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Abstract—The presence of a frequency offset (FO) and phase
noise can cause severe performance degradation in digital
communication systems. This work combines a simple FO
estimation technique with a low-complexity phase noise esti-
mation method, inspired by the space-alternating generalized
expectation-maximization algorithm. Using a truncated discrete-
cosine transform (DCT) expansion, the phase noise estimate
is derived from the estimated DCT coefficients of the phase.
A number of implementations of the proposed algorithm are
discussed. Numerical results indicate that when estimating the
FO from pilot symbols only, comparable performance can be
reached as the computationally more complex case where the
FO is updated iteratively, with small convergence time. The
phase noise estimation step is well capable of compensating for
the residual FO. For the considered scenario, performing FO
compensation before iterative phase noise estimation yields a bit-
error rate performance degradation close to the case where the
FO is known.

I. INTRODUCTION AND MOTIVATION

In an ideal bandpass digital communication system, the local

oscillators required for up-conversion at the transmitter and

down-conversion at the receiver operate at exactly the same

nominal carrier frequency. In practice, however, there will be

a mismatch between the carrier frequencies of the received

signal and the sinusoid generated by the receiver oscillator.

This mismatch is called the carrier frequency offset (FO). Non-

ideal effects in the transmitter and receiver oscillators also

cause the carrier phase of the received baseband signal to show

random fluctuations in time; this impairment is commonly

known as phase noise and has been characterized in e.g. [1].

As a result of frequency offsets and randomly perturbed phase

samples, the received signal contains a rotated version of the

transmitted symbol, yielding an increased error probability. An

efficient FO and phase noise estimation technique is of utmost

importance to guarantee reliable transmission.

A variety of FO estimation techniques have been presented

in [2]–[5]. Here, we use the space-alternating generalized

expectation-maximization (SAGE) algorithm [6] to combine

FO estimation based on [5] with the phase noise estimation

technique from our prior work [7], which makes use of a

truncated basis expansion of the phase. In section II, we

describe the system and discuss the basis expansion model

for the phase. Section III presents the proposed FO and

phase noise estimation algorithm. Performance of the proposed

technique is assessed via computer simulations in section IV,

where both the mean-square phase error (MSPE) and the

associated bit-error rate (BER) are discussed.

II. SYSTEM MODEL

We consider a single-carrier transmission system, where

bursts of K uncoded PSK symbols are transmitted over an

additive white Gaussian noise (AWGN) channel suffering from

phase noise. In the presence of a FO (under the assumption

that perfect timing synchronization takes place), the matched

filter output samples are given by

rk = ake
j(2πνk+θk) + wk

= ake
jφk + wk, (1)

for k = 0, . . . ,K − 1. Here, K is the burst length and k is

the symbol index. The additive noise {wk} is a sequence of

i.i.d. zero-mean circular symmetric complex-valued Gaussian

random variables with E[|wk|
2] = N0, and θk is the sum of a

static phase offset θstat and a zero-mean phase noise process.

ν represents the frequency offset between the transmitter and

receiver oscillators, normalized to the symbol interval T . The

FO introduces a term to the time-varying phase that increases

linearly with k. Combining both the FO and phase noise

contributions, the total instantaneous phase is modeled as

φk = 2πνk + θk.

The transmitted symbol sequence {ak} contains KP pilot

symbols at positions k ∈ IP = {ki, i = 0, . . . ,KP − 1}, with

constant magnitude: |aki
|2 = Es. We denote the pilot symbol

ratio as η = KP /K. The remaining K − KP data symbols

are chosen from a PSK constellation, with E[|ak|
2] = Es for

k /∈ IP . As in [7], the low-pass character of the phase noise

process is exploited by representing θk by a truncated discrete-

cosine transform (DCT) expansion, containing only N << K
lower-order DCT coefficients. Due to their small magnitude,

the remaining K−N higher-order DCT coefficients are safely

neglected:

θk ≈

N−1
∑

n=0

ψk,nxn, k = 0, . . . ,K − 1, (2)

or, in matrix form:

θ ≈ ΨKx,

where (θ)k = θk, (ΨK)k,n = ψk,n is the DCT basis

function of order n over the observation interval (0,K − 1)
and (x)n = xn is the n−th order DCT coefficient of θk.
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The orthonormal DCT basis functions are known to perform

closely to the optimal Karhunen-Loève basis functions [8] and

are defined as

ψk,n =







√

1
K

n = 0
√

2
K
cos

(

πn
K

(

k + 1
2

))

n > 0
.

From the observations (1) we produce an estimate ν̂ of the

normalized FO and an estimate {x̂n, n = 0, . . . , N − 1} of

the DCT coefficients {xn, n = 0, . . . , N − 1} using (2) with

equality. The phase estimate θ̂k is obtained as the K−point

inverse DCT of {x̂n}. Note that instead of having to estimate

each of the K phase samples φk, the proposed method requires

the estimation of only N + 1 << K parameters, significantly

reducing the computation time.

III. FREQUENCY OFFSET AND PHASE NOISE ESTIMATION

The proposed iterative estimation algorithm is inspired by

the SAGE algorithm, which is related to the iterative expecta-

tion maximization (EM) algorithm [9], [10]. Let us consider

the case where we wish to estimate the unknown deterministic

parameter vector y of length M +N from the observations r.

The EM algorithm states that the maximum-likelihood (ML)

estimate of y can iteratively be obtained as

ŷ(l) = argmax
y

Ea

[

ln (p(r|a;y)) |r; ŷ(l−1)
]

,

where l > 0 is the iteration index and p(r|a;y) is the

probability density function (pdf) of the received signal r

conditioned on the symbol sequence a and the parameter

vector y. The natural logarithm, ln (p(r|a;y)) is called the

joint log-likelihood function of a and y. Note that, during

each iteration, the EM algorithm simultaneously computes an

estimate of all components of y. The SAGE algorithm presents

an iterative framework where during each iteration, disjoint

subsets of the elements of y are estimated separately, while

keeping the corresponding complement of each subset fixed.

Let us construct the vector y1 by stacking M components of

y. The remaining N components of y are used to form y2.

The first step of the SAGE procedure is to apply the following

ML rule in order to obtain an estimate of y1:

ŷ
(l)
1 = argmax

y1

Ea

[

ln(p(r|a;y1, ŷ
(l−1)
2 ))|r; ŷ

(l−1)
1 , ŷ

(l−1)
2

]

,

(3)

where ŷ
(l−1)
2 is the estimate of y2 from the previous iteration.

In the next step, keeping y1 to the fixed value ŷ
(l)
1 , the iterative

estimate of y2 is computed as:

ŷ
(l)
2 = argmax

y2

Ea

[

ln(p(r|a; ŷ
(l)
1 ,y2))|r; ŷ

(l−1)
1 , ŷ

(l−1)
2

]

.

(4)

From (3) and (4), we note that a SAGE iteration is actually

an EM iteration, where a subset of the parameter estimates

is updated, while keeping the remaining parameters fixed.

The estimation rules (3) and (4) are initialized by the pilot-

based (PB) estimates ŷ
(0)
1 and ŷ

(0)
2 . Denoting rP as the vector

containing the observations (1) at the pilot symbol positions,

we have:

ŷ
(0)
1 = argmax

y1

ln
(

p(rP|aP;y1, ỹ
(0)
2 )

)

ŷ
(0)
2 = argmax

y2

ln
(

p(rP|aP; ŷ
(0)
1 ,y2)

)

,

where (aP)i = aki
for i = 0, . . . ,KP − 1 and ỹ

(0)
2 is an ap-

propriately chosen initial value of y2. In the problem at hand,

we wish to estimate the parameter set {ν, x0, . . . , xN−1} from

the observations (1). A straightforward partitioning would be

to choose the subsets {ν} and {x0, . . . , xN−1}, allowing us to

estimate the frequency offset and the phase noise separately.

Depending on the order of estimation, we choose either

y1 = y1 = ν and y2 = x; or y1 = x and y2 = y2 = ν.

A. Phase noise estimation

The joint log-likelihood function ln p(r|a; ν̃,x) is given by

(discarding terms not depending on x and irrelevant multi-

plicative factors):

ln p(r|a; ν̃,x) ∝

K−1
∑

k=0

ℜ[rka
∗

ke
−j(2πν̃k+θk(x))],

where ν̃ = ν̂(l−1) if phase noise estimation precedes frequency

estimation and ν̃ = ν̂(l) otherwise, (r)k = rk and θk(x)
indicates that the phase is a function of x. Straightforward

application of the SAGE algorithm yields the following itera-

tive estimation rule:

x̂(l) = argmax
x

K−1
∑

k=0

|V
(l)
k | cos

(

arg(V
(l)
k )− θk(x)

)

, (5)

where we have defined V
(l)
k = rke

−j2πν̃kµ
(l)∗
k . For k ∈ IP , we

have µ
(l)
k = ak. For k /∈ IP , µ

(l)
k = Ea[ak|r; ν̂

(l−1), x̂(l−1)] is

the a posteriori expectation of the symbol ak, based on r and

the FO estimate and DCT coefficient vector estimate from the

previous iteration. Note that for k /∈ IP , µ
(l)
k represents the soft

decision on the data symbol ak. The non-linear character of

the estimation rule (5) renders ML estimation of x infeasible.

Assuming small additive noise, however, an approximate solu-

tion x̂(l) is obtained by minimizing
∑

k |arg(V
(l)
k )− θk(x)|

2

instead. With l > 0, we obtain the following least-squares

estimate:

x̂(l) = (ΨT
KΨK)−1ΨT

Kz
(l)

= ΨT
Kz

(l)

θ̂
(l)

= ΨKx̂
(l) = ΨKΨT

Kz
(l)
,

(6)

where (z(l))k = arg(V
(l)
k ) and the second equality in the first

line of (6) follows from the orthonormality of the DCT basis

functions. Similarly, the PB phase estimate is given by:

θ̂
(0)

= ΨK(ΨT
PΨP)

−1ΨT
Pz

(0)
, (7)

where (z(0))i = arg(rki
e−j2πν̃(0)kia∗ki

) and ΨP is the matrix

obtained by keeping only the KP rows of ΨK with pilot

symbol indices. For the matrix ΨT
PΨP to be invertible, we



need N < KP . In [7], we propose to insert the pilot symbols

at the following equidistant positions, for i = 0, . . . ,KP − 1:

ki =
K(2i+ 1)−KP

2KP

, (8)

which yields a diagonal matrix ΨT
PΨP = KP

K
IN, with IN

denoting the N ×N identity matrix.

Note that the argument function arg(.) in (5) returns

values between [−π, π]. Consequently, when the argument

of rke
−j2πν̃kµ

(l)∗
k is larger (smaller) than π (−π), phase

wrapping occurs and the estimate is no longer accurate. We

avoid this problem by unwrapping the argument function

arg(.) using a phase unwrapping scheme. Although the added

complexity is negligible, correct phase unwrapping requires

the pilot symbol spacing to be sufficiently small for the PB es-

timate. In the remainder of this paper we assume correct phase

unwrapping takes place, and arg(.) denotes the unwrapped

argument function.

B. Frequency offset estimation

In accordance with the SAGE algorithm, the FO estimate

from the l−th iteration is given by:

ν̂(l) = argmax
ν

K−1
∑

k=0

ℜ[rkµ
(l)∗
k e−j(2πνk+θk(x̃))]

= argmax
ν

K−1
∑

k=0

ℜ[u
(l)
k e−j2πνk],

(9)

where in the second line of (9), we have defined u
(l)
k =

rkµ
(l)∗
k e−jθk(x̃) with x̃ = x̂(l−1) when FO estimation takes

place before phase noise estimation and x̃ = x̂(l) otherwise.

In order to solve the highly non-linear equation (9), we make

use of the technique proposed by Luise and Reggiannini

in [5]. Defining the estimated autocorrelation function of

{u
(l)
k , k = 0, . . . ,K − 1} as

U
(l)
k =

1

K − k

K−1
∑

m=k

u(l)m u
(l)∗
m−k, (10)

and under the assumption of high signal-to-noise ratio (SNR)

and low frequency offsets, the following estimate is obtained:

ν̂(l) =
1

(M + 1)π
arg

(

M
∑

k=1

U
(l)
k

)

, (11)

where M < K represents the number of autocorrelation

lags considered for estimation. In [5], it was shown that

for large bursts K, choosing M ≈ K/2 yields close to

optimum performance of the FO estimator. As the phase noise

estimation algorithm requires the pilot symbols to be inserted

equidistantly, the pilot-based FO estimate is given by

ν̂(0) =
η

(MP + 1)π
arg

(

MP
∑

i=1

U
(0)
i

)

, (12)

where MP < KP denotes the number of correlations that are

kept for the PB FO estimate, 1/η = K/KP is the distance

between consecutive pilot symbols, and U
(0)
i is the estimated

autocorrelation function of the sequence {rke
−jθk(x̃

(0))a∗k, k ∈
IP }. Note that the operating range of the frequency estimator

is determined by the choice of MP and the pilot symbol ratio

η. Indeed, in order that no phase wrapping takes place between

consecutive pilot symbols, we need

|ν| <
η

(MP + 1)
. (13)

IV. SIMULATION RESULTS

In this section, we make use of computer simulations to

assess the performance of the proposed estimation algorithm in

terms of the mean-square phase error (MSPE) and the resulting

bit error rate (BER) degradation1. The MSPE is defined as

MSPE =
1

K
E

[

K−1
∑

k=0

(φk − 2πν̂k − θ̂k)
2

]

.

We will assume transmission of K = 100 uncoded QPSK

symbols, including KP = 10 pilot symbols arranged at

positions (8), over an AWGN channel in the presence of a

frequency offset and Wiener phase noise. The Wiener model

is commonly used to characterize the phase noise behaviour

of practical oscillators [11], [12] and is described by the

following system equation:

θk+1 = θk +∆k, k = 0, . . . ,K − 2.

The initial value θ0 is uniformly distributed in [−π, π] and

{∆k} is a sequence of i.i.d. zero-mean Gaussian random

variables with variance σ2
∆. Throughout this section, numer-

ical results have been obtained for Wiener phase noise with

σ∆ = 3◦. Figure 1 shows the influence of the FO magnitude

on the mean-square frequency estimation error E[(ν̂(0)−ν)2],
when performing PB FO estimation using MP = 2 lags. From

figure 1, we observe that performance deteriorates significantly

when ν is larger than a certain threshold value, determined by

expression (13) for the operating range: |ν| > 0.1/3 ≈ 0.033.

We also observe that the presence of phase noise yields a

degraded performance as compared to when only a static phase

offset is present. In the remainder, the values ν for simulation

are taken from a random distribution in [−0.03, 0.03] and we

take MP = 2 in (12) and M = K/2 = 50 in (11).

Two possible PB estimation strategies are considered. In the

first approach, denoted as PBE1, the receiver computes a PB

estimate of x using (7), with ν̃(0) = 0). The resulting PB DCT

coefficient estimate is then used to perform PB FO estimation

(12). In the second PB estimation technique (referred to as

PBE2), the estimation order is reversed: we first compute the

FO estimate, taking x̃(0) = 0. The PB phase noise estimate

from (7) is computed in the second step.

Figure 2 presents the resulting BER as a function of Eb/N0,

for different N . Also shown is the BER curve corresponding to

1The BER degradation caused by some impairment is characterized by the
increase (in dB) of Eb/N0 (as compared to the case of no impairment) needed
to maintain the BER at a specified reference level, where Eb is the transmitted
energy per bit. Throughout our discussion, we consider the BER degradation
at BERref = 10

−4.
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Figure 2: BER as a function of Eb/N0. Solid lines: PB estimation via PBE1,
dashed lines: PB estimation via PBE2.

the system with perfect synchronization when no pilot symbols

are used (denoted as Bound1 in figure 2). The Bound2-curve

represents the BER for perfect synchronization when the

energy loss due to the pilot symbols is taken into account and

shows a degradation of about −10 log10(1 − η) = 0.46 dB
w.r.t. Bound1 for η = 0.1. We observe that PBE2 clearly

outperforms PBE1, regardless of N . The BER curves show a

floor at high Eb/N0, which is caused by neglecting the higher-

order DCT coefficients in the estimation of the phase noise.

However, for PBE1, the floor is much more significant and it

occurs at lower values of Eb/N0 as compared to PBE2. At

moderate Eb/N0, increasing the number of estimated DCT

coefficients N is beneficial for PBE1 as it yields a lower floor

value, but the BER performance is still rather poor. For PBE2

however, increasing N only yields improved performance up

to a certain value, NPB = 4 in figure 2. For N > NPB , a

larger amount of additive noise is included in the estimation

process and the BER degradation increases.

5 6 7 8 9 10 11

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N

B
E

R
 d

e
g
ra

ti
o
n
 (

d
B

)

Deg
1

Deg
2

Iterations

Figure 3: BER degradation as a function of N . Solid lines: estimation via
DDE1, dashed lines: estimation via DDE2.

The degraded performance of PBE1 as compared to PBE2

can be explained as follows. When estimating the DCT coef-

ficients of the phase noise assuming negligible FO (ν̃(0) = 0),

x̂(0) is the PB DCT coefficient vector estimate related to the

total instantaneous phase φk. As φk contains a contribution

that increases linearly with the time-index k, it does not

necessarily show a low-pass behaviour. As a result, ignoring

the higher-order DCT coefficients of φk results in a significant

modeling error. By first estimating the FO, the linear term in

φk is largely compensated for, prior to phase noise estimation,

so that disregarding the higher-order DCT coefficients is

justified in PBE2.

Next, we examine the BER degradation of the iterative

SAGE-based estimation technique. We consider two scenarios:

in the first decision-directed (DD) scheme, referred to as

DDE1, the PB FO and phase noise estimates resulting from

PBE2 are used to initialize the iterative FO estimation rule

from (11). After 1 iteration, the resulting DD FO estimate

is used to perform 1 iteration of the phase noise estimate

from (6). The SAGE updating rules (11) and (6) are then

iteratively repeated. It turns out that convergence is achieved

after only 3 iterations. Assuming the initial PB FO estimate is

sufficiently accurate, we could reduce the complexity of the

estimation algorithm by skipping the updating step of the FO

estimate and only refining the phase noise estimate iteratively

(i.e. we only use the PB FO estimate resulting from PBE2).

The corresponding estimation scheme is denoted as DDE2.

Figure 3 shows the BER degradation at a reference value

BERref = 10−4 as a function of N for DDE1 and DDE2.

The BER performance is compared to the case where only

the phase noise is estimated when no FO is present (Deg1).

Deg2 is the BER degradation corresponding to the case where

DDE2 is applied when there is no phase noise, i.e., σ∆ = 0◦.
From figure 3, we observe that in the presence of phase

noise, each BER degradation curve shows a minimum for an

optimal value of N (Nopt ≈ 7). Although DDE1 yields a

lower BER degradation as compared to DDE2, the difference
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is small. Hence, through proper selection of the number of

estimated DCT coefficients, the computational complexity of

the estimation procedure can be reduced by updating only the

phase noise estimate, while operating at approximately the

same BER. We remark here that the reduction in complexity

of DDE2 as compared to DDE1 can be quite significant, since

the latter method would require additional evaluation of M
autocorrelation samples from (10) per iteration. It is observed

that the minimum BER performance is close to the Deg1

curve. Note that the added degradation of DDE1 and DDE2

as compared to Deg1 is caused by the residual FO. When no

phase noise is present, it is not beneficial to estimate more than

one DCT coefficient (i.e., the constant phase contribution). The

BER degradation Deg2 increases as a function of N , since

the amount of additive noise included in the phase estimate

increases with N .

Figure 4 compares the MSPE corresponding to DDE2 as a

function of Es/N0 to the MSPE when only the phase noise

is estimated in the absence of a FO, for different values of

N . The behaviour of the MSPE as a function of N has been

detailed extensively in our prior work [7], [13] for the case of

perfect FO estimation and we observe that it is very similar

when a residual FO is present. However, for low SNR, the

presence of a FO leads to a degraded MSPE performance,

since the FO estimate is less accurate in the low Es/N0 region.

For high Es/N0, DDE2 yields the same MSPE performance

as when no FO is present. Simulation results not shown here,

indicate that the MSPE resulting from DDE1 coincides with

the MSPE resulting from DDE2, implying that the DCT-based

phase noise estimation algorithm is quite robust against the

residual FO remaining after PB FO estimation.

V. CONCLUSIONS

We have discussed a low-complexity iterative decision-

directed FO and phase noise estimation technique that is based

on the SAGE algorithm. The phase noise estimate is obtained

through a truncated DCT model of the phase, where the higher-

order DCT coefficients are neglected. An estimate of the FO

is computed, based on the estimator presented in [5], which is

derived from the ML criterion under the assumption of high

signal-to-noise ratio. The performance of the proposed scheme

is evaluated by means of computer simulations. The following

pilot-based (PB) scheme is adopted for initialization: assuming

no phase noise is present the PB FO estimate is computed. The

resulting PB FO estimate is used to compute the PB phase

noise estimate. Both the FO and phase noise estimates are

iteratively refined in accordance with the SAGE framework.

Numerical results show that instead of also computing the it-

erative FO estimate, comparable performance can be achieved

by only updating the phase noise estimate iteratively using

the PB FO estimate, which yields reduced complexity. For

the considered simulation set-up, convergence of the SAGE

algorithm is achieved after only 3 iterations.
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