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Introduction
Diffraction over a rigid thick barrier can be considered as
a key problem in urban sound propagation applications.
A number of studies dealing with sound diffraction
derived from the geometrical theory of diffraction [1][2]
can be found in literature. Pierce-Hadden method [3] [4],
Kouyoumjian’s method [2] and Kawai’s method [5] are
widely used. Some recent approaches to predict sound
diffraction can be found in [6][7]. Although these theo-
retical methods succeed in accurate predictions, they can
be considered to be too complex for use in engineering
models. As a result, alternative approaches focusing on
efficient implementation and evaluation were developed.
For example, long time ago Maekawa published an
engineering model [8] to calculate the sound reduction
of screens, which can not be used when the source or
receiver are very close to the barrier. Salomons’s approx-
imation [9] includes multiple but suffers when the source
or receiver are close to the same height with the barrier.
Some more recent and widely used engineering methods,
such as ISO9613-2 [10] and Harmonoise model [11][12]
have drawbacks as well. The Dz part in ISO9613-2 often
considerably underestimates the attenuation of a barrier
compared with the long term measurement [16] and
simulation; Harmonoise model overestimate the insertion
loss when the barrier width is small and underestimate
when the frequency is high.

In this paper, we present an efficient and accurate
method to calculate the insertion loss of a rigid thick
barrier by approaching the Fresnel integral with combi-
nation of triangular functions. The formulation is based
on Pierce’s formula [3]. First some engineering methods
are introduced. Afterwards, the new method is explained
in detail. Finally, the complexity, the accuracy and
computational cost of different diffraction formulas are
compared for some test cases. In addition, an efficient
approach to include rigid ground reflections is presented.

New method to calculate Abar

Overview of some commonly used meth-
ods
In this section, an overview of some widely used engi-
neering models is listed. The details of the models can
be found in relevant literature.

Pierce’s diffraction method

In Pierce publication [3], the acoustic pressure at the
receiver position after double diffraction is:

p =
ieikL

L
[f(Y>) − ig(Y>)] [f(BY<) − ig(BY<)] (1)

Y> and Y< are the greater and smaller value of quantities
Ys and Yr. The detailed definitions of the parameters are
specified later.

ISO9613-2

In the ISO9613-2 standard, the attenuation of a barrier
is described as:

Dz = 10 log10 [3 + (C2/λ)C3zKmet] (2)

The definition of C2, C3, z and Kmet can be found in [10].

Harmonoise model

In the Harmonoise model, the Deygout’s diffraction
model is suggested. The description of the method can
be found in [11][12].

No reflection from the ground
Abar,0 is defined as the attenuation of a thick barrier
excluding the presence of the ground. According to the
literature [3, 17, 5, 18], Abar,0 can be expressed by the
following equation (3):

Abar,0 = −10 log10

∣∣∣∣PdiffrPfree

∣∣∣∣2 = −10 log10

([
f2(Ys) + g2(Ys)

])
− 10 log10

([
f2(BYr) + g2(BYr)

])
(3)

Definitions of parameters are shown in figure (1).
Ys and Yr are functions of geometrical positions
and diffraction angles. Ys = γsMνs(βs − φs),
Yr = γrMνr(βr − φr), γs =

√
2rs(w + rr)/(λL),

L =
√

(rs + rr + w)2 + (zs − zr)2, (zs = zr in this

model), B =
√
w(w + rs + rr)/ [(w + rs)(w + rr)] and

Mνs(θ) = cos(νπ)−cos(νθ)
ν sin(νπ) . f(Y ) and g(Y ) are functions

of fresnel integrals as equation (4 and 5) shown [3].

f(Y ) = (
1

2
− S) cos(

1

2
πY 2) − (

1

2
− C) sin(

1

2
πY 2) (4)

g(Y ) = (
1

2
− C) cos(

1

2
πY 2) + (

1

2
− S) sin(

1

2
πY 2) (5)

Simple form for f2 + g2 can be obtained by substituting
the parameters mentioned above into equation (4 and 5).

f2(Y ) + g2(Y ) = C2(Y ) + S2(Y ) − C(Y ) − S(Y ) + 0.5
(6)

Where Y is the input argument; C and S are Fresnel
integrals:

C(x) =

∫ x

0

cos(
π

2
t2)dt =

∞∑
n=0

(−1)
n x4n+3

(2n+ 1)! (4n+ 3)

S(x) =

∫ x

0

sin(
π

2
t2)dt =

∞∑
n=0

(−1)
n x4n+1

(2n)! (4n+ 1)
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Figure 1: Parameters in a wide barrier.

For application in engineering models, calculating the
Fresnel integrals is computationally demanding and dif-
ficult, so they have been approximated by trigonometric
functions. In particular:

C(x) ≈ −0.4

x+ 0.4
cos
(
1.6x2 + 1.2

)
+ 0.5 (7)

S(x) ≈ −0.4

x+ 0.4
sin
(
1.6x2 + 1.2

)
+ 0.5 (8)

These two trigonometric functions fit the Fresnel in-
tegrals well when the input argument is less than 5
as shown in figure (2, 3). When the input argument
is greater than 10, some phase shift can be observed.
However, the quantity will fluctuate much less vigorously.
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Figure 2: Theoretical value versus approximated C(x).
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Figure 3: Theoretical value versus approximated S(x).

Equation (3) with these approximations can be further
simplified to equation (9) by inserting equation (7) and
(8) into equation (3).

Abar,0 ≈ −10 log10

(
0.4

X1 + 0.4

)2(
0.4

X2 + 0.4

)2

(9)

Where X1 = Ys and X2 = BYr when Ys > Yr; X1 = BYs
and X2 = Yr when Ys < Yr;

Reflections from the ground
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Figure 4: Sketch of thick barrier diffraction with ground.

In the previous section, the
∣∣∣pdiffr

pat,L

∣∣∣2 is based on excluding

the presence of the ground. When a reflecting ground
plane is present, the reflections would enhance the sound
pressure level at the receiver position. The contributing
sound path are L0 = rs + W + rr, L1 = r2 + W + rr,
L2 = rs +W + r3 and L3 = r2 +W + r3 (see figure (4)).
To reduce the calculation burden, a simplification is
proposed to avoid calculating four times along similar

sound paths. An idea is to calculate the ratio of
∣∣∣pdiffri

pat,Li

∣∣∣2
between different path with only path L0. Considering
equation (9), we have:∣∣∣pdiffri

pat,Li

∣∣∣2∣∣∣pdiffr0

pat,L0

∣∣∣2 =

∣∣∣∣L0

Li

∣∣∣∣2(Y0> + 0.4

Yi> + 0.4

)2(
BY0< + 0.4

BYi< + 0.4

)2

=

∣∣∣∣L0

Li

∣∣∣∣2(1 +
∆Y0i>
Yi> + 0.4

)2(
1 +

∆BY0i<
BYi< + 0.4

)2

(10)

If the second order small terms are ignored, equation (10)
becomes,∣∣∣pdiffri

pat,Li

∣∣∣2∣∣∣pdiffr0

pat,L0

∣∣∣2 =

∣∣∣∣L0

Li

∣∣∣∣2 [1 + 2

(
∆Y0i>
Yi> + 0.4

+
∆BY0i<
BYi< + 0.4

)]
(11)

Where ∆Y0i> and ∆Y0i< are the difference between Y0>,
Yi> and Y0<, Yi< respectively. ∆Y0i> and ∆Y0i< contain
the information of the diffraction path and angle and they
are supposed to be very small. In our case, the source
is close to the ground, therefore, the image source could
bring little differences in diffraction angle. Then we have,∣∣∣pdiffri

pat,Li

∣∣∣2∣∣∣pdiffr0

pat,L0

∣∣∣2 ≈
∣∣∣∣L0

Li

∣∣∣∣2 (12)

As a result, for the cases with ground reflection, the
sound level referenced to free field at the receiver position
(Abar) can be expressed by equation (13 and 14) accord-
ing to the reciprocity principle applied between image



source and receiver.

Abar,i ≈ Abar,0 − 10 log10

∣∣∣∣L0

Li

∣∣∣∣2 (13)

Abar = −10 log10

3∑
i=0

10−
1
10Abar,i (14)

Where Abar,i = −10 log10

∣∣∣Pdiffr,i

Pfree

∣∣∣2, is the sound level

relative to the free field level. Li is the length of
the diffraction path of the four combinations of source,
receiver, image source, and image receiver. L0 is the
length of the diffraction path between the source and
receiver.

Validation of the approximation
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Figure 5: Comparison with the same case as reference [3]
excluding the ground. Here “angle” is the angle of φr in
degree.

To validate the new method, the same case as the one
mentioned in reference [3] is considered. In this case rs =
10λ, rr = 10λ, w = 10λ, βs = βr = 3

2π, φs = π/4 and φr
changes from 0 to π/2. Figure (5) compares the results
of Pierce (indicated as “P”), Salomons (indicated as
“S”), the approximation of fresnel integral as developed
in the current work (indicated as “F”), “ISO” and
HarmoNoise (indicated as “H”). “F” coincides very well
with “P”. “S” also approaches “P” accurately when the
angle is small. However, when the angle approaches π

2 ,
“S” tends to infinity. “ISO” does not capture the angle
dependency sufficiently and gives a clear offset. “H” is
also a nice approximation of “P” in this case. However,
the approximation of “H” becomes worse when the wave
length is shorter than 30cm, shown in figure (6). The
difference between “H” and “P” is almost 10dB when
λ = 0.17m and the difference will increase with the
decrease of the wave length. The “F” curve becomes
smoother at high frequencies but still coincides well with
“P”.

A full-wave numerical technique (FDTD) is used to
validate the new method in case of the presence of a
rigid ground plane. In this simulation, the source, whose
horizontal distance to the barrier is 4.8m and vertical
distance to the barrier top is 10m, is fixed 1m above
the rigid ground. The receivers are 4.5m to the barrier
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Figure 6: Comparison among different methods excluding
the ground, with φs = π

4
, βs = βr = 3

2
π, rs = 10m, rr = 10m,

w = 10m, λ = 0.17m.
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Figure 7: Comparison between full-wave technique and
calculation. Receiver is 4.37m to ground. “Calculated full”
indicates the insertion loss is calculated by summing up
path L0, L1, L2 and L3 separately. “Calculated simplified”
indicates the value is calculated by equ (13) (14).

and heights relative to the ground are 4.4m and 10.5m.
Both βs and βr are 3π/2. The width of the rigid barrier
is 10m. The barrier diffraction formula coincides well
with the FDTD simulation when receivers are at limited
height relative to the gound plane as shown in figure (7).
However, considerable offset can be observed when the
receiver is at larger heights (figure 8), which is caused by
the neglect of the changes in diffraction angle.

Efficiency comparison
According to the previous analysis, the new method is
accurate in calculating the insertion loss of a wide rigid
barrier. In this section the computational efficiency of
the considered methods is discussed. Figure (9) shows
the calculating speed of the four methods “S”, “H”, “F”
and “P”. “S” is the fastest method but suffers from
inaccuracy. Both “S” and “F” are faster than “H” and
considerably faster than “P”.

Conclusion
A new method is developed based on Pierce’s method
to calculate the insertion loss of a rigid thick barrier.
The model is validated by comparing with the analytic
solution(in absence of a ground plane) and by full-wave
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Figure 8: Comparison between full-wave technique and
calculation. Receiver is 10.51m to ground.
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Figure 9: Comparison of calculating speed. The y-axis
indicates the time ratio over methond “P”

simulations(in presence of a ground plane). The proposed
method was shown to be sufficiently accurate. When φs
or φr or both these angles approach to π/2, no more
extreme values occur. Moreover, the calculating time is
kept very limited. The model can also be generalized to
multiple diffraction cases and for barriers with irregular
shapes.
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