neil Audsley. A co-design strategy
for embedded Java applications based on a hardware interface with
invocation semantics. In Proceedings of the 4th international workshop
on Java Technologies for Real-time and Embedded Systems (JTRES),
pages 58–67, New York, NY, USA, 2006. ACM.

[6] Karel Bruneel and Dirk Stroobandt. Automatic generation of run-
time parameterizable configurations. In U. Kebschull, M. Platzner, and
Teich J., editors, Proceedings of the International Conference on Field
Programmable Logic and Applications, pages 361–366, Heidelberg, 9
2008. Kirchhoff Institute for Physics.

[7] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of
the smalltalk-80 system. In POPL 1984: Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 297–302, New York, NY, USA, 1984. ACM.

[8] Philippe Faes, Peter Bertels, Jan Van Campenhout, and Dirk Stroobandt.
Using method interception for hardware/software co-development.
Springer Design Automation for Embedded Systems, pages 1–21, 2009.

[9] Philippe Faes, Mark Christiaens, Dries Buytaert, and Dirk Stroobandt.
FPGA-aware garbage collection in Java. In Proceedings of the interna-
tional conference on Field Programmable Logic and Applications (FPL),
pages 675–680, Tampere, Finland, 1 2005. IEEE.

[10] Philippe Faes, Mark Christiaens, and Dirk Stroobandt. Transparent
communication between Java and reconfigurable hardware. In Teofilo
Gonzalez, editor, Proceedings of the 16th IASTED International Confer-
ence Parallel and Distributed Computing and Systems, pages 380–385,
Cambridge, MA, USA, 11 2004. ACTA Press.

[11] Roman Lysecky, Greg Stitt, and Frank Vahid. WARP processors.
Transactions on Design Automation of Electronic Systems, 11(3):659–
681, July 2006.

[12] Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. Dynamic fpga
routing for just-in-time fpga compilation. In DAC ’04: Proceedings of
the 41st annual Design Automation Conference, pages 954–959, New
York, NY, USA, 2004. ACM.

[13] Elena Moscu Panainte, Koen Bertels, and Stamatis Vassiliadis. The
MOLEN compiler for reconfigurable processors. Transactions on
Embedded Computing Systems, 6(1):6, 2007.

[14] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. Towards
automatic program partitioning. In CF 2009: Proceedings of the 6th
ACM conference on Computing frontiers, pages 89–98, New York, NY,
USA, 2009. ACM.

[15] Michele Tartara, Simone Campanoni, Giovanni Agosta, and Ste-
fano Crespi Reghizzi. Just-in-time compilation on arm processors. In
ICOOOLPS ’09: Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 70–73, New York, NY, USA, 2009. ACM.

-440-


