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Implementation of maximin and maximal solutions
for linear programming problems under uncertainty
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We present a software implementation of the methods for solving linear programming
problems under uncertainty from previous work. Uncertainties about constraint parameters
can be expressed as intervals or trapezoidal possibility distributions. The software computes
the solutions for the optimality criteria maximin and maximality. For maximality with
possibility distributions, only an approximate solution is obtained.
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1. Introduction

Linear programming has been widely developed and used in optimization prob-
lems [1]. We consider linear programming problems with uncertainty of the form

maximize cTx
subject to Ax≤ B, x≥ 0,

where x in Rn is an optimization vector, c in Rn is a vector of objective function
coefficients, A is a m×n matrix of uncertain constraint coefficients Aij, and B is an
m-vector of uncertain constraint variables Bi.

In earlier work [2] we reformulated this problem into a decision problem.
Uncertainty about Aij and Bi is modeled by crisp intervals [aij,aij] and [bi,bi], or
by possibility distributions [3]. Independence is assumed between all constraint
parameters. These models can be seen as special cases of coherent lower and upper
previsions P, and P [4], the framework of which we use to analyze the problem.
Solution methods for the maximin and maximality optimality criteria [5] were given
elsewhere [6].

In this paper we discuss a Matlab implementation of these solution methods. It
allows specification of the uncertainties in the Aij and Bi as single values (no un-
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certainty), intervals, triangular possibility distributions, and trapezoidal possibility
distributions. These specifications are made in a text file, which also includes the
values of m, n, and the components of c. This file is loaded into a graphical user
interface, which also allows editing of the parameters and displays graphs of the
possibility distributions chosen. The user then selects the type of uncertainty model
to use: intervals or possibility distributions. Finally, the user chooses whether to
use maximin or maximality. The interface then displays a plot of the corresponding
solution and exports the solution to a file for further investigation. In Section 3 we
explain the implementation and interface, and in Section 4 we give an illustration.
A version of the software is available upon request.

2. Theoretical Solution

The following decision problem was introduced in earlier work [2, 6]. The gain
Gx(a,b) for a particular optimization vector x and a particular realization (a,b) of
the constraint parameters (A,B) is cTx if ax≤ b and L if ax 6≤ b. L is a penalty that
must be smaller than cTx for any x in the outer feasibility space: those x for which
there is a realization (a,b) of (A,B) such that ax≤ b.

We consider two optimality criteria for upper and lower previsions. Maximin
selects all x that maximize the lower prevision P(Gx). Maximality selects all x such
that, for all other potential optimization vectors z in the outer feasibility space,
P(Gx −Gz) ≥ 0 holds. Maximality is often strengthened by requiring x to be
undominated by any other z: either Gx(a,b)> Gz(a,b) for some (a,b), or Gx = Gz.
We cannot yet deal with this in our software, so we do not consider dominance in
this paper.

The solutions in this section were derived in an earlier paper [6], which is based
on a more general treatment [2].

Interval model. In the interval case the maximin problem (on the left) becomes a
standard linear programming problem (on the right):

maximize cTx
subject to Ax≤ B, x≥ 0

with a≤ A≤ a, b≤ B≤ b
→ maximize cTx

subject to ax≤ b, x≥ 0,

where a is the matrix of the aij and b is the vector of the bi.
The maximality problem becomes a vertex enumeration problem

maximize cTx
subject to Ax≤ B, x≥ 0

with a≤ A≤ a,
b≤ B≤ b

→
find all x

subject to ax≤ b, x≥ 0,
cTx≥maxaz≤b cTz.
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Possibility distribution model. Let the Aij or Bi be modeled by trapezoidal pos-
sibility distributions πij or πi. Special cases of trapezoidal functions are admit-
ted: triangular functions, crisp intervals, and crisp numbers. Independence im-
plies πA(a) :=min1≤i≤m,1≤ j≤n πi j(ai j), πB(b) :=min1≤i≤m πi(bi), and π(a,b) :=
min{πA(a),πB(b)}. The maximin problem becomes a nested optimization problem

maximize cTx
subject to Ax≤ B,

x≥ 0
with given π

→ maximize L+(1− t)

(maximize cTx−L
subject to atx≤ bt ,

x≥ 0

)
,

subject to 0≤ t < 1

where at
ij = max{aij : πij(aij)≥ t}, bt

i = min{bi : πi(bi)≥ t}, at is the matrix with
components at

ij, and bt is the vector with components bt
i .

For maximality, P(Gx−Gz) is difficult to calculate, and is of the form

P(Gx−Gz) = α(x,z,π)+β (x,z)γ(x,z,π), (1)

where α is an easily-calculated function, β is an easily-calculated positive function,
and γ is a function taking values in [0,1] that we have found no efficient way to
calculate. In the next section we explain how the software deals with this problem.

3. Software Implementation

Methods. For the interval case, we solve the linear programming and vertex enu-
meration problems using standard toolboxes. For maximin with possibility distri-
butions, the inner maximization is a linear program. The outer maximization is
unimodal in t, so we use the golden section method [7, § 10.2]

For maximality, the upper prevision in Eq. (1) is difficult to calculate efficiently.
However, we only need to know whether it is nonnegative, that is, whether

γ(x,z,π)≥−α(x,z,π)/β (x,z). (2)

Since γ(x,z,π) ∈ [0,1], if the right-hand side is 0 or less, then the left-hand side is
not smaller. If the right-hand side is greater than 1, then the left hand side is smaller.
If the right-hand side is in (0,1], it turns out we can check Eq. (2) by solving at
most m linear programs.

To find an approximate set of maximal points, we discretize the outer feasible
region into a grid of candidate vectors, and test these against one another. As soon
as a candidate is found to be non-maximal it can be removed from all further
comparisons, because the ordering corresponding to maximality is transitive. Any
candidate removed by this method is non-optimal, but a candidate x not removed
is not necessarily maximal: it could be that none of the z such that P(Gx−Gz)< 0
were in the grid. This can often happen when the grid resolution is too coarse or
when the candidate vector is close to a maximal vector.
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Input File
m=1
n=3
Objective function
-5 -3.75 -2.5
A
4.8 5 5.3
8 9 10
8.3 9.3 10.4
B
8
resolution=40
L=-10

Interface and Input. On the right, we show an exam-
ple input file, used for the illustration of Section 4. n
sets the dimension of x. m sets the number of constraint
rows. The numbers under Objective function
give the values of the ci. Each row of numbers under A
gives the uncertainty model for a particular element Aij:
in this case (in order) A11, A12, A13, all of which here are
triangular possibility distributions. Each row of num-
bers under B gives the uncertainty model for a particular
Bi, in this case B1 only, which here is a crisp value 8.
As an example, adding another constraint row would
mean there are four new uncertain values: A21, A22, A23, and B2. To add these to the
problem, we would add three more rows of numbers underneath 8.3 9.3 10.4
(corresponding to A21, A22, A23), and one row of numbers underneath 8 (corre-
sponding to B2). L is the penalty L, and resolution is the grid resolution for the
method for possibility distributions and maximality. These last two are optional.

In Figures 1–3 we show the three panels of the graphical user interface.

Figure 1. First GUI panel: the input file is loaded, and the distributions are viewed and edited.

Figure 2. Second GUI panel: the values for c and the parameters for the possibility distributions of A
and B are all shown. Clicking on a cell displays the possibility distribution in the possibility distribution
editor (see Fig. 1).

4. Illustration: minimizing the cost of a beam

We apply the method to a loaded beam problem. We want to minimize the total
cost of a beam of length ` and cross section area a that may consist of n different
segments i of different material, each with a relative cost per meter of ci. Under a
load f , the beam should not stretch more than a prescribed length d. So we must
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Figure 3. Third GUI panel: the choice of uncertainty model to use can be made (if ‘Vacuous Case’ is
chosen, then all triangular and trapezoidal possibility distributions are reduced to crisp intervals). When
‘Possibility Distribution’ is chosen, the optimality criterion to use must be selected. When ‘Vacuous
Case’ is chosen, solutions for both criteria are calculated. When n is 2 or 3, a plot of the solution is
displayed in the right panel. Finally, the solution is exported to a specified file, along with c, L, and the
distributions for the Aij and Bi.

S1 S2 · · · Sn a

`

x1` x2` · · · xn`

S1 S2 · · · Sn

≤ d
f

maximize ∑
n
i=1−ci`xi

subject to ∑
n
i=1 Sixi ≤ da

f ` ,
∑

n
i=1 xi = 1, x≥ 0.

find relative segment lengths xi that min-
imize the cost. The constraint can be ap-
proximated by a linear one determined by
a finite element analysis [8] in which we
take beam segments as elements. There
is uncertainty about the elastic compli-
ances Si (inverses of elastic or Young
moduli) that determine how much each
material stretches. The problem can be
formulated as the linear program with
one uncertain constraint on the right.

We imagine a beam with n = 3 segments with the following materials, using
triangular possibility distributions for the elastic compliances (units are mm2/MN):
wrought iron with S1 ∼ (4.8;5.0;5.3); brass with S2 ∼ (8.0;9.0;10.0); bronze
with S3 ∼ (8.3;9.3;10.4). The quantities `, a, f , and d are chosen such that da

f ` =

8.0mm2/MN. The relative costs are 3c1 = 4c2 = 6c3 and the penalty is L =−10.
The results of the analysis of this problem with our program are given in Fig. 4.

5. Conclusion

We implemented the approaches in previous work [6] for linear programming
problems under uncertainty. An intuitive user interface allows visualization and
specification of the uncertain parameters, and offers a choice of two solution meth-
ods (maximin and maximality) for two uncertainty models (intervals and possibility
distributions). The current version allows uncertainties to be given as any combina-
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Figure 4. Solution of beam problem for interval and possibility distribution cases. Each point in the
simplex corresponds to the optimization vector x with that ratio of materials. The light grey region is
the maximal region using intervals. The dark grey points show the approximate maximal region using
possibility distributions. The maximin solution is the same for both uncertainty models.

tion of crisp values, intervals, and triangular or trapezoidal possibility distributions.
Future goals are to include other uncertainty models, to address dominance, and to
find an efficient method for maximality with possibility distributions for large n.
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