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Abstract—Cooperative communication is a technique that
achieves spatial diversity by exploiting the presence of other
nodes in the network. Most analyses of such networks are
conducted under the simplifying assumption of perfect channel
knowledge. In this paper we focus on the popular Amplify-
and-forward (AF) cooperative protocol. We propose several
SAGE-based iterative algorithms with different complexities for
estimating the channel gain and noise variance in the case oftime-
varying channels. Computer simulations are provided to evaluate
their performance over Rice-fading channels. We point out alow-
complexity estimation algorithm yielding an error perform ance
that (for Rayleigh fading) is only about 0.5 dB worse than in
the case of perfect estimation, while outperforming a pilot-based
estimation algorithm by about 1.5 dB.

I. I NTRODUCTION

Several diversity techniques [1] have been proposed to
counteract the effect of fading on the performance of wireless
communication systems. By exploiting the presence of other
nodes in the network, the cooperative communication model
[2], [3] can achieve spatial diversity, which is particularly
interesting for nodes that can not be equipped with multiple
antennas. The allocated time frame to transmit information
to the destination, is divided into1 + nr slots, of which the
source uses only the first. Thenr remaining slots are used by
nr other nodes, which we will refer to as relays, to transmit to
the destination signals that are related to the informationsent
by the source. Several cooperative protocols are proposed in
literature [2]; here we will consider the Amplify-and-Forward
protocol, where the relays simply retransmit an amplified
version of the the signal they receive.

In literature one often assumes the channel parameters to
be known by the destination when investigating the error
performance of cooperative communications. However, in
real-life scenarios these parameters have to be estimated.In
[4] a Linear Minimum Mean Square Error (LMMSE) channel
estimate based on pilot symbols is proposed for time-varying
Rayleigh-fading channels in AF networks. We extend this
work by (a) considering time-varying Rice-fading channels,
and (b) deriving iterative estimation algorithms of various

complexity that also exploit the data-part of the received
signals for channel estimation.

This paper is organized as follows. The model of the AF
system is described in Section II. Section III presents the
derivation of the pilot-aided and of the iterative channel esti-
mation algorithms. Numerical results regarding the estimator
performance and the frame error rate are given in Section IV.
Finally, conclusions are drawn in section V.

NOTATIONS

All vectors are row vectors, unless mentioned otherwise,
and boldface; the Hermitian transpose, statistical expectation
and estimate of the row vectorx are denoted byxH , E[x]
and x̂ respectively;(X)(k, m) is the (k, m)th element of the
matrix X; the complex conjugate of a scalarx is denotedx∗.

II. SYSTEM DESCRIPTION

In this paper we consider a network, depicted in Fig. 1,
with one relay; the extension to multiple relays is straight-
forward. The channels are affected by time-varying Rice

Fig. 1. Network containing a source S, a relay R and a destination D.

fading, and are characterized by the independent channel
coefficient vectorshi and the independent noise vectorswi

(i ∈ {SD, SR, RD}). Here the elements of the noise vectors
wi are independent zero-mean circular symmetric complex
Gaussian (ZMCSCG) random variables with variancesN0,i.
The subscripts SR, SD and RD refer to the source-relay,
source-destination and relay-destination channels, respectively.
Denoting the carrier-to-multipath ratio (C/M) of the Rice
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fading byλ2/(1−λ2) with λ ∈ [0; 1], the channel coefficients
at epochk can be decomposed as

hi(k) =
√

Hi

(

λiejθi +
√

1 − λ2
i ni(k)

)

,

where ni(k) is ZMCSCG distributed with variance1, θi is
uniformly distributed in (−π, π) and E[|hi|

2] = Hi. The
fading components are time-varying and following [5] we take

Rni
(m) = E[ni(k + m)n∗

i (k)] = J0(2πνim),

with J0(x) the zeroth order Bessel function of the first kind
andνi the normalized maximum Doppler frequency associated
with hi(k). Hence the discrete-time autocorrelation between
the channel coefficientshi(k + m) andhi(k) is

Rhi
(m) = Hi

(

λ2
i + (1 − λ2

i )J0(2πνim)
)

. (1)

During the first time slot the source transmits a vectorc =
(c(1), ..., c(K)) containing Kd data symbols andKp pilot
symbols. The first and the last symbols of the frame are
pilot symbols and the pilot symbols are separated byKs data
symbols (i.e.,K = Kd + Kp), with Es = E[|c(k)|2] denoting
the average energy per symbol. Hence,Kp = Kd/Ks +1 and
ki = 1 + (Ks + 1)(i − 1) denotes the position of the ith pilot
symbol (i=1,...,Kp). The signals received by the destination
and the relay are given by

r
i
= h

i
C + w

i
i ∈ {SD, SR} (2)

whereC is a K × K diagonal matrix withc(k) as the kth

diagonal element. The relay amplifiesr
SR

by a constant factor
γ and transmits the result to the destination during the second
time slot. Imposing the average energy transmitted by the relay
at each epoch to beEr, γ is given by

γ =

√

Er

H
SR

Es + N
0,SR

. (3)

With ⊙ denoting the Hadamard product, the signal received
by the destination is given by

r
RD

= γh
RD

⊙ r
SR

+ w
RD

= h
SRD

C + w
SRD

,

where h
SRD

= h
SR

⊙ h
RD

is the channel gain of the
compound source-relay-destination (SRD) channel and the ele-
ments ofw

SRD
are ZMCSCG distributed with autocorrelation

matrixN
SRD

. The matrixN
SRD

is diagonal with the kth diago-
nal element given byN

SRD
(k) = γ2|h

RD
(k)|2N

0,SR
+N

0,RD
.

Note that the varianceN
SRD

(k) of the noise on the SRD
channel depends on the symbol indexk through|h

RD
(k)|2.

When the channels are known by the destination, maximum-
ratio combining [6] is applied to the data containing parts of
the received signals in order to obtain a sufficient statistic η

for detecting the data from the source, we have

η(k) =
r

SD
(k)h∗

SD
(k)

N
0,SD

+
r

RD
(k)h∗

SRD
(k)

N
SRD

(k)
, (4)

with k restricted to the data symbol positions.

We assume the noise variancesN0,i (i ∈ {SD, SR, RD})
to be known as these are long-term properties of the channels.
From (4) it is then easily seen that estimates ofh

SD
, h

SRD

andN
SRD

are needed at the destination in order to calculate
the sufficient statistic.

III. E STIMATION STRATEGIES

The Maximum a Posteriori (MAP) estimate of a vector
parameterθ = (h

SD
, h

SRD
, N

SRD
) from an observation

r = (r
SD

, r
RD

) in the presence of a nuisance parameterc is
obtained after convergence of the appropriate EM-algorithm

[7], which produces a sequence of estimatesθ̂
(i)

, i = 1, 2, ...
:

θ̂
(i)

= argmax
θ

E

[

ln(p(r|θ, c)p(θ))|r, θ̂
(i−1)

]

, (5)

where the conditional expectation is with respect to the
nuisance parameterc. We will consider the SAGE algorithm
[8] instead of the EM algorithm as it replaces the multi-
dimensional maximization associated with (5) by several
maximizations over mutually exclusive subsets ofθ :

Firstly ĥ
(i)

SD
and ĥ

(i)

SRD
are derived withN

SRD
fixed to its

previous estimateN̂
(i−1)

SRD
. SecondlyN̂

(i)

SRD
is derived with

h
SD

and h
SRD

fixed to ĥ
(i)

SD
and ĥ

(i)

SRD
, respectively. In

order to initialize the SAGE iterations an initial estimateθ̂
(0)

is required. This initial estimate is considered in sectionIII-A.

Considering thatp(θ) andp(r|θ, c) can be decomposed as

p(θ) = p(h
SD

)p(h
SRD

|N
SRD

)p(N
SRD

) (6)

p(r|θ, c) = p(r
SD

|h
SD

, c)p(r
RD

|h
SRD

, N
SRD

, c).

It follows from (5) thath
SD

and(h
SRD

, N
SRD

) are estimated
from r

SD
andr

RD
, respectively. The SAGE-based estimation

of h
SRD

and N
SRD

is detailed in sections III-B and III-C,
respectively. For the sake of saving space, the estimation of
h

SD
is not considered further; the corresponding expressions

can be easily derived from (5).

A. Initial estimates

In literature the estimation of the noise varianceN
SRD

(k)
is mostly taken equal to its averageN

SRD,avg
over the fading

statistics, and we will do the same for the initial estimate
: N̂

(0)

SRD
(k) = N

SRD,avg, where N
SRD,avg = γ2H

RD
N

0,SR
+

N
0,RD

. The initial estimateĥ
(0)

SRD
is obtained in two steps.

Firstly, a pilot-based ML channel coefficient estimate at the
positionki corresponding to the ith pilot symbol is computed
[9]:

ĥ
(0)

SRD
(ki) =

r
RD

(ki)c
∗(ki)

|c(ki)|2
.



Secondly, by applying LMMSE filtering [10] of the estimates
{

ĥ
(0)

SRD
(ki)

}

, the estimatêh
(0)

SRD
is obtained

ĥ
(0)

SRD
= p̂A, (7)

wherep̂ denotes the row vector that contains theKp estimates
{

ĥ
(0)

SRD
(ki)

}

, A is a Kp × K matrix given by

A = R
−1
p̂p̂

R
p̂h

,

while the Kp × K matrix R
p̂h

and theKp × Kp matrix
R

p̂p̂
are defined asR

p̂h
= E[p̂H

h
SRD

] andR
p̂p̂

= E[p̂H
p̂],

respectively. It is easily verified that

R
p̂h

(i, j) = Rh
SRD

(ki, j)

R
p̂p̂

(i, j) = Rh
SRD

(ki, kj) +
γ2H

RD
N0,SR

+ N0,RD

Es

δ
i,j

,

with δ
i,j

denoting the Kronecker delta, and

Rh
SRD

(k, m) = γ2Rh
SR

(k − m)Rh
RD

(k − m),

where the correlation functionsRh
SR

andRh
RD

are according
to (1).

B. SAGE estimation ofh
SRD

As the distributionp(h
SRD

|N
SRD

) in (6), needed in the first
step of the SAGE algorithm to update the estimate ofh

SRD
,

is difficult to obtain, we will consider several approximation
strategies.

1) Strategy S1 : ’approximate MAP’: In strategy S1,
p(h

SRD
|N

SRD
) is approximated by the marginal distribution

p(h
SRD

), which in turn is approximated as a ZMCSCG
distribution with autocorrelation matrixRh

SRD
. In this case

one can verify from (5) that̂h
(i)

SRD,S1
is given by

r
RD

U
(i),H

N̂

(i−1),−1

SRD
Rh

SRD

(

Σ
(i)

N̂

(i−1),−1

SRD
Rh

SRD
+ I

K

)
−1

,

(8)

whereU
(i)

and Σ
(i)

are diagonal (KxK) matrices, with the
kth diagonal element given by

µ
(i)

(k) = E
[

c(k)
∣

∣

∣
r

SR
, r

RD
, θ

(i−1)
]

, (9)

σ
(i)

(k) = E
[

|c(k)|2
∣

∣

∣
r

SR
, r

RD
, θ

(i−1)
]

. (10)

Both µ
(i)

(k) andσ
(i)

(k) are easily derived from the marginal
a posteriori probabilities (APPs) of the coded symbolsc(k),
which are obtainable by message passing on a factor graph.
As compared to the pilot based estimates, the computational
complexity increases significantly as each iteration requires (a)
a decoding step to obtain the APPs and (b) the inversion of a
(KxK) matrix (see (8)).

Strategy S2 : ’reduced complexity approximate MAP’:The
complexity associated with calculating the inverse of a (KxK)
matrix is of the orderK3. To reduce this complexity associated
with strategy S1, we divide the slot ofK symbols intoNit

subslots ofKit symbols each (withK = NitKit) and assume
that the channel gains in a subslot are independent from
the gains in other subslots. Application of the approximate
MAP strategy to each of the individual subslots requires
Nit inversions of aKit × Kit matrix, yielding a complexity
reduction by a factor(Nit)

2 as compared to strategy S1. Note
that the calculation ofµ

(i)

(k) andσ
(i)

(k) is still according to
(9) and (10).

Strategy S3 : ’ML’: Removing from (5) the a priori distri-
bution p(θ), the resulting EM/SAGE algorithm converges to
the maximum-likelihood (ML) estimate. In the ith iteration, the
estimate is given by

ĥ
(i)

SRD,ML
= r

RD
U

(i),H

Σ
(i),−1

. (11)

Note that (11) does not exploit the correlation of the channel
coefficients. This ML estimate can be calculated element wise,
becauseΣ

(i)

is diagonal.
Strategy S4 : ’Filtered ML’: Similar to the case of pilot

based ML estimates, LMMSE filtering can be applied to
the ’ML’ estimate from (11) to take the time-correlation
of the channel gains into account. This requires the calcu-

lation of the correlation matricesE[ĥ
(i),H

SRD,ML
h

SRD,ML
] and

E[ĥ
(i),H

SRD,ML
ĥ

SRD
]. However, due to the presence ofµ

(i)

(k)

and σ
(i)

(k), it is not possible to obtain closed form expres-
sions. We will therefore calculate these correlation matrices
under the simplifying assumption thatµ

(i)

(k) andσ
(i)

(k) can
be replaced byc(k) andEs, respectively; this yields

ĥ
(i)

SRD,S4
= ĥ

(i)

SRD,ML

(

Rh
SRD

+
N

SRD,avg

Es

I
K

)

−1

Rh
SRD

.

(12)

To interpret the result (12), we rewrite the estimateĥ
(i)

SRD,S1

from (8) as

ĥ
(i)

SRD,S1
= ĥ

(i)

SRD,ML

(

Rh
SRD

+ N̂

(i−1)

SRD
Σ

(i),−1

)

−1

R
−1

h
SRD

.

From the above expressions it follows that the ’filtered
ML’ estimator is obtained from the ’approximated MAP’

estimator when making the assumption thatN̂

(i−1)

SRD
is equal

to N
SRD,avgΣ

(i)

/Es.

It is now very important to notice that for computing (12)
only the diagonal matrixΣ

(i)

must be inverted at each iter-
ation (see (11)). Hence, the computational complexity of the
’filtered ML’ estimate is significantly lower than when using
the ’approximated MAP’ or ’reduced complexity approximate
MAP’estimator.



C. Estimation ofN
SRD

During the SAGE iterations we also assume the noise
variance to be time invariant, but we will exploit the newly
obtained knowledge on the unknown data symbols, i.e. (9)
and (10). One can verify that in this case the SAGE-based

ML estimation of the diagonal elements ofN̂

(i)

SRD
, using (5)

with p(θ) removed, gives rise to

|r
RD

− ĥ
(i)

SRD
U

(i)

|2 + ĥ
(i)

SRD

(

Σ
(i)

− U
(i)

U
(i),H

)

ĥ
(i),H

SRD

K
,

(13)

whereĥ
(i)

SRD
is the channel gain estimate according to the con-

sidered strategy (S1,S2,S3,S4). For the ML estimation strategy
S3 we obtain from (see (11))

|r
RD

− ĥ
(i)

SRD
U

(i)

|2 = |r
RD

− r
RD

Σ
(i),−1

U
(i)

U
(i),H

|2

= |r
RD

Σ
(i),−1

(

Σ
(i)

− U
(i)

U
(i),H

)

|2.

Taking into account that(Σ
(i)

− U
(i)

U
(i),H

) converges to0
in the high SNR region, estimatingN

SRD
according to (13)

yields a poor performance. Therefor, for strategyS3 we will

not update the estimate ofN
SRD

, i.e. N̂
(i)

SRD
= N̂

(0)

SRD
.

IV. SIMULATION RESULTS

In this section we invesstigate the performance of the
different estimation strategies in terms of mean-square
estimation error (MSEE) and frame error rate (FER).
Defining SNR

SD
= EsHSD

/N
0,SD

, SNR
SR

= EsHSR
/N

0,SR

and SNR
RD

= ErHRD
/N

0,RD
, we assume that (a) the

maximum Doppler frequency is the same in all channels and
equal to 0.01 and (b) SNR

SR
=SNR

RD
=2 SNR

SD
, indicating

that both SNR
SR

and SNR
RD

are 3dB higher than SNR
SD

.
It is to be understood that when SNR

SD
changes, SNR

SR

and SNR
RD

are modified accordingly, maintaining the 3 dB
difference with SNR

SD
.

Unless mentioned otherwise, the data is encoded at the
source using a non-recursive rate 1/2 convolutional code
with generating polynomials(15, 17)8 [11] and is decoded at
the destination by means of the Viterbi algorithm [12] after
convergence of the SAGE iterations. At each SAGE iteration,
the symbol a posteriori probabilities needed to compute the
moments (9) and (10) are obtained from the BCJR algorithm
[13], which is about three times as complex as the Viterbi
algorithm.

A. ’reduced complexity approximation MAP’ : Influence of
Nit

As argued before, the computational complexity of the
SAGE algorithm can be reduced by dividing the RD slot in
Nit subslots, which the estimator considers uncorrelated. Fig.
2 depicts the FER for several values ofN

it
. Observe that

reducing the computational complexity in (8) by a factor 64
(N

it
=8) results in a loss of about only 0.6 dB as compared to

’approximate MAP’ estimation (N
it

=1).

10 11 12 13 14 15 16

10
−2

10
−1

SNR
SD

 (dB)

F
E

R

 

 

Pilot based

N
it
 = 8

N
it
 = 4

N
it
 = 1

Known channel

Fig. 2. C/M=−∞ dB, 2 SAGE iterations,Kd=200,Ks=10, 4QAM

B. Estimation ofh
SRD

Fig. 3 depicts a segment of a realization of the real part of
h

SRD
along with its estimates corresponding to the different

strategies, as a function of the symbol index. The correspond-

80 85 90 95 100 105 110

0
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1.5

Symbol index

ℜ
{h

S
R

D
}

 

 

ℜ{h
SRD

}

’MAP’

’MAP −’ , N
it
 = 4

’ML’

’ML+’

Fig. 3. C/M=−∞ dB, 1 SAGE iterations,Kd=180,Ks=12, 16QAM

ing normalized MSEE (w.r.t.E[|h
SRD

|2]) is shown in Fig.
4. Observe that, (i) the most complex strategy (S1) yields
the smallest MSEE, (ii) the estimate resulting from strategy
S2 is discontinuous at the edges of the subblocks (hence,
Nit−1 discontinuities occur in each slot), (iii) the ML estimate
(strategy S3) exhibits large fluctuations and the largest MSEE,
because the estimate (11) does not exploit the time-correlation
of h

SRD
and (iv) by exploiting this time-correlation, strategy

S4 results in a significant improvement, but the more complex
strategies S1-S2 yield a slightly lower MSEE.
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Fig. 4. C/M=−∞ dB, 3 SAGE iterations,Kd=180,Ks=12, 16QAM



C. Estimation ofN
SRD

Regarding the estimation ofN
SRD

, Fig. 5 depicts the
normalized MSEE (w.r.t.E[|N

SRD
|2]). Except for strategy
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Fig. 5. C/M=−∞ dB, 3 SAGE iterations,Kd=180,Ks=12, 16QAM

S3 which does not update the noise variance estimate, all
other algorithms estimateN

SRD
according to (13) and similar

MSEEs are observed.

D. FER

With C/M=−∞dB (Rayleigh fading) and C/M=5dB, the
FER for several estimation strategies is depicted in Fig. 6
and 7, respectively. In successive SAGE iterations smaller
FER values are obtained, and convergence is achieved after
only 3 iterations. The ’approximate MAP’ estimator (strategy
S1) performs slightly better than the ’filtered ML’ estimator
(strategy S4), but the latter has a much smaller complexity.
Both algorithms yield an improvement of over 1.5dB as
compared to the system (proposed in [4]) that uses pilot-based
estimates only. Note that although the ML estimate is clearly
worse than the pilot-based estimate in terms of MSEE, the
ML estimator slightly outperforms the pilot-based estimator
in terms of FER.
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Fig. 6. C/M=−∞dB, 3 SAGE iterations,Kd=180,Ks=10, 16QAM

V. CONCLUSIONS

In this contribution we derived several SAGE-based iterative
channel estimation algorithms for time-varying Rice fading
AF networks. We showed that a low-complexity filtering of
the ML channel coefficient estimate yields a performance very
close to the considerably more complex ’approximately MAP’
estimate, and clearly outperforms the system that uses pilot-
based estimates.
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Fig. 7. C/M= 5dB, 3 SAGE iterations,Kd=180,Ks=10, 16QAM
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