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Abstract—Cooperative communication is a technique that complexity that also exploit the data-part of the received
achieves spatial diversity by exploiting the presence of ber sjignals for channel estimation.
nodes in the network. Most analyses of such networks are

conducted under the simplifying assumption of perfect chanel . . .
knowledge. In this paper we focus on the popular Amplify- This paper is organized as follows. The model of the AF

and-forward (AF) cooperative protocol. We propose several System is described in Section Il. Section Il presents the
SAGE-based iterative algorithms with different complexities for ~ derivation of the pilot-aided and of the iterative channsti-e

estimating the channel gain and noise variance in the case bifne-  mation algorithms. Numerical results regarding the estima

varying channels. Computer simulations are provided to eviate ot mance and the frame error rate are given in Section IV,
their performance over Rice-fading channels. We point out dow- . . . .
Finally, conclusions are drawn in section V.

complexity estimation algorithm yielding an error performance
that (for Rayleigh fading) is only about 0.5 dB worse than in
the case of perfect estimation, while outperforming a pilotbased NOTATIONS
estimation algorithm by about 1.5 dB. All vectors are row vectors, unless mentioned otherwise,
and boldface; the Hermitian transpose, statistical exiect
and estimate of the row vectar are denoted byc”, E[z]
Several diversity techniques [1] have been proposed 4ad i respectively;X)(k, m) is the (k, m)th element of the
counteract the effect of fading on the performance of weglematrix X; the complex conjugate of a scalaris denotedz*.
communication systems. By exploiting the presence of other

nodes in the network, the cooperative communication model Il. SYSTEM DESCRIPTION

[2], [3] can achieve spatial diversity, which is particljar |n this paper we consider a network, depicted in Fig. 1,
interesting for nodes that can not be equipped with multipigith one relay; the extension to multiple relays is straight

to the destination, is divided intd + n, slots, of which the

source uses only the first. Thg remaining slots are used by

I. INTRODUCTION

——— First time slot

n,. other nodes, which we will refer to as relays, to transmit to heo — - Second time slot
the destination signals that are related to the informagiemt hex =<

by the source. Several cooperative protocols are propased i =

literature [2]; here we will consider the Amplify-and-Fcawal S Rso @
protocol, where the relays simply retransmit an amplified

version of the the signal they receive. ) . »
Fig. 1. Network containing a source S, a relay R and a degtim&.

In literature one often assumes the channel parameters to
be known by the destination when investigating the erréading, and are characterized by the independent channel
performance of cooperative communications. However, aoefficient vectorsh; and the independent noise vectars
real-life scenarios these parameters have to be estimiated(: € {SD, SR, RD}). Here the elements of the noise vectors
[4] a Linear Minimum Mean Square Error (LMMSE) channetv; are independent zero-mean circular symmetric complex
estimate based on pilot symbols is proposed for time-varyiaussian (ZMCSCG) random variables with varianggs;.
Rayleigh-fading channels in AF networks. We extend thiBhe subscripts SR, SD and RD refer to the source-relay,
work by (a) considering time-varying Rice-fading channelsource-destination and relay-destination channelsectisely.
and (b) deriving iterative estimation algorithms of vagouDenoting the carrier-to-multipath ratio (C/M) of the Rice
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fading by A\? /(1 — \?) with X € [0; 1], the channel coefficients with k restricted to the data symbol positions.
at epochk can be decomposed as
We assume the noise varianchs; (i € {SD, SR, RD})
hi(k) = \/E ()\,-ef"i +4/1— A?ni(k)) , to be known as these are long-term properties of the channels
From (4) it is then easily seen that estimateshQf,, k.,
where n;(k) is ZMCSCG distributed with variancg, §; is and N, are needed at the destination in order to calculate
uniformly distributed in (7, 7) and E[|h;|?] = H,. The the sufficient statistic.
fading components are time-varying and following [5] wedgak

Ill. ESTIMATION STRATEGIES
R,,(m) = E[n;(k + m)n; (k)] = Jo(2nv;m),

The Maximum a Posteriori (MAP) estimate of a vector
grametere = (hyp,hs.,, Nsn,) from an observation
= (r,,,T,p) IN the presence of a nuisance parametés
ined after convergence of the appropriate EM-algarith

[7], which produces a sequence of estima@g%, i1=1,2,..

with Jy(z) the zeroth order Bessel function of the first kin
andy; the normalized maximum Doppler frequency associat
with h;(k). Hence the discrete-time autocorrelation betvve%rb:a
the channel coefficients; (k + m) and h;(k) is

Ry, (m) = H; ()\12 +(1- A?)J@(Zﬂyim)) . (1)

During the first time slot the source transmits a veator 6" = argmaxE 1n(p(r|0,c)p(gmr,é(i’l)} )
(c(1),...,c(K)) containing K, data symbols ands,, pilot o
symbols. The first and the last symbols of the frame ajghere the conditional expectation is with respect to the
pilot symbols and the pilot symbols are separaQtecngdgta nuisance parameter. We will consider the SAGE algorithm
symbols (i.e.K = K4+ Kp), with E; = Ef|c(k)|”] denoting [g] instead of the EM algorithm as it replaces the multi-
the average energy per symbol. Heng, = K4/K, +1and  gimensional maximization associated with (5) by several
ki :bl I+((Ks + 1))(2 _hl) denotles the Dozlt'k;)n ?]f ”:jg] pilot  maximizations over mutually exclusive subsets 6f :
symbol (i=1,...K,). The signals received by the destination.. p (1) - () . . . .

p rI‘:|rstly h,, andh__  are derived W|thN fixed to its

and the relay are given by ) ] 2R @) ) .
previous estimateV__ . SecondlyN__  is derived with
h,, and h,,, fixed to H(SZJ)D and fz(;RD, respectively. In

whereC is a K x K diagonal matrix withc(k) as the K order to initialize the SAGE iterations an initial estimate’
diagonal element. The relay amplifies,, by a constant factor is required. This initial estimate is considered in sectibu.
~ and transmits the result to the destination during the sicon

time slot. Imposing the average energy transmitted by g re  Considering thap(8) andp(r|6, c) can be decomposed as
at each epoch to bg&'., v is given by

E p(e) = p(hSD)p(hSRD |NSRD )p(NSRD) (6)
= — 0, = Dh’D7 RDhRD7NRD’ :
0 “HSRES”FNO,SR 3 p(Tl c) p(Ts | s C)p(T | s s c)
It follows from (5) thath, and(h,,, N,,) are estimated

With ® denoting the Hadamard product, the signal receiv¢=f-d respectively. The SAGE-based estimation

oo T romr,, andr,,,
by the destination is given by of h,,, and N, is detailed in sections IlI-B and IlI-C,

Py =Yhu, O, Fw,, respectively. For the sake of saving space, the estimation o
h_, is not considered further; the corresponding expressions
can be easily derived from (5).

SRD

r,=h,C+w, ic{SD,SR} (2

= hSRDC + Wypp,

where h,, = h,, © h,, is the channel gain of the
compound source-relay-destination (SRD) channel andi#he eA. Initial estimates
ments ofw,, are ZMCSCG distributed with autocorrelation

matrix N ., . The matrixN is diagonal with the K diago- . : ;
S SR g 9 s mostly taken equal to its average,,,,, ,,, over the fading

nal element given bWSRD (k) = ,)/2|hRD (k)|2No,SR +NO,RD' icti i initi i
Note that the varianceV,, . (k) of the noise on the SRD stqu(%)tlcs, and we will do the same for th2e initial estimate
:N_ (k) = N where Ny p, o = V' Hpp Ny sr +
0

channel depends on the symbol indexhrough|h,, (k)|?. SRD SED,avg? R
When the channels are known by the destination, maximuV; ,.,,. The initial estimateh___ is obtained in two steps.
ratio combining [6] is applied to the data containing patits d-irstly, a pilot-based ML channel coefficient estimate at th

the received signals in order to obtain a sufficient statigti positionk; corresponding to the"i pilot symbol is computed

In literature the estimation of the noise varian¥e,, , (k)

for detecting the data from the source, we have [9]:
rop (R)RE_(E) 1o (B)RE (k) (0 g (ki)™ (k;)
k) = SD SD RD SRD , 4 h ki _ _RD\™ 1
=N Noro (k) @ N TSI



Secondly, by applying LMMSE filtering [10] of the estimates Strategy $: 'reduced complexity approximate MAPThe

{h;o;D( )} the est|matdz __ is obtained complexity associated with calculating the inverse oka )
matrix is of the ordeds®. To reduce this complexity associated
O with strategy $, we divide the slot ofK' symbols intoN;;
h,..,B =DA, (7) subslots ofK;; symbols each (withk' = N;; K;;) and assume

. ) ) that the channel gains in a subslot are independent from
wherep denotes the row vector that contains &g estimates the gains in other subslots. Application of the approximate

{fl(so;D(ki)}, A is a K, x K matrix given by MAP strategy to each of the individual subslots requires
N;; inversions of akK;; x K;; matrix, yielding a complexity
A=R leph reduction by a facto(Nit)Q as compared to strategy.SNote

that the calculation of'” (k) ando"" (k) is still according to
while the K;, x K matrix R,, and the K;, x K, matrix (9) and (10).

R,, are defined aR,, = E[p"h,,,] andR,, = E[f)Hf’] Strategy $: 'ML: Removing from (5) the a priori distri-
respectively. It is easily verified that bution p(#), the resulting EM/SAGE algorithm converges to
o , the maximum-likelihood (ML) estimate. In th# iteration, the
R,.(6:7) = Rug,,, (ki j) , estimate is given by
Ri,i,(i,j) _ RhSRD (ki ;) + Y HypNosg + Nogo 57,,1’ @ o
E, cmoan =TT (11)

with 9, ; denoting the Kronecker delta, and Note that (11) does not exploit the correlation of the channe

Ri.  (k,m)=~*Rn. (k—m)Ry,_(k—m), coeﬁiciengqs). This ML estimate can be calculated elemeng wis
SRD SR ap becauses  is diagonal.
where the correlation functiorRhSR andRhRD are according  Strategy % : 'Filtered ML: Similar to the case of pilot
to (1). based ML estimates, LMMSE filtering can be applied to
the 'ML estimate from (11) to take the time-correlation
B. SAGE estimation di, of the channel gains into account. This requires the calcu-

(i), H
As the distributiorp(h.,,|IN . ,.,,) in (6), needed in the first 'a“o(”) gf the correlation matrice®(h,,,, ., Psnp.ni

step of the SAGE algorithm to update the estimaté:of ,, E[hSRD,MLfLSRD]- However, due to the presence pﬁ” (k)

is difficult to obtain, we will consider several approxin@ati ang s (k), it is not possible to obtain closed form expres-
strategies. . sions. We will therefore calculate these correlation masi
1) Strategy $ : 'approximate MAP’: In strategy S1, under the simplifying assumption that” (k) ando'" (k) can

P(hsnp|Ngpp) is approximated by the marginal distributionpe replaced by:(k) and E;, respectively; this yields
p(hgpp), Which in turn is approximated as a ZMCSCG

] and

distribution with autocorrelation matriRy, . In this case NO) NO) Nepp -1
. e SRD,Sy = hSRD.ML Rh + T’glk Rh
one can verify from (5) thahSRD . is given by ’ s 12)
(i), H . (=1 (4) L (i—1),—1 - ()
repU o Ngp R, <E sno Rugp, Tl |5 To interpret the result (12), we rewrite the estimatg, ,
(8) from (8) as
(@ @ . , , NO! (D) LG\ T
whereU = andX  are diagonal X xK) matrices, with the h ., .=hg .. (RhSRD +N_ X > R;,
k" diagonal element given by o ’ SRD
(i) (i-1) From the above expressions it follows that the ‘filtered
(k) = E [CUC) Ton:Trp) 0 }’ ) ML estimator is obtained from the ‘approximated MAP"
o (k) =E {|c(k)|2 rSR,rRD,O(H)} . (10) estimator when making the assumption tIIiaStRD is equal
(4)

to NSRD,ang /E
Both u"”’ (k) ando'” (k) are easily derived from the marginal
a posteriori probabilities (APPs) of the coded symbdls), It is now very |mportant to notice that for computing (12)
which are obtainable by message passing on a factor graphly the diagonal matrix>”’ must be inverted at each iter-
As compared to the pilot based estimates, the computatioatibn (see (11)). Hence, the computational complexity ef th
complexity increases significantly as each iteration nexcpufa) ‘filtered ML’ estimate is significantly lower than when using
a decoding step to obtain the APPs and (b) the inversion offee 'approximated MAP’ or 'reduced complexity approximate
(KxK) matrix (see (8)). MAP’estimator.



C. Estimation oiN,, |
During the SAGE iterations we also assume the noi:m_[' :
variance to be time invariant, but we will exploit the newly
obtained knowledge on the unknown data symbols, i.e. (E
and (10). One can verify that in this case the SAGE-bas

A I
using (5) ., -

—©—Pilot based

G
ML estimation of the diagonal elements b, 10k
with p(@) removed, gives rise to :
NO) (1) . () i (i) (i), H (), H 10 13
|’I“RD —hSRDU |2+hSRD (Z() -U u )hSRD SNR,, (dB)

K Fig. 2. C/M=—o0 dB, 2 SAGE iterations/;=200, Ks=10, 4QAM

(13)
A (1)
whereh__ is the channel gain estimate according to the con-
sidered strategy (S5,%3,Sy). For the ML estimation strategy B. Estimation ofh,,
S; we obtain from (see (11))
~ (i) (4)

h, U

|TRD - SRD |

_ v Fig. 3 depicts a segment of a realization of the real part of
2y~ 2T U U h,,,, along with its estimates corresponding to the different

s (E(” UmU(i),H) 2 strategies, as a function of the symbol index. The corredpon

(i), H

= |TRD

Taking into account tha(Em - U(”UW’H) converges td)  15;
in the high SNR region, estimatinly,,,,, according to (13) Lo
yields a poor performance. Therefor,( f)or strat(@;ywe will 1 |

LG 0 Ll

i““‘SRD)

RD NSRD'

not update the estimate of,,, i.e. N
IV. SIMULATION RESULTS

In this section we invesstigate the performance of tt of

different estimation strategies in terms of mean-squa ‘ ST ‘ MR ‘
80 85 20 95 100 105 110

estimation error (MSEE) and frame error rate (FER Symbol index
Deﬁning SN%D = ESHSD/NU,SD' SNRSR = ESHSR/NU,SR
and SNR?D — E’!‘HRD/NU ~p, We assume that (a) the Fig. 3. C/M=—o0 dB, 1 SAGE iterationsK;=180, Ks=12, 16QAM

maximum Doppler frequency is the same in all channels and
equal to 0.01 and (b) SNR=SNR,,=2 SNR,,, indicating
that both SNR,, and SNR,, are 3dB higher than SNR.
It is to be understood that when SNR changes, SNR,
and SNR,, are modified accordingly, maintaining the 3 d
difference with SNR,,.

ing normalized MSEE (W.r.tE[|h,,,|?]) is shown in Fig.

4. Observe that, (i) the most complex strategy)(Sields

the smallest MSEE, (ii) the estimate resulting from strateg
BSQ is discontinuous at the edges of the subblocks (hence,
N;;—1 discontinuities occur in each slot), (iii) the ML estimate

glstrategy ) exhibits large fluctuations and the largest MSEE,

Unless mentioned otherwise, the data is encoded at the

ecause the estimate (11) does not exploit the time-ctioela

source using a non-recursive rate 1/2 convolutional code and (iv) by exploiting this time-correlation, strategy
H H 1 1 SRD !
with generating polynomialgL5, 17)s [11] and is decoded at Sy results in a significant improvement, but the more complex

the destination by means of the Viterbi algorithm [12] after . ; :
convergence of the SAGE iterations. At each SAGE iteratioﬁt,rategles £, yield a slightly lower MSEE.

the symbol a posteriori probabilities needed to compute the
moments (9) and (10) are obtained from the BCJR algorith '° = !

[13], which is about three times as complex as the Viter\ff’ o | o Srateay s,
algorithm . g '  --g- Strategy S, N,=2| =" —-—
. i i ‘Té -2| ; --9--Strategy Sa B
A. 'reduced complexity approximation MAP’ : Influence o;)"’ : e Strategys, | ]
N; = '
(3

As argued before, the computational complexity of thg
SAGE algorithm can be reduced by dividing the RD slot i2"® | :
N;: subslots, which the estimator considers uncorrelated. F 14 15 16
2 depicts the FER for several values df,. Observe that
reducing the computational complexity in (8) by a factor 64 Fig. 4. c/M=—oc dB, 3 SAGE iterations/ 4=180, K =12, 16QAM
(IV,,=8) results in a loss of about only 0.6 dB as compared to
‘approximate MAP’ estimation/{,,=1).

17
SNR; (dB)



C. Estimation ofN 107 ‘ ;

— Pilot based
Regarding the estimation oiN,,.,, Fig. 5 depicts the —=— Strategy S,
normalized MSEE (w.rtE[|N.,,|?]). Except for strategy

—o- - Strategy S3
- —+-. Strategy S4
—6—Known Channel

E10_2;
e
5
210
o
°
Q
5
e 10'3 Il Il Il Il Il
§ . 12 13 14 15 16 17 18
210_0,57 —Pilot based, Strategy 53 i SNRsn (dB)
3 —o- Strategy S,
N — . . .
F ~m- Strategy S, Ny=2 Fig. 7. C/M= 5dB, 3 SAGE iterationsik ;=180, K s=10, 16QAM
H +Strategys4
-4
Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20

SNRSD (dB)
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V. CONCLUSIONS

In this contribution we derived several SAGE-based iteeati
channel estimation algorithms for time-varying Rice fagin
AF networks. We showed that a low-complexity filtering of
the ML channel coefficient estimate yields a performancg ver
close to the considerably more complex 'approximately MAP’
estimate, and clearly outperforms the system that use§ pilo
based estimates.



