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Abstract. WC-Co based cemented carbides are widely used in technical applications, in which they 

are exposed to complex thermo-mechanical loadings. Previous research work has demonstrated that 

these materials exhibit a lifetime-limiting fatigue sensitivity at room temperature. This investigation 

is focused on the influence of heating as a result of friction of pin-on-plate tribocouples. WC-Co 

samples have been manufactured and surface finished by wire-EDM and grinding. Reciprocative 

dry friction experiments are performed under various loading conditions and sliding velocities. 

Correlations are established between the bulk temperature rise of the test samples and the imposed 

test conditions, material properties, surface conditions and coefficient of friction. Topographies and 

cross-section views of the tested samples were examined by SEM, revealing temperature dependent 

wear mechanisms, including binder phase modification. 

Introduction 

A growing trend in industry is dry machining, in order to reduce environmental and production 

costs [1,2]. WC-Co cemented carbides are extensively used as tool materials in machining and 

forming of metals and alloys, as they display an exceptional combination of superior wear resistance 

and excellent toughness. However, some of their attractive properties may deteriorate as a result of 

extremely high cutting temperatures induced by frictional heating, in case of machining without any 

cutting fluid [3]. 

The aim of this paper was to investigate the influence of heating as a result of dry friction 

between WC-Co/WC-Co cemented carbide sliding couples. Systematic pin-on-plate experiments 

were performed using a small-scale tribometer, at different starting temperatures and initial surface 

finishing conditions, applying various contact loads and oscillating speeds. At the same time, bulk 

temperature measurements were conducted on the WC-Co test samples. Scanning electron 

micrographs of the tested samples revealed the occurrence of temperature dependent wear 

mechanisms, including binder phase modification. 

Experimental 

WC-Co cemented carbides. The cemented carbide grades consist of hard WC grains, cemented in 

a binder matrix of tough Co by liquid phase sintering. They were manufactured by wire-EDM 

(ROBOFIL 2030SI, Charmilles Technologies) or grinding (JF415DS, Jung, Göppingen, Germany) 

with a diamond grinding wheel (type MD4075B55, Wendt Boart, Brussels, Belgium). More details 

about the EDM parameters and the concomitant surface roughnesses, together with the chemical, 

physical, mechanical and microstructural properties of the WC-Co cemented carbide are described 

elsewhere [4,5]. In this paper, one rough and one fine EDM cut, as well as ground surface finishes 

were selected for dry sliding experiments. 
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Testing procedure. The impact of frictional heating as a result of dry sliding between WC-Co 

cemented carbides was examined using a reciprocative sliding wear test, according to an ASTM 

G133 pin-on-plate system. The tip of the pins was a hemisphere, with average rounding radius and 

roughness parameters Ra and Rt of 4.08 mm, 0.35 µm and 2.68 µm respectively. The counter plates 

(width 38 mm, length 58 mm, thickness 4 mm) are fixed to a stationary specimen holder. The 

temperature was monitored by (i) a K-type NiCr/NiAl thermocouple (T1) welded at the top of the 

plate specimen, (ii) a temperature sensor (T2) under the plate sample, incorporated in the tribometer, 

and (iii) two distinctive infrared based heat reflection measuring devices (T3 and T4), pointed at the 

sliding contact. 

Normal loads and sliding velocities of 15 up to 50 N and 0.3 up to 0.9 m/s respectively were 

applied. The stroke length of the oscillating motion was 15 mm. Before each test, the specimens 

were cleaned ultrasonically with acetone. The wear scars were analysed by scanning electron 

microscopy (SEM, XL-30 FEG, FEI, The Netherlands), equipped with an energy dispersion X-ray 

spectroscopy system (EDS).  

Results and discussion 

Frictional heating. The applied normal force (FN) and the concomitant tangential friction force (FT) 

were recorded continuously, using a load-cell and a piezoelectric transducer respectively. The FT/FN 

forces ratio is defined as the friction coefficient (µ). At the same time, temperature curves, caused 

by frictional heating of the sliding WC6Co(Cr/V) flat/ WC6Co(Cr/V) pin contact, were acquired as 

function of sliding distance by different measuring techniques, Fig. 1.  
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Fig. 1: (a) real-time friction and temperature, (b) effect of contact load, (c) effect of sliding speed, (d) effect of 

thermocouple distance to sliding contact, for WC6Co(Cr/V) / WC6Co(Cr/V) pin on plate tribocouples 
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Each curve is an average of at least two wear experiments performed under identical conditions, 

with a standard deviation of less than 10% between different samples of the same material. The 

error bars indicating the extent of the variations are excluded to make the figure better readable. 

Friction force and friction coefficient are noticed to increase abruptly during initial sliding contact 

and, after a running-in stage, reach a steady state regime, in which the variations become marginal, 

Fig. 1(a). The fluctuations in the friction curve are also found in the temperature plots. The T1- and 

T2-curve seem to vary similarly as function of the sliding distance, except for the initial stage. The 

highest temperatures are predicted by T1, the lowest values occur for T2, whereas the T3- and T4-

values appear somewhere in-between. 

Grossly, it can be stated that temperature varies exponentially as function of sliding wear path. 

For example, the following correlation is obtained for 50 N curve in Fig. 1(b): 

T(s) = 25.4160 ⋅ s0.1659  (R2
 = 0.9708).     (1) 

The R-square value indicates that the equation matches the experimental results quite well. 

Furthermore, rising contact load and sliding velocity are noticed to increase the effect of frictional 

heating quite pronounced, as illustrated in Fig. 1(b,c). The distance (δ) between the thermocouple 
and the sliding wear contact turns out to affect the T1-temperature as well. The curves in Fig. 1(d) 

allow to perform a curve fitting procedure in order to predict the frictional heating nearby the sliding 

contact surface. For instance, a wear path length of 400 m corresponds with a temperature rise ∆T of 
11, 13, 16 and 21 °C for distances δ of 9, 7, 5 and 3 mm respectively, resulting in following 
empirical equation: 

∆T(δ) = 40.4210 ⋅ δ-0.5864  (R2
 = 0.9974).     (2) 

Based on tribothermal analysis [6], with the assumption that convection is neglectible and that the 

frictional heating is conducted away from the sliding contact into the pin and its holder and into the 

plate as well, M.F. Ashby et al. derived a model for calculation of "bulk" heating of the specimens, 

i.e. the surface temperature of the pin in the region near the sliding interface, TS: 
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where µ is the friction coefficient, FN is the normal load force, K is the thermal conductivity, V is 

the sliding velocity, Ttest is the ambient test temperature, r0 is the wear scar radius (contact radius), 

and a represents the thermal diffusivity of the material.  

 

Wear surface analysis. Wear track analysis by scanning electron microscopy revealed that the wear 

process of the WC-Co cemented carbides is mainly controlled by abrasion, grain cracking, grain 

fracture, binder removal and grain pull out [5]. These observations are confirmed by Fig. 2, in wich 

cross-sectioned views of worn surfaces, resulting from reciprocative dry sliding tests on ground 

WC12Co(V) cemented carbides against WC6Co(Cr/V) grade pins with a 50 N contact load and 

distinctive sliding velocities, are presented. Furthermore, the wear surface originating from the 

“high speed” sliding appears to exhibit traces of binder modification within a thin subsurface zone, 

Fig. 2(b), contrary to the “low speed” sliding wear surface, Fig. 2(a). Indeed, increasing velocity 

causes the adhesive effect of welding between pin and plate to be more pronounced, resulting in 

more frictional heating and higher bulk temperatures, and thus, increasing the probability of 

affecting the metallic binder phase [7]. 
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(a)  (b)  
Fig. 2:  BSE micrographs in the wear (sub)surface of ground WC12Co(V) after sliding under a 50 N contact load 

at (a) 0.45 m/s and (b) 0.9 m/s  

Conclusions 

Systematic reciprocative dry sliding experiments on ground and wire-EDM’ed WC-Co cemented 

carbides against WC-Co pins, imposing various testing parameters, revealed the occurrence of 

several wear mechanisms. The impact of frictional heating was assessed using different techniques. 

The bulk temperature was found to rise exponentially as function of sliding distance and was 

demonstrated to be dependent on the coefficient of friction and the distance from the sliding wear 

contact. Rising contact load and sliding velocity increase the effect of frictional heating 

considerably in terms of temperature rise, and thus, also increase the probability of surface binder 

phase modification.  
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