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ABSTRACT: 

 

Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that 

support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the 

technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation 

has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra’s shortest path algorithm to an indoor 

network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the 

calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are 

currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation 

and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and 

easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not 

necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive 

algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least 

risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a 

complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor 

environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested 

in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm 

are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, 

vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and 

tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation 

in indoor environments. 
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1. INTRODUCTION AND PROBLEM STATEMENT 

Over the last decade, indoor spaces have become more and 

more prevalent as research topic within geospatial research 

environments (Worboys, 2011). Past developments in the 

modelling and analysis of three-dimensional environments have 

already given us a better structural understanding of the use and 

possibilities of indoor environments (Becker et al., 2013; 

Boguslawski et al., 2011). These evolutions combined with the 

rapid progress in spatial information services and computing 

technology (Li and Lee, 2010) have put three-dimensional 

modelling and analyses more and more in the spotlight. Also, 

given the fact that as human beings we spend most of our time 

indoors (Jenkins et al., 1992), indoor environments have 

become an indispensable part of current geospatial research. 

 

Within indoor research, applications that support navigation 

and wayfinding are of major interest. A recent boost in 

technological advancements for tracking people in indoor 

environments has led to increasing possibilities for the 

development of indoor navigational models (Mautz et al. 2010). 

Alternatively, several researchers have developed a wide variety 

of indoor navigational models ranging from abstract space 

models (Becker et al. 2009) and 3D models (Coors 2003, Li & 

He 2008) to pure network models (Jensen et al. 2009, Karas et 

al. 2006, Lee 2001, Lee 2004). While these models might be 

useful in specific situations, a general framework for indoor 

navigation modelling has still to reach full maturity (Nagel et al. 

2010). Far more recent is the commercial interest with public 

data gathering for navigation support in several indoor 
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buildings (e.g. Google Maps Indoor), which demonstrates the 

current importance of this application field. 

 

While a considerate amount of work is oriented to the abstract 

modelling and technological aspect of navigation, the 

algorithmic development to support navigation in indoor built 

environments has so far been left mostly untouched. 

Appropriate and accurate algorithmic support is nonetheless a 

necessary component for a successful wayfinding experience. In 

outdoor research, a wide variety of different algorithms exist, 

initially originating from shortest path algorithms, studied for 

over 50 years in mathematical sciences (Cherkassky et al. 

1996). Many of them are based on the famous Dijkstra shortest 

path algorithm (Dijkstra 1959) with gradually more and more 

adaptations and extensions for better performance in terms of 

speed, storage and calculation flexibility (Zhan and Noon 

1998). Over time, alternative algorithms were proposed adding 

a more cognitive notion to the calculated paths and as such 

adhering to the natural wayfinding behavior in outdoor 

environments. Examples are hierarchical paths (Fu et al. 2006), 

paths minimizing route complexity (Duckham and Kulik 2003, 

Richter and Duckham 2008) or optimizing risks along the 

described routes (Grum, 2005). The major advantage of those 

algorithms is their more qualitative description of routes and 

their changed embedded cost function, simplifying the use and 

understanding of the calculated routes and as such improving 

the entire act of navigation and wayfinding. 

 

Algorithms for 3D indoor navigation are currently restricted to 

Dijkstra or derived algorithms. To date, only few researchers 

have attempted to approach algorithms for indoor navigation 

differently, for example incorporating dynamic events 

(Musliman et al., 2008), or modelling evacuation situations 

(Atila et al., 2013; Vanclooster et al., 2012). However, the need 

for more cognitively rich algorithms is even more pronounced 

in indoor space than outdoors. This has its origin in the explicit 

distinctiveness in structure, constraints and usage between 

indoor and outdoor environments. Outdoor environments are 

commonly described as continuous with little constraints, while 

the perception of buildings is strongly influenced by the 

architectural enclosures (Li, 2008; Walton and Worboys, 2009). 

Also, wayfinding tasks in multi-level buildings have proven to 

be more challenging than outdoors, for reasons of disorientation 

(due to multiple floor levels and staircases), and less visual aid 

(e.g. landmarks are less obviously recognizable; corners and 

narrow corridors prevent a complete overview) (Hölscher et al., 

2007). As such, building occupants are faced with a deficient 

perspective on the building structure, influencing their 

movement behaviour (Hölscher et al., 2007). Algorithms 

developed to support a smooth navigation will have to consider 

these intricacies. Existing shortest or fastest paths are not 

necessarily the easiest for people to understand and risks of 

getting lost are greater than using appropriate algorithms. As 

such, route instructions should be more carefully designed to 

align with the human cognitive mapping of indoor spaces. 

 

The main goal of this paper is to translate existing outdoor 

cognitive algorithms to an indoor environment and compare 

their efficiency and results in terms of correctness, difference to 

common shortest path algorithms and their equivalents in 

outdoor space. Based on the results of this implementation, a 

suggestions for a new and improved algorithm will be stated, 

which is more aligned to the specific context of indoor 

environments and wayfinding strategies of users indoor. In this 

paper, we currently focus on the implementation and adjustment 

of the least risk path algorithm as described by Grum (2005). 

The remainder of the paper is organized as follows. Section 2 

elaborates on the definition of the least risk path algorithm and 

its relationship to other cognitive algorithms and the shortest 

path algorithm. In section 3, the indoor dataset is presented in 

combination with the choices and assumptions made when 

developing the indoor network model. In the case study in 

section 4, the outdoor least risk path algorithm is duplicated and 

implemented in an indoor setting with multiple analyses 

comparing its results. Section 5 discusses multiple 

improvements to be made to the original algorithm to be more 

compatible with indoor networks. This paper is completed with 

a conclusion on the discussed issues. 

 

 

2. LEAST RISK ALGORITHM 

The ultimate goal of cognitive algorithms is to lower the 

cognitive load during the wayfinding experience. Various 

cognitive studies have indicated that the form and complexity of 

route instructions is equally important as the total length of path 

for humans when navigating (Duckham and Kulik, 2003). This 

is the reason why several algorithms have been developed for 

outdoor space with the purpose of simplifying the navigation 

task for unfamiliar users. In this paper we specifically focus on 

the least risk algorithm (Grum, 2005) and its implementation in 

a three-dimensional building. More specifically, we want to 

investigate whether or not the least risk path has the same 

connotation and importance in indoor spaces as in outdoor 

space where it was developed. 

 

The least risk path as described by Grum (2005) calculates the 

path between two points where a wayfinder has the least risk of 

getting lost along the path. The risk of getting lost is measured 

at every intersection with the cost of the risk calculated as the 

cost for taking the wrong decision at the intersection. This 

algorithm assumes that the person taking the path is unfamiliar 

with its environment (and as such local landmarks). Also, when 

taking a wrong path segment, the wayfinder notices this 

immediately and turns back at the next intersection (Grum, 

2005). While the algorithm assumes that an unfamiliar user 

immediately notices a wrong choice, the author also 

acknowledges that the algorithm needs to be tested for its 

representativeness of the actual behavior of users. 

 
Figure 1: Intersection with red line the way the wayfinder came 

from, green line the way the wayfinder should go and black 

lines the wrong choices (Grum, 2005). 

 

The formula for the calculation of the risk value at a certain 

intersection and the total risk of an entire path p is as follows: 
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From the formulas it appears that the risk value is dependent on 

the number of street segments converging on the intersection, 

combined with the length of each individual segment. The risk 

value of an intersection increases with more extensive 

intersections and with many long edges that could be taken 

wrongly. The algorithm favours paths with combined long 

edges and easy intersections. Applied to indoor environments, it 

could be assumed that the least risk path might be quite similar 

to the shortest path and simplest path. Indoor spaces often 

consist of many decision points and short edges, along long 

corridors making derivations of the shortest path more difficult 

than outdoors. This will be examined in the following sections. 

 

The algorithmic structure of the least risk path algorithm is 

similar to Dijkstra with a continuous loop over all nodes 

including three consecutive steps:  

1. Detect the next smallest node 

2. Change the selected node to the next smallest node 

3. Adjust the cost values for adjacent nodes 

It is only in the third step that the least risk path differs from the 

Dijkstra algorithm since the cost value is not only based on the 

length of the edge but also on the risk value of each intersection 

that is passed. This risk value is dependent on the previous 

route taken to reach the selected node and the length of its 

adjacent edges. The following steps in the ‘adjust cost section’ 

are consecutively executed: 

1. Calculate the number of edges leaving from selected 

node and select each edge successively 

2. Two options: 

2a. Endnode of selected edge has not been selected: 

• Calculate possible total risk values for endnode based 

on all possible routes arriving in selected node 

• Store the minimal value by comparing it with the 

currently stored value in endnode 

2b. Endnode of selected edge has been selected BUT 

adjacent nodes have not been selected: 

• Calculate the number of edges leaving from endnode 

and select each edge successively 

• Calculate total risk values for endnode based on all 

possible routes arriving in selected node and the 

connection between the selected node and its adjacent 

node 

• Store the minimal value by comparing it with the 

currently stored value 

The example below shows that starting in the selected node, 

first nodes N1 en N2 will be checked. N1 has not yet been 

selected (option a) and will be calculated as a path coming from 

selected node and its consecutive parent node. Node N2 has 

already been calculated but one of its adjacent nodes has not. 

Therefore node N22 could possibly have a shorter path coming 

from the selected node and this will be checked through option 

b of the algorithm. 

 
Figure 2: Example of the implementation of the least risk path 

algorithm (The underlined nodes have already been selected. Nodes N1 and N22 

will be calculated starting in the selected node). 

 

For each path, the total length and risk values for the 

intermediate nodes are calculated in both the shortest path and 

least risk path algorithm. 

 

Given the fact that the only difference with the Dijkstra 

algorithm is in the cost calculation, and there the additional 

calculations only affect the amount of edges in the selected 

node, the computational complexity is similar to Dijkstra, being 

O(n2). 

 

 

3. INDOOR DATASET 

The algorithms developed require to be thoroughly tested in an 

extensive and complex indoor environment to be a valid 

alternative for outdoor algorithmic testing. Although the authors 

realize that using a single specific building dataset for testing 

can still be too limited to generalize the obtained results, we 

tried to map a building with several features that are quite 

common for many indoor environments. The dataset for our 

tests consist of the ‘Plateau-Rozier’ building of Ghent 

University (Fig. 3). It is a complex multistory building where 

several wings and sections have different floor levels and are 

not immediately accessible. It is assumed that the mapped 

indoor space is complex enough with many corners and 

decision points to assume reasonable wayfinding needs for 

unfamiliar users. Previous research executed in this building has 

shown that even familiar users have considerate difficulty 

recreating a previously shown route through the building 

(Viaene and De Mayer, 2013). 

 
Figure 3: View of the ‘Plateau-Rozier’ building of Ghent 

University (Source: http://www.gentblogt.be/2006/11/22/het-

witte-gebouw) 

 

The dataset is based on CAD floor plans which are transformed 

to ArcGIS shapefiles for additional editing and querying. For 

application of the least risk and shortest path algorithm, the 

original floor plans have to be converted into a three-

dimensional indoor network structure. Automatic derivation of 

indoor networks has long been focused on as one of the 

problematic areas for indoor navigation applications. Recent 

efforts have shown possibilities of automatically assigning 

nodes to each room object and connecting them when they are 

connected in reality (Anagnostopoulos et al., 2005; Meijers et 

al., 2005; Stoffel et al., 2008). However, the development of a 

comprehensive methodology for automatic network creation 

requires a thorough foundation and agreement on the 

appropriate and optimal (i.e. user friendly) network structure of 

indoor environments which supports the user in his navigation 

task (Becker et al., 2009). Therefore, in most existing indoor 

navigation applications, the data is still mostly manually 

transformed into graph structures. As such, we decided to 

manually create the network based on the subdivision into 

separate rooms.  
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N1 
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Figure 4: Floor plan of the ground floor with network 

visualization. 

 
Figure 5: Detail of the ground floor’s network. 

The network structure is chosen to be compliant to Lee’s 

Geometric Network Model (Lee, 2004) as this is one of the 

main accepted indoor data structures. In this model, each room 

is transformed into a node, forming a topologically sound 

connectivity model. Afterwards, this network is transformed 

into a geometric model by creating a subgraph for linear 

phenomena (e.g. corridors), as such enabling network analysis 

(Fig. 5). The position of the node within the room is chosen to 

be the geometrical center point of the polygons defining the 

rooms. This premise implies that the actual walking pattern will 

sometimes not be conform to the connectivity relationships in 

the network inducing small errors in the calculations of shortest 

and least risk paths (as shown in Fig. 5 for nodes 59 and 55). 

We will need to verify whether or not this error is significant in 

the total cost of certain paths. The selection of corridors to be 

transformed into linear features is based on the map text labels 

indicating corridor functionality. These areas also appear to be 

perceived as corridors when inspecting the building structure 

itself in the field. Obviously, this topic is depending on personal 

interpretation and choice. Therefore, in a future part of this 

research, the dependency of the performance of cognitive 

algorithms on the indoor network topology will be investigated. 

 

 

4. IMPLEMENTATION AND ANALYSIS OF LEAST 

RISK PATHS IN INDOOR SPACE 

4.1 Analysis of least risk paths within indoor space 

4.1.1 Analysis of the entire dataset: The entire dataset 

consists of more than 600 nodes and more than 1300 edges 

which required a computation of almost 800.000 paths to 

exhaustively calculate all possible paths between all nodes for 

both the shortest as well as the least risk path algorithm. 

As stated before, we would like to investigate whether least risk 

paths have a similar advantage to shortest paths in terms of 

navigational complexity as in outdoor space. Given the 

definition of least risk paths, we put forward the following 

hypotheses. First, the length of a path described by the least risk 

path algorithm is expected to be equal or longer than shortest 

path. As such, it provides a measure of the detour a wayfinder 

would need to take when using a path that is less difficult to get 

lost on. Second, the risk values of the shortest path will be equal 

or larger than for the least risk path. The least risk paths will 

more likely take routes with fewer intersections, away from the 

major corridors where many choices appear. It will also take 

longer edges while the shortest path will go for the most direct 

option ignoring the complexity of the individual intersections. 

Third, the total risk value for the shortest path will be equal or 

higher than for the least risk paths as this is the minimization 

criterion for the least risk algorithm. Above aspects are analyzed 

in the following paragraphs by comparing paths calculated by 

the least risk path algorithm and those calculated by the Dijkstra 

shortest path algorithm. These results aim to provide an 

indication of the balance struck by the different algorithms 

between the desire for direct routes and less risky routes. 

 
Total Cost 

Difference (m)

Length 

Difference (m)

Risk Value 

Difference (m)

Average 11,11 -4,47 15,59

Min 0,00 -74,63 0,00

Max 135,48 0,00 145,73  
Figure 6: Summary of the entire dataset 

 

On average, the difference in path length for least risk paths is 

around 4,5m with a decrease in risk value of 15,5m. The values 

comparing the Dijkstra algorithm with the least risk path 

algorithm (total risk value minimization) align with the 

hypothesis stated before, with an increase in risk values for 

shortest paths and an increase in length values for least risk 

paths. 

Over the entire dataset, a least risk path is on average 4% longer 

than its respective shortest path (using both the calculations of 

Duckham and Kulik (2003) as well as those from Jiang and Liu 

(2011)). Although 55% of least risk paths are longer than the 

shortest paths, the majority (almost 99%) of the paths are less 

than a quarter longer. A classification of the path differences 

between shortest and least risk paths is shown in Fig. 7. 

 

LengthIncrease Nr of paths % of total paths

Equal 161613 46,74%

5% or > 96491 27,90%

10% or > 45718 13,22%

25% or > 4522 1,31%

50% or > 159 0,05%

Total 345785 100,00%  
Figure 7: Classification of paths 

 

The average path lengths of the shortest and least risk paths 

were almost equal (109,22m to 113,69m with standard 

deviations of 45,89m and 48,74m respectively), intensifying the 

found limited differences on a whole between shortest and least 

risk paths in indoor spaces. 

 

Figure 8 summarizes the entire data set of paths and its 

individual differences. More specifically, it visualizes the 

spatial distribution of the standard deviation for all least risk 

paths starting in that point. The standard deviations have been 

classified in five quintiles (five classes with equal cardinality), 

similar to Duckham and Kulik (2003) analysis. The figure 

shows generally low standard deviations (lighter yellow data 

points) on the first floor and in lesser connected areas of the 

building. The higher standard deviations (dark brown data 

points) generally occur on the ground floor in denser connected 

areas and around staircases both on the ground and first floor. 

This greater variability can be interpreted as a result of the 



 

deviations of the least risk path from the shortest path being 

more pronounced at the rooms with many options like around 

staircases where paths can be significantly different in the final 

route. Starting locations within isolated areas (e.g. on the first 

floor) have no option but to traverse similar areas to reach a 

staircase and deviate from there onwards. 

 

 

 
Figure 8: Spatial distribution of the standard deviation of 

normalized least risk path lengths 

 

The ground floor standard deviations are generally larger due to 

a network with higher complexity and connectivity. This trend 

can also be detected in the classification of the paths and their 

respective increase in length by chosing a less risky road. 80% 

of the longest paths (compared to the shortest path) with an 

increase of 50% or more are found on the ground floor, while 

half of the paths on the first floor are equal to their respective 

shortest path. 

 

4.1.2 Analysis of selected paths: In this section, a few 

example paths are highlighted for further analysis. In figure 9 an 

example shortest and least risk path is calculated and visualized. 

Both the starting and the end point are on the ground floor of 

the building. There is a significant visual difference in path 

choice of the example route. The values in figure 10 show an 

expected lower total risk value for the least risk path with a 

considerable lower risk value at the decision points. The least 

risk path is 43% longer than the shortest path, which minimizes 

its total length. The shortest path has 6 turns in its description, 

while the least risk path requires 7 turns. This example shows a 

‘worst-case scenario’ as it has one of the biggest differences in 

total path length of the entire dataset. While the shortest path 

takes the direct route following main corridors, the least risk 

path avoids certain areas to prevent wayfinders from getting lost 

as easily. However, from this figure, it is not entirely visible 

why the least risk path deviates from the shortest path in favour 

of using its calculated route. It should be tested in the field if 

the route is actually easier and safer for wayfinding. However, 

the authors doubt that this would be the case. Figure 9 is an 

example of why the least risk path indoor might need to be 

differently implemented.  

 
Figure 9: Comparison of a typical shortest and least risk path 

Path type
Risk values of 

decision points (m)

Length of path 

segments (m)

Risk value of the 

entire path (m)

Number of 

turns

Shortest path 274,27 170,80 445,07 6

Least risk path 166,36 245,43 411,79 7  
Figure 10: Comparison of the risk values between an example 

shortest and least risk path 

 

A comparison of the lengths of the least risk and shortest paths 

for one set of paths from a single source to every other vertex in 

the data set is shown in Fig. 11. The figure provides a scatter 

plot of the normalized least risk path length (the ratio of least 

risk to shortest path lengths), plotted against shortest path 

length. In this example, more than 98% of the least risk paths 

are less than 50% longer than the corresponding shortest path. 



 

 
Figure 11: Graph of the ratio of least risk on shortest path 

length to the shortest path length 

 

Most paths are (almost) similar in length to its shortest path 

equivalent. Often only a small change in path choice can be 

found with a difference of only a couple of nodes compared to 

the shortest path. On the other hand, the strongly correlated 

stripes going from top left to bottom right in the graph exhibit 

blocks of correlated paths with very similar path sequences 

throughout their entire route. These occur because many 

adjacent nodes are required to take similar edges to reach their 

destination. This can also be seen in Fig. 9. The nodes within 

the dashed rectangle all take the same route for both their least 

risk and shortest path, resulting in connected ratios in Fig. 11. 

 

4.2 Analysis of indoor least risk paths compared to the 

results in outdoor space 

In this section, several of the data obtained before will be 

compared with the results obtained by the calculations of least 

risk paths by Grum (2005) and simplest paths by Duckham and 

Kulik (2003). We mainly want to investigate whether we can 

draw the same conclusions from our results of the calculations 

in indoor space as those from outdoor space. Also, the question 

is raised if the size of the difference is equivalent to outdoors. 

 

A comparison with the result obtained by Grum (2005) is 

difficult as the author only calculated a single path in outdoor 

space. In both cases, the total risk value for the least risk path is 

minimal and the length is longer than its shortest path. The 

outdoor least risk path is 9% longer than the shortest path, while 

in our dataset an average increase of 4% is detected. However, 

the number of turns in our example path (Fig. 10) is higher for 

the least risk path compared to the shortest path. Other paths in 

our dataset have less turns than their shortest path equivalent. 

This does not seem to match with the results from the outdoor 

variant. An explanation could be that the author only works 

with a limited outdoor dataset. Also, the least risk path indoor 

might have a different connotation because of the description of 

the indoor network. Due to the transformation of the corridor 

nodes to a linear feature with projections for each door opening, 

the network complexity is equivalent to a dense urban network. 

However, the perception for an indoor wayfinder is totally 

different. While in outdoor space each intersection represents a 

decision point; in buildings, the presence of door openings to 

rooms on the side of a corridor is not necessarily perceived as 

single intersection where a choice has to be made. Often these 

long corridors are traversed as if it were a single long edge in 

the network. 

 

Simplest paths have similarly to least risk paths the idea of 

simplifying the navigation task for people in unfamiliar 

environments. The cost function in both simplest and least risk 

paths accounts for structural differences of intersections, but not 

for functional aspects (direction ambiguity, landmarks in 

instructions…) like the simplest instructions algorithm (Richter 

and Duckham, 2008). However, the simplest path algorithm 

does not guarantee when taking one wrong decision that you 

will still easily reach your destination, while the least risk path 

tries to incorporate this while at the same time keeping the 

complexity of the instructions to a minimum. Several of the 

comparison calculations are similar to the ones calculated for 

simplest paths (Duckham and Kulik, 2003). At this point, we 

cannot compare actual values as it covers a different algorithmic 

calculation. In the future, we plan to implement the simplest 

path algorithm also in indoor spaces. However, it might be 

useful at this point to compare general trends obtained in both. 

With regard to the variability of the standard deviations (Fig. 8) 

similar conclusions can be drawn. At the transition between 

denser network areas and more sparse regions, the variability 

tends to increase as a more diverse set of paths can be 

calculated. The sparse and very dense areas have similar ratios 

showing similar network options and path calculations. 

The worst-case example can also be compared to a worst-case 

dataset of the outdoor simplest path. A similar trend in ‘stripes’ 

as found in the graph in Fig. 11 is also found in the outdoor 

simplest path results, also due to sequences of paths that are 

equal for many adjacent nodes. 

 

 

5. RECOMMENDATIONS FOR ADJUSTING THE 

LEAST RISK PATH ALGORITHM 

As the least risk paths in indoor space show not necessarily a 

lowered risk of getting lost, several adjustments to the algorithm 

will be proposed. These will be tested in future research as to 

result in a more cognitively accurate algorithm for wayfinding 

in indoor spaces.  

 

Currently, the risk value of a decision point is calculated based 

on the assumption that the wayfinder recognizes his mistake at 

the first adjacent node and returns from there to the previous 

node. A question could be raised whether it is actually realistic 

that people already notice at the first intersection that they have 

been going wrong. An increasing compounding function could 

be suggested taking into account the possibility of going further 

in the wrong direction. Also, depending on the environmental 

characteristics, the chances of noticing a wrong decision can 

change dramatically. Research shows that landmarks for 

wayfinding are much harder to distinguish indoors than 

outdoors (Millonig et al., 2007). Additionally, the fact that you 

have to walk up and down staircases could be naturally having a 

greater weight because taking a wrong decision might result in 

walking up and down the stairs twice. On the other, chances of 

taking a wrong decision by changing floors are likely to be 

slimmer given the effort for vertical movement and a changed 

cognitive thinking. 

 

In line with this last point, wayfinding research (Hölscher et al., 

2009) showed the strategy choices people make when 

navigating in (un)familiar buildings. This research proves that 

people’s strategy choice indoors varies with different navigation 

tasks. The main strategies for indoor wayfinding are recognized 

as central point strategy, direction strategy and floor strategy. 

Tasks with either a floor change or a building part change result 

in no problems, with the participants first changing to the 



 

correct floor or building part. However, for tasks with changes 

in both vertical and horizontal direction, additional information 

is required to disambiguate the path choice. An algorithm that 

wants to minimize the risk of getting lost in a building 

necessarily needs to account for these general indoor 

wayfinding strategies as they correspond to the natural way of 

multilevel building navigation for all types of participants. 

 

In the current implementation of the least risk path algorithm, 

both the length of the path as well as the sum of the risk values 

at intermediate decision points have an equal weight in the 

calculation of the total risk value. Varying the individual weight 

of both parameters might results in a more cognitively correct 

calculation of the indoor least risk paths. Also, a more 

sophisticated algorithm could select routes that preferentially 

use more important or higher classified edges. 

 

As previously mentioned, the description of the indoor network 

has a large influence on the results of the least risk comparisons. 

The introductions of many dummy nodes in front of doors that 

are not perceived as intersections, introduces a complexity in 

the risk value calculation, which seems to heavily influence our 

results. Therefore, the second stage of this research will 

investigate the importance and size of this dependency of the 

performance of cognitive algorithms on the indoor network 

topology. 

 

 

6. CONCLUSIONS 

In this paper, the least risk path algorithm as developed by 

Grum (2005) in outdoor space is implemented and tested in an 

indoor environment. The results of the tests on an indoor 

dataset show an average increase in path length of 4% compared 

to the shortest paths. Also, the initial hypotheses with respect to 

the ratio of results have proven to be correct. However, it 

appears to be difficult to visually see and understand the actual 

improvement in risk when calculating the total risk. The least 

risk path often passes by a great amount of complex 

intersections with many short edges. These paths will likely not 

be perceived by the wayfinder as less risky compared to the 

shortest path. However, this should be tested in the field. 

Comparisons of our results to the outdoor variant are difficult 

due to limited data outdoor. However, a similar increase in 

length has been found. 

 

Our main conclusions from the analysis suggest that 

improvements to the indoor variant of the least risk algorithm 

are required, given the complexity of the current least risk 

paths. Changes in the calculation of the risk value, together with 

a weighing of the parameters will be tested. Also, the influence 

of the network structure will be investigated in future research 

in a search for optimizing the algorithm to be more compliant to 

the cognitive notion of indoor wayfinding. 
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